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Analysis of Flow of Viscous Fluids by the Finite-Element Method
J. TINSLEY ODEN* AND L. CARTER WELLFORD JR.-J

University of Alabama, Huntsville, Ala.

General finite-element models of compressible and incompressible fluid flow are derived. These involve local
approximations of the velocity field, the density, and the temperature for compressible fluids and the velocity,
temperature, and pressure for incompressible fluids. Theories of local solenoidal approximations and mixed finite-
element models for compressible flow are derived. A number of computational schemes are developed for the
numerical solution of both transient and steady nonuniform flow problems involving incompressible fluids. Numerical
results obtained from several test problems are given. It is shown that the finite element method has great potential
for use in flow problems, and represents a powerful new tool for the analysis of viscous flows.

Introduction

THE present paper is concerned with the application of the
concept of finite elements to the formulation and solution

of a wide range of problems in fluid dynamics. The method is
sufficiently general to treat a variety of unsteady and nonlinear
flow phenomena in irregular domains. An intrinsic feature of
finite-element approximations is that a mathematical model is
generated by patching together a number of purely "local"
approximations of the phenomena under consideration. This
aspect of the method effectively frees the analyst from traditional
difficulties associated with irregular geometries, multi-connected
domains, and mixed boundary conditions. Moreover, applications

are firmly rooted in the physics of the problem at hand and
preliminary studies indicate that, for a given order of accuracy,
the resulting equations are better conditioned than those obtained
by, say, finite difference approximations of the governing dif-
ferential equations.1

Certain of the underlying ideas of the finite element method
were discussed in 1943 by Courant.2 However, the formal
presentation of the method is generally attributed to the 1956
paper of Turner et al.3 While the method has found wide applica-
tion in solid and structural mechanics,4 its application to flow
problems has come only in rather recent times. Early uses of the
method were always associated with variational statements of the
problem under consideration, so that it is natural that steady,
potential flow problems were the first to be solved using finite
elements. We mention, in this regard, the works of Zienkiewicz,
Mayer, and Cheung5 on seepage through porous media and
Martin6 on potential flow problems. Finite element models of
unsteady compressible and incompressible flow problems were
obtained by Oden.7"10 Applications of finite element methods
to a number of important problems in fluid mechanics have been
reported in recent years; among them, we mention the work of
Thompson, Mack, and Lin11 on steady incompressible flow and
Tong,12 Fujino,13 Argyris et al.,14~16 Reddi,17 Baker,18 and
Herting, Joseph, Kuusinen, and MacNeal19 on various special
incompressible flow problems. The recent book of Zienkiewicz4

can be consulted for additional references.
In the present investigation, we extend the finite element

method to general three-dimensional problems of heat conduc-
tion and flow of compressible and incompressible fluids, wherein
no restriction is placed on the constitution or equation of state
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of the fluid under consideration. Effectively, we develop finite
element analogues of the equations of continuity, linear momen-
tum, and energy of arbitrary fluids. The models are obtained from
local approximations of the density, velocity, and temperature
fields in each element and represent generalizations of those
proposed earlier.7'9

In addition, we treat the problem of fluids characterized by
equations of state in which the thermodynamic pressure is not
given explicitly as a function of the density, temperature, and
velocity gradients. There we develop mixed finite-element models
by approximating locally the mean stress (or thermodynamic
pressure) in each element We obtain a general model in which
the equation of state is satisfied in an average sense over each
element. We then consider the special but important case of
viscous incompressible fluids, with emphasis on isotropic New-
tonian fluids with constant viscosities. There we address ourselves

to certain problems connected with imposing the continuity
equation (incompressibility condition) in the discrete model and
to special boundary conditions. A notion of solenoidal finite
element fields is introduced. We then describe computational
schemes for the solutions of the equations governing the model
for uniform steady flow, nonuniform steady flow, and unsteady
flow of viscous fluids. Numerical results obtained from applica-
tions to a number of representative example problems are
presented.

