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Preface

I began studying exterior penalty methods as a basis for finite
element methods around three years ago with the able help of my colleague
and former student, Professor Noboru Kikuchi, now at the University of
Michigan. At the kind invitation of Professor Kardestuncer, I delivered a
preliminary report of our work at the Symposium on the Unification of Finite
Elements, Finite Differences, and the Calculus of Variations held at the
University of Connecticut in May, 1980. Later, Kikuchi and I expanded that
report and rewrote it in a style we hoped would be accessible to a broad
audience of engineers who may wish to consider these and various related
methods for the numerical analysis of problems in fluid and solid mechanics.
This work is to be published in full in the International Journal for
Numerical Methods in Engineering. The present document, which has been written
to provide participants of the Symposium on Finite Elements at Hefei, The
People's Republic of China, with a detailed account of my lectures given at
this meeting, is taken more or less verbatim from the joint IJNME paper
written with Kikuchi, only minor editorial changes being made in a few places.

I would like to record a special note of thanks to the Chinese
Mechanical Engineering Society, the Chinese Mechanics Society, the Chinese
Mathematics Society, Professor H. Kardestuncer for their gracion invitation
to participate in the Symposium and to lecture on my work.

J. T. Oden

The University of Texas
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INTRODUCTION

In this paper, we shall consider several complications that arise in
applications of finite element methods to equilibrium problems in elasti-
city in which various constraints are imposed on the motion. For clarity,
special attention will be given to the constraint of incompressibility in
linear elasticity, but some discussion of unilateral constraints for con-
tact problems will also be given. Some of the work reported here summa-
rizes recent results of Oden, Kikuchi and Songlll where a detailed analysis
of penalty methods for constrained problems in linear elasticity can be

found.



Portions of this paper is expository in nature and deal with proper-
ties of approximations of somewhat general problems with constraints. We
discuss conditions under which such constrained problems admit unique solu-
tions and conditions for the existence of multipliers in Lagrange-multi-
plier formulations. These, in turn, lead to criteria fpr stability and
convergence of mixed and penalty methods. We choose equilibrium problems

in elasticity as a convenient area of application of -these ideas with

constraints.

We give special attention to the Reduced Integration-Penalty Methods
(RIP) for several reasons: first, they are very popular and, when they
work, can be very effective; second, they are not well understood; and,
third, they constitute the best example of numerical methods that cannot
be completely evaluated, judged, or understood on purely the basis of nu-
merical experiments - an analysis of their stability and convergence pro-
perties is important to their successful use.

It is not our aim to deal with mathematical issues of a very deep
nature here, since we wish to make the ideas and results accessible to a
wide audience. Nevertheless, some of the mathematical notions we use
deserve a brief review and we have, on the advise of colleagues who read

earlier versions, of this work, listed some of these in an appendix.

2. CONSTRAINED VARIATIONAL PROBLEMS

We begin by considering a classical miminization problem in the cal-

culus of variations. Given
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a space of "admissible functions" (a real Hilbert space),

F:V+ R a functional defined on V , and

~
]

a nonempty closed subset of V ,

find u € K such that, for any v in K, F assumes its minimum value at

uekK : F(u) <F(v) ¥vekK ' (2.1)

It is well known that there will exist a unique minimizer of F on

K whenever the following four (minimization) conditions hold:

M.1) K is convex; i.e. if u and v belong to K , then
6u + (1-8)ve K, 0<6 <1,

M.2) F is strictly convex; i.e. for 0 < 8 <1 and u # v ,
F(6u + (1-8)v) < 6F(u) + (1-8)F(v)

M.3) F 1is differentiable on K; i.e. for each u € K there exists
an operator DF(u):V -+ V' such that

