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SUMMARY
In Part I of the this paper. topological properties of finite element models of functions defined on spaces
of finite dimension were examined. In this part, a number of applications of the general theory are
presented. These include the generation of finite element models in the time domain and certain problems
in wave propagation, kinetic theory of gases, non-linear partial differential equations, non-linear continuum
mechanics, and fluid dynamics.

INTRODUCTION

In Part T, the following observations were made: Let T(X) denote the value of a continuous
function at a point X in a k-dimensional space &k and its values are arbitrary in that they may be
scalars, vectors, tensors of any order, etc. The region Be can be replaced by a region !!t containing
a finite number G of nodal points X~ in 81 or by a set {jt* consisting of a collection of E disjoint
subregions fe called finite elements. The process of connecting the elements together is accom-
plished by a singular mapping Q: Ytx _ 81: which maps global nodal points X~ into appropriate
local points X~l in the connected model. Since T(X) is one-to-one on Yt, a similar procedure
applies to the finite element model of T(X). In fact, if t(el(x) is the local field associated with
element e and t~l are its values at node N of the clement, then

(1)
(el

where Q~ is defined in Part I, equation 4, and TA = T(XA), L1= 1,2, ... ,G. The local fields
are approximated over each element by

(2)

where the normalized interpolating (Lagrange) functions are selected so that (a) ,¥~I(XM)= 0MN;
M,N = 1,2, ... ,Nc' where Nc is the number of nodes belonging to element e, and (b) the finite
element representation of T(X) is continuous across interelement boundaries in the connected
model. The final form of the (first-order) finite element representation of T(X) is then

E (e)

T(x) = L'¥~)(x)Q~T A
e=l

(3)

To apply the concepts presented previously to any type of linear or non-linear field problem,
all that is needed is some means to translate a relation that holds at a point into one that must hold
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over a finite region. In solving partial differential equations, Zienkiewicz and Cheung, Part I,
Reference 4, have shown that this translation from point relations to regional relations is best
provided by equivalent variational statements of the problem. In problems of physics, it may also
be provided by local and global forms of the balance laws of thermodynamics and electro-
magnetics. The possibility of applying the general equations to cases in which the independent
variables are something other than the usual spatial co-ordinates is also interesting. In the
following, we consider several examples.

FINITE ELEMENTS IN THE TIME DOMAIN

Since the finite element models described previously can, in principle, be used to approximate
functions defined on spaces of any finite dimension, it is natural to first question their utility
in representing functions in the four-dimensional space-time domain.
Consider, for example, a scalar-valued function <D (X', X2, X3, t) of position Xl and time t.

Clearly, we can set X4 = t and consider <[l (X) to be defined on a four-dimensional space, the
points of which are given by X/(i = 1,2,3,4). If the domain is represented by a collection
of E four-dimensional sub-domains, then we can concentrate on approximating the field
¢(el(x·, x2, x3, x4) locally over a typical finite element e:

(4)

where the interpolating functions '¥N(X) are functions of x', x2, .\'3, x4. The general process of
assembling elements amounts to a simple application of equation (I) and is identical to that
described for general spaces in Part I of this paper. However, the details of applying the model to
propagation problems, hyperbolic and parabolic partial differential equations, etc. can only
be appreciated through specific examples.

Two-dimensional space-time
To illustrate the use of finite elements in the time domain, consider the simple example of

a one-dimensional elastic bar of length L and cross-sectional area A, subjected to either a
prescribed force P(t) at a free end or to prescribed initial displacement u(x,O) = f(x). In con-
ventional finite element models, the longitudinal displacement u = u(x,t) is approximated by
one-dimensional interpolating functions '¥~x) (N = 1,2, ... ,Ne) multiplied by nodal displace-
ments which are functions of time. In the present analysis, the displacements u~) are values of a
local field u(CI(X,t) defined over a region in a two-dimensional space (x,t) and are independent
of x and t. The interpolating functions are functions of both the longitudinal co-ordinate x and
time t: '¥ N = '¥ N(X,t). Thus, for a typical finite element

(5)