Finite Element Models of Fluid Flow
To fix ideas, consider the motion of a continuous medium

through some closed region R of three-dimensional euclidean
space. We establish in -R a fixed inertial frame of reference defined
by orthonormal basis vectors it  (i = 1,2,3). The spatial coordi-
nates of a place P in R are denoted xt and the components of
velocity of the medium at P at time t are denoted v^x^, x2, x3, t) =
vt(x, t). The density and the absolute temperature at place P at
time t are denoted p(x, t) and 6(x, t\ respectively. If T0 denotes a
uniform temperature at some reference time t0, we may use as an
alternate temperature measure the temperature change T(x, t) =
0(x,t)-TQ.

To construct a finite element model of the fluid, we replace R
by a domain ^consisting of a finite number E of subdomains re,
so that R « R = uf = t re. The subregions re are the finite
elements; they are generally of simple geometric shapes and are
designed so as to represent a good approximation of R when
appropriately connected together. The geometry of each finite
element re is characterized by a finite number Ne of nodal places
(the number may vary from element to element) and the nodes of

a typical element e are defined by the spatial coordinates xfje);
N = 1,2,..., JV_e; i = 1,2, 3; e = 1,2, ...,£. The global finite
element model R is obtained by connecting the E discrete elements
at appropriate nodal points by means of simple incidence
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mappings which merely identify the desired correspondence
between local and global nodal labels. These mappings are
described elsewhere20 and need not be discussed here. The
important feature of the model is its local character; that is, the
behavior of the medium can be idealized locally in a typical
element independent of the behavior in other elements in the
model and independent of its ultimate location in the model.

The final global model is then obtained by routinely connecting
elements together through mappings which depend only upon
the topology of the model.

Following guidelines provided by the notion of determinism,22

we shall take as our fundamental dependent variables, the velo-
city, mass density, and temperature change as obvious measures
of these primitive characteristics. Therefore, consider a typical
finite element re with Ne nodes isolated from the global
model R.  Let v(x, t), p(x, t), and T(x, t) denote global approxima-
tions of the velocity, density, and temperature change to be
determined at x s R at time r, and let v(e), p(e), and T(e) denote their
restrictions to element re. Then finite-element approximations of
these restrictions are constructed which are of the form

ejW (la)
P(e) = « e ) t

T(e) = $\x)T»}(t) (Ic)
Here and henceforth the repeated nodal indices are summed from
1 to Ne; v(^(t), p"e}(t\ and T"e)(t) are the values of the velocity,
density, and relative temperature at node N of element re at
time r; i.e.

etc. The functions ^(x), <p(ff(\\  and ffi(x) are local interpolation
functions defined so as to have the properties

(3)

Notice that Eq. (1) implies that different forms of the interpolation
functions may be used to approximate different local fields over
the same finite element. In certain cases (some of which are to be
discussed later), this may require that certain of the functions
vanish at certain nodal points or that indices N in each member
of Eq. (1) may have different ranges. Note also that "higher order"
local representations can be obtained by also specifying values
of derivatives of v, p, and T at the nodes.

We must also remark that, in the case of incompressible fluids,
our formulation requires that, instead of the density p(e)(x, t) we
approximate the pressure field p(x, t) over R. Thus, if p(e)(x, t) is
the restriction of p(x, t) to re, we assume

P(e) =

The interpolation functions ju
(4)

also obey Eq. (3).

Mechanics of a Finite Element
Kinematics

With the local velocity field given by Eq. (la), all relevant
kinematical quantities associated with the motion of the element
are determined by the nodal velocities \N(t). For example, the
components of local acceleration are

a, = DvJDt = dvjdt + vimvm = ̂  4- $ *,„&*$*% (5)
where v? — dv*(t)/dt, commas denote partial differentiation
with respect to the spatial coordinates (i.e. \I/N m = d\l/N(\)/dxm\
the repeated indices are, again, summed over their admissible
ranges (i,m = 1,2,3; M, N = 1,2, . . . ,JVJ, and the element
identification label (e) has been dropped for simplicity. Likewise,
the models of the rate-of-deformation tensor dtj and the spin
tensor w/7 are given by

and the local vorticity field co, is co, = £^Nk^ where s is the
permutation symbol. Local approximations of various other
kinematical quantities can be calculated in a similar manner.

