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ON THE CALCULATION OF CONSISTENT STRESS
DISTRIBUTIONS IN FINITE ELEMENT APPROXIMATIONS

J. T. ODEN AND II. J. nRAUCIIU
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SUMMARY

The Iheory of conjugale approximations! is used 10 oblain consistent approximations of stress fields in
finite element approximations based on displacement assumptions. These consistent stresses are con-
tinuous across interclernent boundaries and involve less mean error than those computed by the
conventional approach.

INTRODUCTION

The problem of calculating stresses in finite element models based on displacement approxima-
tions has long been a source of difficulty. Typically. the procedure is as follows.:!
I. The displacement components u. r and II' over a typical finite clement are represented

approximately as a linear combination of their values (and possibly values of their derivatives)
at a prescribed number of nodal points.
2. Following standard procedures,:! element stiffness matrices klel are calculated using. say.

the principle of minimum potential energy.
3. A global stiffness matrix K is obtained by connecting all of the elements together and

applying appropriate boundary conditions. This leads to equilibrium equations governing the
connected assembly of elements.
4. The equilibrium equations are solved and stresses in a typical element are evaluated by

direct substitution of local displacement field into an appropriate constitutive equation. for
example

(I)

Here aIel is a vector of local stresss components. Dlt) is the elasticity matrix. HIe) is an operator
appearing in the strain displacement relations. Qle) is a matrix transforming the global generalized
displacements U to the local nodal displacements ulC) and P is a vector of generalized forces.
As pointed out by Melosh.3 stresses computed using the above procedure represent. at best,

only averages of the true stresses over a finite element. The stress field so computed will. in
general, exhibit finite discontinuities at the boundaries of each element. To evaluate stresses at a
nodal point. it is common practice to compute some kind of weighted average of stresses over
elements meeting at that node. Wilson4 noted that such element stresses generally do not represent
the true state of stress in anyone point of the clement: he developed a 'weighted average method'
which gave good results for both interior and boundary elements. The paper by Turner and co-
workers:; includes a detailed discussion of an averaging technique. based on an equivalence of nodal
forces and element stresses. that overcomes large stress discontinuities in finite elements. Under
reasonable smoothness conditions on the local displacement fields. it can be shown that element
stresses computed using the procedure outlined previously do indeed converge in the mean to the
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exact values.II-1I In his 1964 monograph, GallagherlO proposed a 'direct' method of formulation of
stiffness matrices which involved independent developments related to both stress and dis-
placement fields for an element. and which thercby overcame many of the usual dilliculties in
interpreting boundary stresses.
In the present paper. we give a consistent procedure for calculating stresscs in finite elements

which is based on the idea of conjugate approximations.l While we make no claim that the method
is computationally more eff1cient than those generally used to compute stresses, it is nevertheless
consistent. sincc the distribution of such stresses in the finitc element modcl is directly dictated by
the displacemcnt approximations used in formulating element properties. In other words. the
stresses so computed arc consistent with the displacement approximations. Moreover if the
displacement approximations are continuous. the consistent stresses will also be continuous and
will be more accurate (in a certain mean square sense) than those computed following conventional
procedures.
The procedure for computing consistent stresses arises from the notions of biorthogonal bases

for finite-dimensional conjugate spaces. If the function u(x. y. z) (say. a component of displace-
ment) is approximated by functions of the form

ii = «p(x,y. z) S (2)

(4)

where «p(x, y. z) is a matrix of suitably chosen interpolation functions and S a vector of generalized
displacements, thcn the identification of «p(x. y. z) defines a basis for a finitc-dimensional sub-
space of the spacc containing the actual displacement function II. Since the functions «p(x, y. z)
are not orthogonal with respect to an appropriately defined inner product 0/1 the space, it is
possible to construct a different set of so-called conjugate approximation functions A(X. y, z)
which form the basis of a space conjugate to that spanned by «p(x. y, z). The significance of this
observation. which is to be used in this paper, is that element stresses should be referred to the
conjugate basis rather than mapped completely out of the subspace of thc functions «p(x, y. z),
as is done conventionally by the procedure outlined above.