The Lagrangian potential .!l' for a linearly elastic bar of modulus E and mass density p is

(6)

where v is the volume of the bar and - 2:Sa(t)ua(xa,t) = -S.(t)u(x"t) -Sl(t)U(X2,t) is the pot en-
a

tial energy of forces St(t) and S2(t) at the ends of the segment (xt>x21 of the bar under
consideration. Thus, for a typical finite element e,



wherein
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p~) = f~Sa(t)II(Xa") dt
I
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(7)

(8)

(9)

In these equations. the integration is taken over the portion of the time domain spanned by the
element.
In view of equation (7), the Lagrangian !R has an interesting property that differs significantly

from the usual case: ir is not a functional of velocity. Indeed, !R becomes an ordinary function of
nodal values of displacements: but because of the particular type of formulation, these are
independent of time. Hamilton's principle, of course, still applies so that

and we obtain

('0 iJ!R1e) • (e)OJ; (e) = ~OUN = 0
ullN

(10)

(11)

The process of assembling the elements into the total model follows the usual procedure for
conventional two-dimensional finite-element models.

Longitudinal waves
It is important to note that the procedure by which the above finite element cquations are

solved is quite diffcrent than for purcly elliptic-typc problems. In fact, cquation (II) is the finite
elemcnt analogue of the hyperbolic wave equation

(12)

where ex: = .JE/p.
To illustrate thc procedure, consider the simple example in which the local field is given by

the linear approximation

(13)

where a, b, and c are constants and N = 1,2,3. In this case the finite element is a triangle in two-
dimensional space-time, such as is indicated in Figure 1. From equations (42) and (45) in Part I
of this paper we find that

1
'¥l(X,t) = 2i(X2t3 - X3t2) + (t2 - t3)x + (x3 - X2)t]

1
'¥ix,l) = 2Li[(X31, - x,t3) + (t3 - I,)X + (Xl - X3)t]

1
'¥3(X,1) = 2Li[(X\12 - x2") + (12 - t\)x + (X2 - xl)t]

(14)
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u(x,fl

Figure I. Finite clements in the time domain

where !:1 is the area of the clement in the x,t-plane. For example, introducing the geometry of
shaded element in Figure 1 into equation (14) and making usc of equation (11), we find that
for this rather crude approximation the local equations take the form

p\") = l1\t) _ l1~el }

(J~e) = i.2(U~t) - l1\e)

fJ~e) = l1~e) - 11\'1 _ ). 2(Il~e) _ l1\t)

in which (J~) = - k2pt;)/ApLi and).2 = k2rx2/1I2

(15)

Suppose that I1(X,O) = f(x), u(O,I) = u(L,t) = 0, and ou(X,O)/OI = 0 are the given boundary
and initial conditions and that the finite-element network shown in Figure 2 is used. The
analysis proceeds as follows:
1. Conceptually, only one tier of elements (the first row corresponding to the interval 0 ~ t ~ k,

the second k ~ t ~ 2k, etc.) need be considered to be generated at a time. Global values UA

of the displacements of boundary nodes are equated to zero in agreement with given boundary
conditions: U, = U6 (=U" = U'6 = ... )= 0, Us = U10 (= UI S = U20 = ... ) = O. Dis-
placements at interior nodes corresponding to t = 0 take on the prescribed values; i.e. U2 = f(h),
U3 =f(2h), U4 = f(3h), etc.
2. Since the displacements U2, U3, U3 take on prescribed values, the corresponding global

generalized 'forces' (conjugate variables) F2, F3' F 4 vanish. The only unknowns in the resulting
equations

(16)
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Figure 2. Example of propagation of solution in time
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are the nodal values U7, Us' U9 which represent the displaced profile after k seconds. Since each
equation in (16) has only one unknown, the set can be solved immediately to give U7, UB, and
U9 in terms of the prescribed nodal displacements at 1 = O.
3. Another tier of elements (k ~ t ~ 2k) is now considered. Displacements U'2' U'3' and

U'4 are obtained from the conditions P7 = Ps = P9 = O. Then a third tier of elements is
considered and the process is repeated.
Thus the finite element solution is propagated in time in a manner similar to conventional

finite difference solutions.
We remark that in the case in which a time-varying end load is applied and initial displace-

ments u(x,o) are not prescribed, the same procedure is followed except that Us, U'D, ... :f.: 0
and, instead of equation (16), P2• P3• P 4 (and 157, Ps, ... etc.) take on prescribed values.