Momentum Equations for a Finite Element

The equations governing the motion of a typical finite element
can be obtained by constructing a Galerkin integral of Cauchy's
first law of motion over the element and by using the velocity
interpolation functions \l/N(x)  as weight functions in this integral.
If this approach is taken, linear momentum is balanced in an
average sense over the element. The arbitrariness of the choice
of \l/(x) as weight functions, however, is removed if an alternate
but equivalent approach based on energy balances is employed.9

The behavior of the medium must be consistent with the
principle of conservation of energy:

D/Dt(K + U) = Q + Q (7)
where K is the kinetic energy, U is the internal energy, Q is the
mechanical power, and Q is the heat:

U = psdv

Q =

1 f f
K = ^ pVjVjdv U =

Jv Jv

f f r rpFjVjdv + SjVjdA Q= \ Phdv +
Jv JA Jv JA

q/ijdA
(8)

In Eq. (8) e is the internal energy density, Fj are the components
of the body force vector per unit mass, Sj are components of the
surface tractions, h is the heat per unit mass supplied from
internal sources, q} are the components of heat flux, and rc, is the
normal to the boundary surface. Noting that the material deriva-
tive of the kinetic energy for element e is

DK/Dt =

and introducing Eq. (5) and (la), we obtain
(D/Dt)K = LcMNLpMvL

k +
where

CMNL — Jv

(9)

(10)

and M, N, L, F = 1,..., Ne. The first quantity in parenthesis
represents the local inertial force at node N in the /cth direction,
and the second term in the parenthesis represents the convective
inertial force at node N in the /cth direction.

Since the local form of the energy balance is
p(Ds/Dt) = ps + pvfj = Tikvki + qkk + ph (11)

wherein Tik is the Cauchy stress tensor, the material derivative
of the internal energy for the element can be written as

DUJDt = (12)

where Qe = §Ve(qkk + ph)dv is the heat of the element. For an
element of fluid of volume ve and surface area Ae, the power of
external forces is

•[L CRNkpR vN
k (13)

where

The first and second quantities in the parenthesis represent the
force at node N in the /cth direction due to the surface stress
distribution and the force at node N in the /cth direction due to

the body force, respectively. If we define the generalized force
pNk according to

PNk = + CRNkpR (14)
Ae

then the generalized forces develop the same amount of mechan-
ical power as the external forces in the continuum element, and

&e  = PNkVk
Finally, introducing Eqs. (9), (12), and Qe into (7), we obtain an

energy equation for a typical finite element  e. Then, making the
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argument that this result must hold for arbitrary values of the
nodal velocity vk, we obtain as the general equations of motion
(momentum) for a compressible fluid element:

rikilsNidv - pNk = Q (15)
v ye

The constitutive equation for stress in terms of the approximate
velocity and pressure expressions must be introduced to complete
this equation.

The Continuity Equation for an Element

The local form of the continuity equation is

where p = dp/dt. Introducing Eqs. (la) and (Ib) into (16) yields
at point x the residual

re(x) = (pN(x)pN + ((pN(x)i//R (x))kpNv% (17)
We can guarantee that the residual vanishes in an average sense
over the element by requiring that it be orthogonal (with respect
to the inner product </, #> = §Vefgdv) to the subspace spanned
by the functions <pM(x). Then <re, (pMy = §Vere(pMdv = 0, and
we obtain the finite element model of the continuity equation:

aMNpN + bk
MNRp»v* = 0 (18)

Here M,N,R = 1, 2 , . . . , Ne and aMN  and y^NR denote the local
arrays

{ <PM<PNdv,

Energy Equation for an Element

(19)

By introducing Eq. (la) into the local form of the first law,
Eq. (11), we obtain the residual
re = <PRPR£ + (PRpR^N^Sti - Tik\ljNivN

k - qkk - q>RpRh (20)
Here it is understood that e, Tik, and qk are functions of the local
fields defined in Eqs. (1). As before, we require that the residual

be orthogonal to the subspace spanned by the #M(x) functions:

-i dv = Q (21)

Introduction of Eq. (20) into Eq. (21) gives the general finite
element analogue of the energy equation:
f f

<PRWM<IVPR +
Jve Jv« Jve

+
Ae

(22)

In order to obtain a useable expression for the energy equation
constitutive equations must be introduced for stress Tik, internal
energy density e, heat flux qk, and heat produced by internal
sources  h.