THE CONCEPT OF CONJUGATE APPROXIMATIONS

Although it is not essential that the details of the theory of conjugate approximations be digested
in order to apply it to practical computations. we outline briefly here certain of its underlying
concepts. Further details can be found in Reference 1.
The displacement field u described in the previous section can be regarded as an element in an

infinite-dimensional linear space J(' in which an inner product between two elements u and w is
defined by

(u.w) = j~lITWd& (3)

Here ,rJt is the bounded domain of the functions u(x.y,z). w(x,)'.z). In most methods of appro xi-
mation. we deal with a finite-dimensional subspace (I>, instead of .n: whercin functions arc
approximatcd as linear combinations of a finite number of linearly independent base functions.
For example, each displacement component II, I' and Ii' can be represcnted as the sum of G
linearly independent functions cp;(x. y. z):

II;;::CPl(X.y,Z)Ut+CP2(X.y.Z)U2+ .. · +CPa(x.y,z)Ua }

1';;:: CPl(X,y.Z) Vt+CP2(X,y.Z) V2+· .. +CP(;(x,y.z) Vu

II';;:: CPl(X,y.Z) Wt+CP2(X,y,Z) W2+ .. · +CPa(x.y.z) WIl
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wherc Vi' Vi and Wi arc thc values of u. to and \I' (and/or thcir derivatives) at various nodal points
in .rJ£. It is often convenient to recast equation (4) in matrix form. as indieated in equation (2), by
introducing

Then
II = ct>8

(5)

(6)

Now corresponding to any finite set of base functions cplx, y. z), we can always construct a set
of conjugate approximation functions which form a countable biorthogonal basis to <[) and its
conjugate space $*: that is, a unique set of functions 1\.(.\",)',z) = [Ai(x.y.z)] which satisfy the
biorthogonality condition

r <t>T1\. d&l'= I
• lit

(7)

(8)

where I is the G x G identity matrix. To construct the conjugatc functions. we first compute the
fundamental mat,.ix

C=(<t>.<t»= r <t>T<t>d~
• lit

Since the elements of <t>are linearly independent, it can be shown that C is a symmetric, non-
singular. positive-definite matrix. Define

Then

as required. Moreover.

1\.'1' = C-l <t>T

j' <t>T1\. d3i = r <t>T<t>d.9jlC-l = CC-l = I
lit ,!Of

(9)

(10)

C-l = j~1\.'1' 1\. d,gf. (II)

The conjugate approximation functions 1\.(x. y, z) provide a basis for the conjugate subspace <[)*.
Thus elements in $* (i.e. elements appearing as linear functionals of elements in (I» are linear
combinations of the functions 1\.(x. y. z).
We recall that in finite element approximations. the functions <t>(x. y. z) are sums of elemental

approximation functions ~(")(x. y, z) that are defined only loeally. Thus, for a collection of E
elements,

E
<t>(x,y. z) = L ~(el(x,y. z)Qle)

e
(12)

wherein Qle) is the Boolean transformation appearing in equation (I). However. the functions are
generally designed so that <t>(x, y. z) is continuous over [fl. The local character of the functions
~(c)(x.y. z) is described by saying that they have almost disjoint support. Formally, we would like
also to define local conjugate approximation functions )"Ie)(x, y, z) for the purpose of calculating
local approximations of the stress fields ovcr an element. Sincc, in finite element approximations,

1\.'1' = C-l <t>'1' = C-I ~ QlelT ~(e)'l'
e

(13)
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we can set

so that locally
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( 14)

A(el = C-! Lnl/lT~I/ITnltIT (15)
I

Two important observations immediately become available:
I. Each local conjugate function AI£)(x.y,:) is a linear combination of all of the local approxi-

mations \jJICI(X.y,Z); thus, the functions AIel do not have disjoint support and are defined over
the whole connected domain :3i.
2. Each local conjugate function is a linear combination of the global functions cp(x, y, z);

thus. they arc continuous across inter-clement boundaries.
These two properties are markedly different from those of the stresses calculated by means of

equation (I).
As a concluding comment in this section. we remark that because of equation (9) the subspaces

(Il and (ll* coincide. Thus, any function It belonging to (II can bc expressed as a lincar combination
of either thc cp(x,)'. z) or the 1\(x.y, z). For example,

I/(X,)'.z) = cp(x.y.z)U = 1\(x,y.z)1)

where

( 16)

0= r 1\T I/d.~
, .it

(17)

and
u=CU

Technically. 1\(x.y, z) U belongs to the conjugate space (Il*.