Stability
The rather crude simplex model used in the above example is the most primitive finite model

for the problem at hand. By using higher-order approximations or adding more degrees of
freedom to the elements, much greater accuracy, more stable solutions, and smoother results can
be obtained for more difficult propagation problems. Nevertheless, it is interesting to note
that for an interior node such as 8 in the mesh indicated in Figure 2 we have

(17)

which is precisely the form of the first-order central difference approximation of equation (12).
Thus, we can draw on the Courant, Friedrichs, Lewy criteria2 to obtain conclusions on the
stability of the scheme outlined above. Accordingly, the solution is unstable for A. > 1 and
violently unstable for increasing values of A.; for A.< I it is stable but the accuracy decreases
with decreasing A.; for i.. = I. the solution is stable and agrees with the exact solution of
equation (12).
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FINITE ELEMENTS IN THE COMPLEX PLANE: SCHROEDINGER'S
EQUATION

In quantum mechanics. the Schroedinger wave equation can be written in terms of a wave
function X which is complex. We now examine the development of finite element analogues of
Schroedinger's equations for X and its complex conjugate X for the case of a single particle of
mass m acting under the influence of a potential field V(x) = V(x,y,z).
The wave function X(x,t) can be written in the form

X(X,t) = u(x,t) + iv(x,t) (I8)

where i= ,J°-l. The complex conjugate is i(x,t) = u(x,t) - iv(x,t) and physically X(x,t)i(x,t)
represents the probability density at time I for the presence of the particle for the configuration of
the system specified by the co-ordinates x. Confining our attention to a typical finite element e,
we approximate the real and imaginary parts of X(x,t) locally by

u(')(x,t) = '11N(X)U~) , v(e)(x,t) = '¥...{x)v~l

where u~), v~l are the time-dependent nodal values of u(x,t) and v(x,t). Then

It)(x,t) = '11N(X)X~)
X«)(x,t) = 'I'N(x)i~)

where

The Lagrange density LIe) for an element is [3]

112 II (ax ax)ve) = - grad 7. . grad X - ----: i- - ~X - xVi
8n2m 4nt at at

(19a.b)

(20a)
(20b)

(2Ia,b)

(22)

(23)

where II is Planck's constant and i and Xare to be varied independently until .P = f f f fLed dat' dt
is a minimum. Introducing (20) into (22) and requiring that

~(o~e») _ oL = ~(a~'») _ aVe)= 0
dt aXN OXN dt OiN OXN

we arrive at the pair of equations

112 11.
_ ex(e) i(e) + _ pte) iCe) y(e) iCe) - 0
81t2m MN M 41ti MN M - MN M -

11
2

lX(e) le) ..!!.... pte) leI y(e) l') - 081t2m MN M - 4ni MN M - MN M -

wherein
IX~~= f'¥M,b)'¥N,i(X) dBfl

;"

P~i~= J'¥(x)'1J(x) dBe
fft

and
y~1= ('¥M(X)V(X)'¥N(X) dfJt

Zi

(24a)

(24b)

(25a)

(25b)

(25c)
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Equations (24) are the discrete counterparts of the Schroedinger wave equations for the finitc
element. The quantities hP~~X~I/41li, hP~~~XW/41li are the generalized canonical momenta at
note N of the element, (h2C(~~/81l2m)- ')'~k represents the discrete equivalent of the Hamiltonian
operator for the particle while in finite element e.