We remark that an alternate equation of heat conduction can
be obtained for the element by rewriting Eq. (11) in terms of the
entropy density rj(x, t) and the internal dissipation cr(x, t) =
pOq — qkk — ph. For these choices of variables, a procedure
similar to that used to obtain Eq. (15) yields the general equation
of heat conduction for an element,

M <
Jve

V +
Jve

= qN + aN (23)
Here qN and GN are the generalized normal heat flux and the
generalized internal dissipation at node N

= h%Ndv + q^^dA aN =
Jve jAe Jve

(24)

Again, the procedure used to derive Eq. (23) is equivalent to
Galerkin's method and specific forms can be obtained when
constitutive equations for Y\  and qt  are furnished.

Constitutive Equations, Equations of State,
and Mixed Models

Equations (15), (18), and (22) [or Eq. (23)] describe the general
equations of motion, continuity, and energy (or heat conduction)
of a typical element in a finite-element model of an arbitrary
fluid. To apply these equations to a specific fluid, it is necessary to
eliminate a, Tip.qk, and possibly Y\ by introducing appropriate
constitutive equations which uniquely define these functions in
terms of v(e), p(e) and T(e). This is the customary procedure in
finite-element formulations.

In the case of compressible fluids, however, the mean stress or
the thermodynamic pressure often appears implicitly in the
equation of state of the fluid, and it may be impossible or im-
practical to obtain Ttj explicitly as a function of p, r, p and T.
In such cases, we propose that a "mixed" finite-element formula-
tion be used, the basis of which is now to be described.

Consider a class of fluids described by constitutive equations
for the stress tensor of the form

(25)Tu = dun(p, drs, T} + 7^(p, drs. T)
Here n is the so called thermodynamic pressure and ffj is the
dissipative stress. Generally T  ̂is given explicitly as a function
of p, drs,  and T (e.g., for a class of Stokesian fluids, fu = 2^dip
H being the viscosity); however, n is defined implicitly by an
equation of state :

F(TC, dip p, T) = 0 (26)
Assuming that we cannot (or do not choose to) eliminate n

from Eq. (25) by use of Eq. (26) we propose a mixed finite-element
model in which the restriction ;re(x, f) of n to element re is assumed
to be of the form

ne = ftv(x)7rA'(r) (27)
The interpolation functions /?N(x) have properties similar to

Eq. (3). Introducing Eq. (1) and (27) into (26), we obtain a residual
rc*. Then, the condition <r*, /? N> = 0 leads to the Ne local
equations

N) dv = 0 (28)

Equation (28) represents the finite-element analogue of the
equation of state, Eq. (26), and insure that it is satisfied in a
weighted average sense over each finite element. Introduction
of Eq. (27) into (25) and incorporation of the result into Eqs. (15),
(18), and (22) [or Eq. (23)] (along with constitutive equations for
qk, e, and /? as functions of p, T, and vt j) yields a complete system
of equations in the nodal values of velocity, density, temperature,
and thermodynamic pressure.

Incompressible Fluids

We shall now consider purely mechanical behavior of incom-
pressible fluids. Here two principal considerations are involved:
1) all motions are volume-preserving and 2) the stress tensor is
not completely determined by the motion. The first condition
reveals that p is now a known constant and the continuity equa-
tion reduces to the incompressibility condition

div v = dn = t'i i = 0 (29)
The second consideration suggests that n = — p, p being the
hydrodynamic pressure, and that the local pressure of Eq. (4)
should be selected as an unknown in place of p.

Considering now p to be known and following essentially the
same procedure used to obtain Eq. (15), we obtain for the general
equation of motion of incompressible elements

^k + + hMNkpN + = PMk

where m and n^ are the mass and convected mass "matrices"
respectively, hMm  is an array of pressure coefficients, and pm
are the components of the generalized force defined by Eq. (14)
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-i
(31)

The derivation of. the incompressibility constraint can best be
cast in physical terms: Observe that the work done by the pressure
p due to a change in volume dv is clearly peV • \dv = pev\ej dv.