STRESS CALCULATIONS

The strain energy in an elastic finite element is

IV lei = ~ /' ale)'l' el"1 d3f
2, ar

(18)

( 19)

where ale) is the stress vector and £IC} is the vector of strain components. If A is the vector of
generalized displacements for the connected model. we have, in accordance with Reference 2,

(20)

Assuming that elements of £le) belong to the subspace (II, equation (19) defines a linear functional
on <I:> and shows that the elements of aiel belong 10 <fl*. Consequently, the functions a should be
represented as linear approximations of the conjugate approximation functions Alel(x,)', z). The
validity of the assumption that £1") belongs to (Il rests on the commutativity of the projection II
of Yl into III and partial differentiation which. for finite element models. is at least approximately
true.! It follows that a given stress component. say a~). should be represented by

a<.f) =Ale)(x.y.z)S(rl (21)

where

SIC} = j' \jJlelT axd.:# = (\jJll'l'l', ax)
,[Jf

(22)
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Here ij.r is the conventional stress component computed from the constitutivc equation for the
material (i.e. a(~l = DI~J E(cl).

Procedure

We are now in a position toconstruct a systematic procedure for computing consistent. continuous
stress distributions in finite elcmcnt approximations. Continuing with the 'conventional' proce-
dure described prcviously. suppose that the componcnts of displacement over the finite element
model are given by cquations of the form in cquation (6) ano that the discontinuous stress field
a is given by the eonstitutive lav.'

a = DE = DHu = DBcI>L1 (23)
We proceed as follows.
I. If there were unknown displacements at G nodes, construct the G x G fundamcntal matrix

c = r cj>'l'cp d.jfl
.I>r

(24)

whcre cj> is the row Illatrix of intcrpolation functions. If the body is homogeneous and of mass
density p. the matrix C may be already available since it is lip times a submatrix on the diagonal
of the consistent mass matrix for the finite elcment approximation of the body.
2. Construct the I x G matrices of conjugate approximation functions

A = cj>C-l (25)

3. The vector Ci of discontinuous (conventional) stress cOlllponents is of order R x l. where
R = 6 for a three-dimensional solid, R = 3 for plane stress. R = I for a straight rod. etc. Construct
the R x G matrix H defined by

H = taTcpdJ? (26)

The matrix R has G columns. one corresponding to each node.
4. The consistent strcss distribution over the entire collection of elements is now computed by

the formula
(27)

However. in praclice it is sufficient to have only the consistent stresses at eaeh node. These are
obtained automatically by computing

S = RC-l (28)

The columns of the R x G matrix S contain the values of consistent stress at each of the G nodal
points.

EXAMPLES
To demonstrate the basic ideas. we now examine applications of the theory to selected problems.
Consider first the one-dimensional example of a straight bar with a linearly modulus of elasticity.
E(x) = Eo(\ +x) subjected to a prescribed longitudinal displacement of u(x) = ,~(I-x2/36).
The exact stress distribution is a(x) = E(x) duldx = - <l:Eo x( I+x)/l8. To analyse the bar using
finite elements. we adopt a rather crudc displacement approximation consisting of six elements
over cach of which the displacement is assumed to vary linearly: this problem then amounts to a
slight gencralization of one described in Reference \. In this case, the approximate displaccment
field is given by

u = cj>(x) U (29)
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cp(x) = [41,(X), cp:!(X), .... CP7(X»)

CPl(X) = I-x, O~X~ I

cplx) = x+2-i+2(i-.\')h(x-i+ I),
CP7(X) = 6+x, 5lS;xlS;6

(30)

h(x - i) being the unit step function. CPI.-(x) = 0 elsewhere, and

~u= 36{36.35,32.27,20. II.O}

Since the conventional. discontinuous stresses a(x) are simply

a(x) = EGO +x) dcp(x) U
. dx

(31)

(32)

we can now generate the matrix S of consistent nodal stresses by introducing equations (29)-(31)
into equation (26):