KINETIC THEORY OF GASES

Thc statistical mechanics of dilute gases involves problem areas in which finite elemcnt models
in the six-dimensional µ-space may be used to advantage, Here the molecular density is
assumed to be sufficiently low and the temperaturc sufficiently high that each molccule of gas
can be considered to be a classical particle with a reasonably well-defined position and momentum.
The behaviour of a contained gas is characterized, according to classical kinetic theory,4
by a distribution functionf(x,v,t) which is defined so as to represent the number of molecules at
time t which have positions lying in a 'volume' element dQ in a six-dimensional velocity-space,
such that x" x2, and X3 denote the position of the molecule and X4 = v,. Xs = V2, X6 = V6

its components of velocity. Unlike classical mechanics, which deals only with mean velocities,
the quantities v" Vl and V3 are independent of x" X2, and x3• We outline briefly the finite
element approximation of such distribution functions.
Following the procedures outlined in Part I, can immediately write down the local approxima-

tion of the distribution function over an element e in six-dimensional space:

(26)

where fJ.:1 are functions of time and N = 1,2, ... ,Ne• As a first approximation, we may, for
cxample, use the simplex approximation wherein the intcrpolating functions '¥N(X) are of the
form

j =: 1,2, ... ,6 (27)

wherc Ne = 7 and aN' bN1 can be expressed in terms of the nodal 'co-ordinates' x~.

A 'volume' clement in six-dimensional µ-space is denoted dQ = dap d V where, for simplicity,
we may take dfJt = dxt dX1 dx3 to be the usual three-dimensional volume element and
dV= dX4 dxs dX6 a volume in velocity space about v. Thenfle)(x,t) dQis the number of molecules
in dQ at time t at a point x in finite element e. For every dilute gases at high temperatures,
f~)(x,t) obeys the collisionless transport equation

aPe) lie) = 0-+v'V,Jat (28)

where V, is thc gradient operator with respect to r = (x" -'"2' X3)' Multiplying equation (28)
through by fe dQ and integrating over the volume Qe of the element, we obtain

(r(el f' (e) + keel j(e»j(e) - 0
MN M MN M N-

where

Since (29) must hold for arbitrary f~l, we have for a typical element

(29)

(30a,b)



254 J. TINSLEY ODEN

reel j' (el + keel j(e) - 0
MN M MN M - (31)

in which M, N = I, 2, ... ,Ne. The process of connecting elements is no different than that
indicated by (I).
Equation (31) is the transport equation for a finite element. It represents the discrete counter-

part of the collisionless Boltzmann-Vlasov transport equation. We observe that the procedure
used to obtain the finite element model (31) is essentially a local application of Galerkin's method.

A NON-LINEAR PARTIAL DIFFERENTIAL EQUATION

In a recent paper, Greenspans presented a general method for solving boundary-value
problems for non-linear differential equations which involved using finite differences for approxi
mating the functionals appearing in an associated variational statement of the problem.
Zienkiewicz and Cheung,' [Part I, Reference 4] used a similar procedure for the finite element
solution of a class of linear partial differential equations. It is a simple matter to extend these
finite element procedures to solve non-linear partial differential equations.
As an example, consider the non-linear boundary-value problem which involves finding a

solution q,(x· ,x2), over a closed region fJt of two-dimensional Euclidean space, of the non-linear
partial differential equation

(02q, 02q,) (oq,) 2 (oq,)22q, ox2 + oy2 + ox + oy - j(x,y) = 0

subject to the conditions on the boundary curve C:

q,(s) = g(s) 011 C

The associated variational problem involves finding an extremum of the functional

where ex= 1,2; x' = x and x2 = y; and q,,(>== oq,lox".
The local approximation of q,(x) over a finite element e of Bl is

and for the disjoint element e, we have from

1. = ~f4)<e)(4)~:lep~:1- jep<e» dre - f ep<elg(s) ds
r.. c,

_ ~ dNMSA,(e)A,(e)A,(e) _ pS A,(el- 3 (el 'l'N 'l'M'I'S (e)'I'S

where

d7~~'S= ~f'¥N(X)'¥M.,,(X)'Ps,.(X) dre
r,

(32)

(33)

(34)

(35)

(36)