But pe can perform no work since for incompressible flow V • v is
zero. It follows that for a finite element of an incompressible fluid,

» = 0

This relation must hold for arbitrary pM-; thus the finite element
model for the incompressibility condition is,

•̂" = 0; r, MN —
J ve

HM\I/N t (32)

We note that the energy equation, Eq. (22), is also modified
slightly for incompressible elements due to the fact that (pNpN is
now replaced by its presumedly known value and fik depends
on pN. These alterations are straightforward and need not be
displayed here.

Incompressible Newtonian Fluids

The special case of an incompressible Newtonian flow with
constant viscosity is of special interest because a number of
classical solutions to various flow problems are available for
comparisons. Of course, since the viscosity is constant, the energy
equation is uncoupled from the momentum and continuity
equations and they may be solved separately. For the Newtonian
fluid the dissipative stress tensor is simply fik = 2^dik, \JL being the
viscosity. Thus, for the finite element, fik = fj[\l/N kViN + ijsN p^
and Eq. (30) reduces to

v£  + hMNkpN + ZMNV? + w^ v? = pMk
(33)

where

and wl
MN, _ f
MN —

Jve

(34)

To these equations we add the incompressibility conditions,
Eqs. (32), to form a determinate set.

Boundary Conditions

If either the total stress or the velocity is specified at the boun-
dary of a finite element model, no particular difficulties are
encountered; the prescribed stress is introduced directly into
Eq. (14) to obtain consistent generalized nodal forces, and the
nodal velocities are prescribed to satisfy the "nonslip" boundary
condition at a fixed or moving wall or the specified velocity
distribution on other surfaces. In this respect, the procedure
differs very little from that employed in the finite element analysis
of solids. However, in fluids, specification of the stress at a
boundary may not uniquely determine the pressure; moreover,
the boundary conditions may represent constraints on the
pressure or its gradient rather than the total stress. In these
situations, it may be necessary to develop special analogues of
the boundary conditions.

Consider, for example, the generalized force of Eq. (14) in the
case of an incompressible fluid. Ignoring the body force term
temporarily, we observe that

PNk =
f fTikn^NdA = (-pdik

JAe JAe

or

= PNk + I Tikniil/NdAi pNk = - pnk\l/NdA (35)
JAe jAe

Fig. 1 Finite-element model for the calculation of Couette flow.

The quantity pNk is the generalized nodal force due to prescribed
pressures p on the boundary.

Similar procedures can be used for various other special
boundary conditions. For example, it is not uncommon to use as
a condition at the impermeable boundary with zero velocity the
specification of the pressure gradient as a function of the body
force and the acceleration (i.e., p n = pFn — pan where the sub-
script n refers to the normal direction to the wall). This boundary
condition can either be applied by retaining the momentum
equation at the nodes in contact with the fixed wall or by applying
a discrete version at the nodes in contact with the wall. The first
method, which is followed herein, statisfies the boundary con-
dition in an average sense over the boundary elements. The
second method satisfies the boundary condition exactly at the
wall nodes.

The first method is obtained directly from the discrete momen-
tum equation, Eq. (33), by setting vk = 0 (for boundary nodes N)
and fik = 0, since fik depends only on vk there. Then

+ hMNkPN = -I pnk\l/MdA

where fMk = |Ve pFk\l/Mdv is the generalized force at node M due
to the body forces Fk. Transforming the surface integral via the
Green-Gauss theorem and collecting terms, we arrive at the
discrete analogue of the pressure-gradient boundary condition,

9MNkPN = fMk ~ "iMNVk (36)

wherein g = J \l/^k dv.
In the second method, a discrete version of this type of boun-

dary condition can be obtained for element e by merely intro-
ducing Eq. (4) into the local statement of the boundary condition
and evaluating the result at the coordinates of each of the wall
nodes. While this leads to a cruder approximation, it is neverthe-
less much easier to apply in actual calculations.

Solenoidal Approximations

The pressure term h^ can be eliminated from the discrete
momentum equation Eq. (33) by constructing solenoidal finite-
element approximations of the local velocity. We accomplish this
by introducing so called "bubble functions" af(x) which vanish

on the boundaries of each element and which satisfy (at least
approximately) the condition

a M = -*NtM (37)
Any particular integral of Eq. (37) vanishing on dRe  is of the form

a;(x) = a/N(jc)^ (38)
The incompressibility condition, Eq. (29) is now satisfied locally
by local velocity approximations of the form

vfa t) = ^Njt(x)v^, $NJt = cVWx) + a/N(x) (39)
The remaining terms in Eq. (33) are altered accordingly.