1
'6- Eo ex

R = a(x) cp(x) dx = - 216 [5,26.74, 146,242,362.220]
.0

We next calculate the fundamental matrix C of equation (24) and then its inverse

1351 -362 97 -26 7 -2

724 -194 52 -14 4

675 - 182 45 -14
r '6 \-1 1 IC-l = 1 cpTcpdx =- 676 -182 52
• II . 390

679 -194

724
Sym.

Then. the consistent stresses at each node arc

Eo:
S = RC-t = - ;6 [0'8,3,11,1.23'8,39'2.60'9,80'0]

(33)

I

-2

7
-26 I (34)
97

-362

1351

(35)

Finally, the complete stress distribution a(x) is Scp T.
The results of these calculations are shown in Figure I. It is seen that the consistent stresses are

continuous and lead to a better approximation of the maximum stress.
As a final example, we demonstrate that once the conventional elemcnt stresses are known.

improved continuous stress distributions can be obtained by using almost any convenient set of
conjugate approximation functions cp and A in the construction of equations (26) and (27). The
matrix cp used in such calculations need not correspond to that used to obtain the conventional
stresses. even though the actual consistent stresses computed as described previously will lead to
the most accurate approximation for a given cp(x. y. z). Computationally, however, the usc of
lower-order approximations in cp to compute stresses may be more practical and will generally
provide better stresses than those given by conventional methods. Mathematically, such approxima-
tions amount to projecting the conventional stresses into a subspace difTcrent than that spanned
by the original collection of approximating functions. The results of such calculations applied



Figurc 2. Normal stresses at top fibres along centre line in a centrally
loaded square plate
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to the problem of bending of a clamped. sq uare plate subjected to a centrally located concentrated
force P are shown in Figure 2. Hcre the conventional stresses arc those obtained by Bazeley and
co-workersll using non-conforming elements. The improved continuous stress distribution shown
was obtained by using the very crude but conforming set of piecewise linear interpolation functions
in equations (26) and (27). It is observed that even in this casc the conjugate stress approximations
tend to give better estimatcs of stresses near points of stress concentration.
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APPENDIX

The proof that the best approximation in a mean square scnse arises from the use of conjugate
approximations was presented in Reference I in connection with quadratic funetionals defined
on self-conjugate spaces. Here we generalize this result to the case in which a linear spacc and its
dual are considered. We first consider cases in which the character of the spaces involved is
arbitrary. and then we apply the result to linear elasticity.
Let .¥ and <!J denote dual linear spaces the elements of which are functions denoted f and g

respectively. Let (f.g) dcnotc the inner product on Y; and <!J. Further. let (II denote a finite-
dimensional subspace of .~. and \f!' its dual in rg.The spaces q> and 'l' are spanned by biorthogonal
bases CPkE$,l/1kEIF such that

(cpl.:.ifJlII) =8%'. lII.k= 1.2 ..... /1

Thcn, if F and G are the projections off and g into $ and \f'.
(36)

F= Pcp/;. G=G ,/.111m'P (37)

wherein the repeated indices are summed from I to /1 and

F/; = (f. ifJk} G", = (g, cp",) (38)

Let J\k CPkand M", if!''' denote arbitrary elements in (I> and IV and consider the bilinear functional

J[Ak, M".1 = (f-J\k'CPk,g- M",ifJ"')

which. upon simplification, can be wrillen

J [AI.:, MII.1 = (f- F.g- G)+(FI.:-Ak) (Gk- Mk)

(39)

(40)

Obviously. either of the projections defined by equation (36) makes the second term in equation
(40) vanish. If we now introduce a linear. positive-definite. regular mapping K from .~ to <!J.
such that K(ct» c'l'. then K defines a matrix Kill/; = {cp"" K(cp/..)} such that

K",/;j\k = 1\<1,"

Then J [AI.:. Mill] = J reV. k"'kAk] becomes a positive-definite quadratic form

J [.\1.:] = (f- F. k(f- F)}+k"'k(AIII- FIII)(J\k' - Fk)

(41)

(42)
Consequently cquation (42) assumes a minimum value when Ak is chosen according to equation
(38).
In the case of lincar elasticity. letfcorrespond to the stress tensor G;j and g correspond to the

strain tensor eij' Then (f g) represents. with a constant. the strain energy. Let eij be the strain
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resulting from a finite clement model of the displacement field. Then. in view of the above results,
the best approximation of aij' in the sense of minimizing the square error equation (42), is that
function in III for which the coefficients are computed using equation (38).
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