(37)
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pfe) = f f(x)'¥s(.x)dre +f'¥S<X)g(S)dS =!(:) + g~)
r,. Ct

Thus. for the element.

and we obtain the quadratic equations

dNMS.J.(e).J.(e) _ pS - 0
(el 'l'N 'I'M (e) -

where N, M, S = I, 2, ... ,Ne
Final global equations are of the form

pt1 = D Ar0<I>r<[lo

where
E

Dt1l'o _ "'A(e)~Q(e)I'Q(e)O dNMS- L../·~s N M (e)
e

and
.J.(el _ A(e)t1<I>. p.:l _ "'A(el.:lpS
'l'N - UN t1 - L.}~S (el

e
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(38)

(39)

(40)

(41)

(42)

(43b,c)

Note that in equation (38) the global values GA = 2:Q~e)t1gfe) of gfe) are zero at all interior
e

nodes and they take on prescribed values on the boundary of fJt (or ti). On applying such
boundary conditions, the system of non-linear equations may be solved by (say) the Newton-
Raphson Method.

NON-LINEAR CONTINUA

We now demonstrate briefly that the finite element method can be applied to any type of non-
linear continua, whether it be dissipative or not, without going through the usual ritual of develop-
ing associated variational principles for the problem at hand. The global form of the law of
conservation of energy for thermomechanical phenomena is taken to be'

(44)

where 1/' is the kinetic energy, U the internal energy, Q the mechanical power, Q the rate of heat
input, and the superposed dots indicate time rates:

1/'= tJpv . v dv
v

U = Ips do

w = I pF . v dv + Is. v dA
v A

Q = .f ph dv + Jq . n dA
v A

(45a)

(45b)

(45c)

(45d)

Here v is the velocity, p the mass density, s the internal energy density, F the body force per unit
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mass, S the surface tractions, II the heat supplied from internal sourccs, q the heat flux, and n
a unit vector normal to the surface area A.
If the motion is referred to an intrinsic co-ordinate system Xi (i = I, 2, 3) which is rectangular

in the reference configuration, we have the strain-displacement relations

(46)

and, if linear momentum is conserved, we have for the local form of equation (44)

(47)

where (iii are contravariant components of the stress tensor referred to ;1/ and semicolon indicates
covariant differentiation with respect to the convected co-ordinates Xl. In addition, we need
constitutive equations for the material, which, for illustration purposes, we will take to be of the
form

(48)

Here (lj,li are constitutive functionals of, perhaps, the histories of the strain, strain rates, higher-
order strain rates, temperature, etc.
We now consider a typical finite element of the continuum. The displacement field associated

with element e is
(49)

where 1I~1 are the components of displacement of node N of clement e. Introducing equations
(47-49) into (45) and (44) and simplifying, we arrive at the general equation of energy balance
for a finite clement of a continuous media:

(50)

whcre

I',

p~l = J pFj'¥".(x) dv + JSj'¥N(X) dA
v.. A.

(5Ia)

(Sib)

(52)

Herc m~l{is the consistent mass matrix for the continua and p~l are thc componcnts of generalized
force at node N of the element. Since (50) must hold for arbitrary nodal velocities, we have

nl(e) ii(e) + fllt kJ(O . + '¥(e) (x)u(e» dv = p(e.>
N!of!ofj \!IJ k. R,k R,l N.

in which it is understood that ([,li has been put in tcrms of ut;l, 1I~1,... , etc. with the aid of
(48) and (46).
Equation (52) is the general equation of motion of finitc elements of non-linear continua.

Specific forms of these equations can be obtained only after specific constitutive equations are
introduced. Final equations for the assembled system of elements are obtaincd, as before, by
using the transformation pair in equations (14) and (33) of Part 1.
In the following section we examine different forms of equation (52) which are written from an

Eulerian description of the motion. Then the procedure leads to finite element models of
problems in fluid dynamics.