3F (u+6v)

lim
B+0+' 26

= <DF(w),v> , ¥veV

where V' is the dual space of V , and <+,*> denotes duality

pairing on V' x V (i.e. <DF(u),v> 1is the "first variation"

in F at u in direction‘v)
M.4) F is coercive; i.e. for v ¢ K ,

F(v) + + » as ”v”V + o

where "-“V is the norm on V .
Virtually all of these conditions can be weakened (with the possible

loss of uniqueness); the constraint set K need only be weakly sequentially

closed, F need not be convex nor differentiable, but should be iower
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semicontinuous in some sense. See Oden and Kikuchi for further details.
Now an important aspect of the minization problem (2.1) in the case
that M.1 - M.3 hold is that the minimizer u of F can be characterized

as the solution of a variational inequality:
u € K: <DF(u),v-u>>0 ¥ v eK (2.2)

Problems (2.1) and (2.2) are equivalent: any solution of (2.1) satisfies
(2.2) and vice-versa (whenever conditions M.1-M.3 hold). 1In the special
case in which K 1is a linear subspace of V , (2.2) reduces to the -varia-

tional equality.

ueK: <DF(u),v> =0 ¥vekK (2.3)
from which Euler equations for the variational problem can be derived.

In order to simplify the discussion, we shall, from this point on-
ward, consider a restricted class of problems in which the following con-
ventions and assumptions are in force:

N.1l The functional F:V + R is a qﬁadratic functional of the form

F(v) = -% a(v,v) - £(v) veV (2.4)
where a(*,+) is a symmetric bilinear form mapping VxV into R and f is
continuous linear functional on V (i.e. £ € V')

N.2 The bilinear form a(+,*) is continuous and V-elliptic; i.e.

there exist positive constants M and m such that

a(u,v) <M Ih‘"VILV“V VuvelV
(2.5)
a(v,v) >m ||v|l$ VvelV



We easily verify that if N.1 and N.2 hold, then F is strictly convex

and differentiable. Indeed,
<DF (u) ,v> = a(u,v) - £(v) VYuvelV ' (2.6)

Moreover, since

£ < lielly, vl 2.7

\

where lI-”v. is the norm on the dual space V' of V, we must have
T 25 VI - Hlelly vl
=2 v LA v

for any v € V. Hence, F(v) + + « as "v”v + », It follows that when-

ever conditions N.1 and 'N.2 hold, conditions M.2 - M.3 hold. Thus,

conditions N.1 and N.2 are sufficient to guarantee the existence of a

unique solution to the variational inequality (recall (2.2) and (2.6))
u e K: a(u,v ~u) > f(v-u) ¥vek ' (2.8)

where K is a closed convex subset of V. Again, the solution u of (2.8) is
the unique minimizer of the functional F(v) =-% a(v,v) - f(v) in K.
Examples: The important minimization problems of interest here are
those arising in linear and nonlinear elasticity. Consider a homogeneous,
isotropic linearly elastic body @ with smooth boundary T subjected to

body forces fi and surface tractions S, on a portion PF and fixed along a

i
portion PD of T . The strain Eij(Y) produced by a displacement field v
is, of course, eij(y) = (Bvilaxj + ijlaxi)IZ , 1 <1i,j <3, and the

stress is



— _2u
oij(y; = (x jgiﬁijekk(y) + 2ueij(!)
k6. e, (v) + 2ueb. (v)
ij kk '~ i~

where «k 1is the bulk modulus of the material, u is the shear modulus,

and E?j(g) is the derivatoric strain,

E];j(\_f) = eij(y) ——%ﬁijekk(g) (for QC]RB).

In this case, we take for the space of admissible displacements,

v = {v = (vl’v2’v3)|vi € Hl(Q) » Vg = 0
a.e. on FD , 1i=1,2,3} (2.9)
with norm
- 1/2
olly, = vl = L, vy vy dx (2.10)

1
where dx = dxldxzde, H7(Q) 1is the standard Sobolev space of functions
with square-~integrable generalized derivatives, and meas FD > 0. The

functional F is now the total potential energy

F(v) = -% a(v,v) - £(v) , veV
(2.11)
_ D D
é(g,y) = IQ [2usij(g) eij(y) + ke (We  (v)]dx

Here f is the work done by the external forces. Assuming f, ¢ Lz(Q) .

i
S, € LZ(PF) (PF being a smooth surface), then



f(v) = I fivi dx + J Sivi ds (2.12)
Q PF

As examples of constraints, we mention:

>

1. Incompressibility. In this case, K is a linear subspace of V
K = K = {v eVl divv = 0 a.e. in 0} (2.13)
where div v = Ekk(Y) is the divergence of the displacement field v.
The problem then is to

Find u ¢ Kl such that

a(u,v) = f£(y) ¥vek (2.14)

where, whenever u,v € K

1

_ D D
a(g,y) = IQ 2u sij(g)eij(g) dx. (2.15)

2. Unilateral Contact. We consider situations in which the body

comes in contact with a rigid frictionless foundation a (normalized) dis-
tance s away from the body in its initial configuration. If FC is the

contact surface, then

K = K, = {y eVlv n-s<0 a.e. on PC} (2.16)

n being a unit outward normal to. PC . In this case, K 1is a nonempty
closed convex subset of V and v * n is interpreted in the sense of

traces of functions in V onto T .



The statement of the variational boundary value problem for contact
of a compressible elastic body is

Find u e K2 such that

a(u,v - g) 3_f(y—9), ¥ve K1 (2.17)

If the material in the contact probiem is also incompressible, we have

Find u e Kl N K2 such that

J 2u€?.(u) eD (v-u)dx > f(v-u) VveK 0 K (2.18)
0 J\07 EgqNETRIax 2 ERTTT - 1

2

3. ALTERNATE VARIATIONAL FORMULATIONS

While algorithms can be devised to solve the special variational
problems (2.11), (2.14), and (2.15) directly, there are two disadvantages
in these formulations from a practical point of view: 1) the direct ap-
proximation of these variational problems requires thét we somehow approxi-
mate the constraint a£ sets Kl, K2’ or Kl N K2 and this is generally quite
difficult, and 2) these particular formulations do not employ Lagrange
multipliers for handling the constraints and in each case the multipliers
has a definite physical interpretation. For example, in the case of the
incompressibility constraint, the Lagrange multiplier is the hydrostatic
pressure, and‘this pressure must be known in order that the stress be de-
termined. In short, in physical problems with constraints, the multi-.
pliers associated with the constraints are often equally as important as
the minimizers of the energy functional themselves. For this reason, it
is standard practice to consider iagrange multiplier techniques for such

problems.



3.1 Lagrange Multipliers. We consider again the minimization pro-
blem (2.1) with F given by (2.4), conditions N.l and N.2 in force, and K

now defined by
K = {veVlBv = gO] (3.1)

where B 1is the linear continuous constraint operator, B:V + Q , Q being
a Hilbert space, and g, given data in the range R (B)C Q of B. The clas-
sical Lagrange multiplier approach to (3.1) consists.of seeking saddle

points (u,p) of the Lagrangian

L:Vx Q'+ R; L(v,q) = F(v) - (q,Bv-g ] (3.2)

where Q' is the dual of Q and [+,:] denotes duality pairing on Q' x Q .

The saddle point (u,p) will satisfy
L(u,q) < L(u,p) < L(v,p) ¥qeQ'y V¥veV (3.3)

The major issue at this point is: when will there exist a unique
saddle point (u,p) of L such that u satisfies (2.1)? It is not
difficult to show (see, e.g. Ekeland and Temam3) that Sufficient conditions
for the existence of a solution to (3.3) are:

S.1) Conditions M.2, M.3, M.4 hold for the functional F for K=V

S.2) There exists a v, € V such that
L(Vogq) + — o as ”q"Ql + >, ¥ q € Q‘

Thus, as we noted earlier, whenever N.1 and N.2 hold, condition S.1
satisfied. Moreover, if S.1) and S.2) hold, the unique saddle point (u,p)

is characterized by the equations
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<DF(u),v> - [p,Bv] = 0 ¥ wveV
(3.4)
[q,Bu] = [q,8,] ¥ q Q'
or, since F is given by (2.4),
a(u,v) - [p,Bv] = f£(v) VvelV
(3.5)
la,Bu) = [a,g ] ¥ qeQ

For example, in the case of the incompressibility constraint in

linear elasticity, we have

D D
s = 2 . d
a(u,v) IQ u eij(g) €4 (v) dx

(3.6)
[q,Bv] = J q div v dx
. 0 -

In this case, V 1is given by (2.9), £ by (2.12), Q = LZ(Q) =qQ',

[+,°] = (+,+) = the L2— inner product, and B = div:V + Q (g°=0) .