The use of local solenoidal velocity fields makes it possible to
eliminate the hydrodynamic pressure term from the discrete
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Fig. 2 Velocity profile at various
time points for transient Couette

flow.
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momentum equations, Eqs. (33). Thus the momentum equations
can be solved directly for the local velocity fields. Then the
pressure calculation can be performed independently based on
the computed velocity field.

The pressure must satisfy Poisson's equation.
Pii = T^x, itf) + pFit - pan (40)

where 7}/x, v*) is the dissipative part of the stress tensor. This
can be verified by taking the divergence of the local momentum
equation.22 The solution of this equation by means of finite
elements is very well documented.4

Numerical Techniques
In order to obtain a preliminary estimate of the applicability

of the foregoing theory, we consider a series of classical problems
in two-dimensional incompressible Newtonian flow. Several
numerical techniques are developed herein to handle problems

of this type. With minor changes, these techniques could be
applied to three-dimensional incompressible flow problems or,
in general, to any isothermal incompressible viscous fluid.

Consider the solution of the system of equations consisting of
the momentum equation, Eq. (33), and the continuity equation,
Eq. (32). Three cases can be analyzed based on the properties of
the flow: steady uniform flow; steady nonuniform flow; and
transient or unsteady flow. The models developed earlier lead
to systems of linear algebraic equations in the first case, non-
linear algebraic equations in the second, and nonlinear dif-
ferential equations in the third.

Steady, Uniform Linear Flow

For the steady flow problem, the term mMNv* and the con-
vective term n^NPv^ in Eq. (33) vanish and the linearized
momentum equation takes the form

hMNkPN + ZMNI% + vO? = pMk (41)

.08T

.07-

.06-

.04-

£03-

.02-

.01-

Fig. 3 Time history of the ;c velocity
components at nodes 7, 8, and 9 for

transient Couette flow.

NODE 7'

C/ .obi .002 .003 .004 .005 .006
TIME (SEC.)

.007 .008 .009 .010 .012

.01-
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Fig. 4 Time history of y velocity component at nodes 7 and 9 for transient Couette flow.

Equations (41) and (32) represent, for the two-dimensional case,
a set of 3Ne algebraic equations in 3Ne unknowns. Taking note
of the fact that r  ̂= — h  we can express these equations
in matrix form as

ZMN [fc_2
O]

] (42)2 L
tN nMN2

— r1 — r 2 0'NM 'NM u _
The coefficient matrix is square and symmetric. In addition,

upon assembling the elements, the global form is sparse and
banded. Boundary conditions must be applied in accordance with

the previous discussion and the resulting set of equations can be
solved for the velocity and pressure variables using standard
Gauss-elimination codes.

Steady, Nonuniform Flow—The Method of Incremental Densities

The momentum equation for steady nonlinear flow can be
obtained from Eq. (33) by setting the local inertial term mMNvk

N

equal to zero and using the fact that n^NP = pr^NP, where

rMNF = jvc
linear equations

dv. Thus, we obtain the system of non-

frk + hMNkPN + + " = pMk (43)
A natural choice of a technique for solving Eqs. (43) is the

incremental loading method used in nonlinear structural
mechanics.20 This conclusion is based on the observation that if
density p is assumed to be the loading parameter, when the
density equals zero the set of equations reduces to the stationary
linear system, Eq. (42), which can be solved using methods
described above.

This solution process can be described concisely in vector
notation. Suppose that the collection of momentum equations
and continuity equations are expressed in vector form as

f(v, p) = 0 (44)
where v is the vector of unknown velocity components and
pressures and p is the density parameter. Let v be a solution
vector corresponding to a particular value of density p, and let
v + d\ be a solution vector corresponding to the value of density

Fig. 5 Finite - element model of
steady flow of a lubricant through

a plane slider bearing.