A GENERAL THEORY OF FINITE ELEMENTS

FLUID DYNAMICS
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Although the results of the previous section are applicable to any type of continua, we now
examine an alternate formulation of finit,e element models which is specifically designed for the
general problem of dynamics of a continuous fluid. The type of fluid is arbitrary: it may be
compressible, incompressible, inviscid, viscoelastic, etc., and, again, no use is made of specific
variational principles in the sense that the formulation does not depend on the existence of extremal
principles involving well-defined functionals. Thus, the classical problems of 'potential' flow*
comprise only a special sub-class of those for which this formulation holds.
A fundamental difference between finite element modules of fluid motion and the motion of

a solid is that in problems of fluid dynamics finite elements represent spatial rather than material
sub-regions of the continuum. Thus, instead of representing finite elements of a fluid material,
the elements represent sub-regions in the space through which the fluid moves (i.e. the Eulerian
description of motion). Finite element models of velocity fields over an element are specified
in terms velocities at nodes in space rather than of nodes.
Consider a typical finite element e of a region in tfk through which a fluid moves with (local)

velocity v(x) = v(x" x2' x3, t). If vje) denotes the Cartesian components of velocity in e, then
in accordance with (I), the field is approximated over the finite element by

(53)

(54)

in which vW (N = 1,2, ... ,Ne) arc the values of the velocity components at node N of the element.
The coordinates x now pertain to a point in the current configuration.
The Eulerian (spatial) form of the first law of thermodynamics is, ignoring thermal effects,

f (OVI i)Vi ) f' f fP at + l'j ox} l'l dv + pf. dv = pFll'l dv + SIVI dA
Ltc l't' I.', Ai',

where p is the mass density, f. the specific internal energy, FI the components of body force, and
51 the components of surface traction. Locally,

(55)

where tl} is the stress tensor referred to a spatial Cartesian frame and d/j is the deformation rate
tensor:

(56)

"
Introducing equations (56), (55), and (53) into (54), simplifying, and making the argument

that the result must hold for arbitrary nodal velocities v<;l, we obtain

where

/11 (e)v' Ie) + ll(e)j v(e)v(e) + It '11 dv - peelNR R} RMN Al} Ri Ij N,} - Ni

tlftl

,,'RUN = Ipl.J1 R)X)'¥ M(X)'¥....(x) dv
V(t'.

(57)

(58)

• Application of the finile clement mcthod to potential flow problems has been considered by Zicnkiewicz and
Chcungl, Marlin'. Tong'. and Oden and Somogyj". Palmer and AsherlO• Tong", and Guyan, Ujhara, and
Welchll, considered thc problem of inleraction of the irrolational mOlion of an incompressible fluid with an
elastic container.



258 J. TINSLEY ODEN

and /Il~Aand p~l are of the same form as (51) except that FI and S; now are interpreted spatially.
Equation (57) represents the equations of motion for a finite element of a fluid media. Because

of the convective term ll<:lINV~~}V<;?these equations are non-linear in the nodal velocities. The
terms m~Av<;} + ll<;lINV~~}V<:?are dropped in the case of steady flow. The assembly of elements
into a single discrete model follows the usual procedure and need not be discussed.

Linear stokesian fluid
As an example of the form equation (57) assumes for a specific type of fluid, we cite the linear

Stokesian fluid for which the constitutive equation is given by

(59)

where p is the hydrostatic pressure and), and Ji are the dilatational and shear viscosities. Intro-
ducing (56), (53), and (59) into (57), we have for the equations of motion of the finite element

(el '(el + (el} (el (el + lUI ()( + 'UI () ) dmNRvR} nRMNvMjvR; T N,I X - P I. T M., X VM, V
11(,.)

(60)

(61 )

t'fr)

Equation (60) represents finite element analogue of the Navier-Stokes equations.

Viscoelastic fluids
As a final example in fluid dynamics. we cite the case of a linear incompressible viscoelastic

fluid for which the stress is given by the functional constitutive equation

II} = - pJij + r [J.(t - s) d (s)Jij + 2Ji(t - s) d (5)] ds
, - <0 " i}

where A(t - s) and Ji(t - s) arc material kernals. Then, instead of equation (60) we have

Thus, the model leads to systems of non-linear integrodifferential equations in the nodal velocities.
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