_.3000
c

o .2333

Slider Bearing

06667
Moving Surface

1.333
T7////////7//////////

2000 (inches)
—X
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FINITE ELEMENT
SOLUTION

Fig. 6 x velocity component for the lubrication
problem.
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p 4-  dp. Then f(v + d\, p + dp) also vanishes. A Taylofs series
expansion can be introduced in the neighborhood of v if f(v, p)
is continuously differentiate at v. Thus

f(v + £v, p + 6p) = f(v, p) + B(5v + Cdp •+ higher order terms
where B is an N x N matrix and C is an N x 1 vector: B,-/v,  p) =
dffa p)/dvy9 C£(v, p) = dftv, p)/dp ij = 1, ... , N. Thus, within
terms of first order, we have the linear system B<5v  = — Cdp.
Given the initial value of the solution vector v0 and the initial
value of the density p0  = 0, the series expansion forms the basis
of an iterative scheme for which the n + 1 TH iterate is given by

Vn = v. - B- Hv,, pn)C(vn, pn)dpn+ ! ; pn+ ! = £ dpt (45)
1 = 1

This procedure amounts to a piecewise linearization and the
number of iterations should be determined by accuracy require-
ments.

Unsteady Flow

We shall present results in the next section in which the solution
of the system of nonlinear differential equations, Eqs. (32) and
(33), were integrated numerically using a self-correcting 4th order
Runge-Kutta technique. To outline the essential features, con-
sider first Eq. (33) rewritten in the form

FMk (46)

and mLM * is the inverse of the mass matrix mLM. The first
derivative of the pressure variable can be formulated in similar
fashion. We differentiate Eq. (46) with respect to time to obtain

where

By differentiating Eq. (32) twice we observe that r^Lv^  = 0;
consequently

= yv> XUN = rvLmLMlhMNk> yu = ruLmLlHMk (48)

where
pMk (47)

If hw  is the inverse of XUN,  we obtain the explicit expression for the
derivative of the pressure variable

Pv = hwyu (49)
Equations (46) and (49) are now of the form x = F(x, r), which
can be directly integrated by standard Runge-Kutta schemes.

Some Numerical Results
We shall now cite representative numerical results obtained

by applying the theory and methods presented earlier to specific
problems in two-dimensional flow of incompressible Newtonian
fluids. For demonstration purposes, we shall employ six-node
triangular elements of the type shown in Fig. 1, for which the local
velocity and pressure fields are given by the quadratic polyno-
mials

FINITE ELEMENT SOLUTION

Fig. 7 y velocity component for
the lubrication problem.
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vk = (aN + bmxl

p = (aN  + bNixl + cNijxlxj)pN (5°)
Here the six independent constants %, bNh cNij (cNij = cNji;
ij, k = 1,2,3; N = 1,2,..., 6) depend only on the local coor-
dinates of the six nodes of the element. These local approximations
determine all of the relevant arrays and matrices in the local
momentum, energy, and continuity equations described earlier
for each element.

Concerning convergence and accuracy of this particular
approximation, we mention that Zlamal24 has obtained the error
estimate

v-v\^ (K/sin 9)h2 (51)
where v is a given continuously different?able field,  v is a finite-
element interpolant (i.e., v coincides with v at the nodal points),
h is the maximum diameter of all finite elements in a given mesh,
6  is the smallest angle between any two sides of a triangle, and
K is a constant independent of 9 and h. Clearly, long flat elements
lead to poorer conditioned systems than networks of isosceles
triangles. In the case of elliptic and parabolic problems, estimates
of the type in Eq. (51) lead directly to convergence and error
estimates also involving I/sin  9 and, for energy convergence, K/z4.
While the study of the stability and convergence of finite-element
approximations of hyperbolic problems is scarcely beginning,
preliminary results seem to indicate that the local character of

the approximation lead to inherently better conditioned systems
than conventional difference schemes of equal accuracy.

Couette Flow

The problem of unsteady Couette flow through the domain
indicated in Fig. 1 is considered. The following boundary
conditions were applied: 1) The x velocity component was
assumed to be equal to 0.1 in./sec. and the y velocity component
was assumed to be equal to zero at y = 0.2 in. 2) The x and y
velocity components were prescribed as zero at y = 0. 3) The
stress on the boundaries x = 0 and x = 2.0 in. was set equal to
zero. 4) The gradient of the pressure in the direction perpendicular
to the wall was zero at y = 0. As initial conditions, we set the
pressure and the velocity vector equal to zero at all interior nodes
at t = 0. The value of the mass density used was 0.00242 Ibf.-sec.2/
in.4 and the viscosity here and in all subsequent results was
assumed to be 0.00362 lbf.-sec./in.2

In Fig. 2 the tangential velocity profile at x = 0.5 in. is presented
at various times and shows good agreement with the exact
solution.21 In Fig. 3, time histories of the tangential velocity

.004-1

.003-

"I\u:m
~ .002-

.001-

> FINITE ELEMENT
SOLUTION

0 1.0 2.0

DISTANCE FROM LEADING EDGE OF BEARING (IN.)

Fig.  8 Variation of pressure on the fixed slider bearing wall.

component at nodes 7, 8, and 9 are included. As can be seen, in
the initial starting period negative tangential velocity com-
ponents occur at several nodes. This was apparently due to either
the applied stress boundary condition or the coarseness of the
model used. Because of this constraint small transverse velocity
components were computed. They were symmetric with respect
to the lines connecting nodes 11 and 15 and 3 and 23. The time
histories of the transverse velocity component at nodes 7 and 9
are given in Fig. 4.

An Incompressible Lubrication Problem

The two-dimensional flow of lubricant between a slide block
or a slider bearing and a moving surface was determined. A fifteen
element model, as illustrated in Fig. 5 was constructed. The
following boundary conditions were applied: 1) The x-velocity
component was 0.01 in./sec and the y velocity component was
zero along y = 0. 2) The x and y velocity components were
equated to zero along the slider bearing wall. 3) The stress at all
unconstrained boundary nodes was prescribed as a hydrostatic
pressure of 0.001 lbf./in.2 4) The gradient of the pressure perpen-
dicular to the bearing wall was set equal to zero.

In the initial calculations, the convective inertial terms were
ignored. The finite element solution for the velocity profile in the
x direction is presented in Fig. 6. The transverse velocity profile
is presented in Fig. 7, and the pressure along the inclined bearing

Fig. 9 x velocity component at
section A as computed by the in-

cremental densities technique.
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is indicated in Fig. 8. The transverse velocity profile changes
direction between x = 0.3333 and x = 0.6666 in. resulting in a
back flow in the bearing. The nonlinear convective terms were then
included, and the bearing problem was solved by the incremental
densities method described earlier. The resulting velocity profile
in the x direction at a Reynolds number of 240 is included in
Fig. 9. For Reynolds numbers larger than 240 more significant
changes were observed in the velocity profile; these results are
now being evaluated with a more detailed model.

Boundary-Layer Flow

The problem of transient boundary-layer formation over a
flat plate was analyzed using the finite element grid of Fig. 10.
This model is primarily useful for study of the velocity profile
away from the leading edge of the plate. Thus results are presented
for spatial points at least 1 in. from the leading edge where the
model converges to the exact solution. In order to predict flow
patterns at the leading edge, where high velocity gradients are
encountered, a more detailed model of the flow would be required.

The following boundary conditions were specified: 1) The x
velocity component was set equal to 10. in./sec. and the y velocity
component was equated to zero at x = — 0.05 in. 2) The x and y
velocity components were zero at y = 0. 3) The gradient of the
pressure in the direction normal to the wall was zero at y = 0.
4) The pressure was zero at all boundary nodes at which the
velocity was not specified.

The initial conditions specified that the x velocity components

Fig. 10 Finite-element model of flow over a
flat plate and time histories of the x velocity

components at nodes A and B.

were 10. in./sec. and the y velocity components were zero at all
unconstrained nodes at t = 0. The pressure was also zero at all
nodes at time zero. A mass density of 1. lbf.-sec.2/in.4 was assumed.

Computed time histories of the x velocity components at
nodes A and B are presented as representative variations in
Fig. 10. In Fig. 11, the steady state finite-element solution is
compared to the Blasius boundary-layer solution at specific
points on the plate. Again, excellent agreement is obtained with

a rather coarse mesh.
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