3.2 Perturbed Lagrangian. A major problem with the Lagrange multi-

plier method is that the coerciveness condition S.2) may not generally
hold. We are then not guaranteed the existence of a unique Lagrange multi-
plier p . To overcome this difficulty, one can regularize the problem

by introducing a perturbed Lagrangian L : let € be an arbitrary posi-

tive number, and define

L (v,a) = L(v,q) -3¢ ||QI|3. (3.7

Clearly, S.1) and S.2) now hold. Thus for each ¢ > 0, there exists a

unique saddle point (uE,pE) of L, characterized by
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a(ue,v) - [pe,Bv] = f£(v) VvelV
(3.8)

ela,37 )] + [a,Bu) = (e8] ¥aeQ

where j-1 is the inverse of the Riesz map j:Q + Q' .
The next issue is to determine if the sequence {(ue,pe)}_ of solu-
tions to (3.8) will converge to the unique saddle point of L ; i.e.; to

the solution of (3.5).

Since (ua'Pe) is a saddle point of LE , we must have

2
Flup) - [a,8u] - 3 [lally

3 2
< F(v) - [PQ!BV] -9 |IPE ”Ql
for any q € Q' and v € V. Without loss of generality, we assume

throughout this study that ker B # {0} . Then it is possible to choose

v, # 0 such that Bv = 0 . Choosing also q = 0 , we have

Flu) < Fv) - 5 llp llgr - = F(v) (3.9)

2
Q"
But since F 1is coercive (recall M.4), this bound implies that a con-

stant C , independent of ¢ , exist such that
"uE”V < C for all e >0

However (see item ii) in the appendix), this guarantees the existence of

a subsequence {ue.} of solutions and an element u ¢ V such that u_

converges vweakly to u as €' tends to zero:

u_, —M& gy

E’
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Observe that by (3.8)2.
poBu_-g) = -l )] = -¢llpll2 <0
€’ € (o) e’ € e'Q' —
Hence, since Le(ue’pe) f'Lc(v,pE) for arbitrary v , we have
F(u) < F(v) + [p_,Bu_ - g ] <F(v) ¥vekK

It follows that the weak limit u of the subsequence .{utf} is precisely
the nminimizer of the functional F (since F(u) < liminf F(uE,)_i F(v)

e'+0
¥ v e K).

3.3 Troubles with the Multipliers-The Babuska-Brezzi Condition. To

obtain a unique multiplier p as the weak limit of the subsequence

{pe'} ) we must also show that ”pe‘"Q » is uniformly bounded in ¢' .
Unfortunately, this is generally impossible, for reasons we shall ﬁow ex-
plain, and it is necessary to add another condition to our theory to over-
come such difficulties. We continue to choose g, = Q.

*
Let B : Q' » V' denote the transpose of the constraint operator B:
%
<Bq,v> = [B,Bv] ¥veV,¥qeQ' (3.10)
and set
* g *
ker B = {q e Q" <Bq,v> = 0 ¥velV} (3.11)

2 :
If ker B # 0 , we can never expect the solution p to (3.5) to be
*
unique, since the addition to p of any element in ker B  would also
satisfy these equations. To overcome this difficulty, we introduce the

*
quotient space Q'/ker B , the elements of which are equivalence classes

(cosets) defined by
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- ® *
p = {qeQ | p-qekerB} (3.12)

*
The space Q'/ker B is a Banach space with norm

151l e o i
' = nf e + ally (3.13)
Q'/ker B q € ker B Q
* ' -
Since [p,Bv] = [ptq,Bv] ¥ q € ker B , we will use the notation [p,Bv]

*
for representing [p + q,Bv] for every q € ker B . That is, the multi-

*
plier p in (3.5) can only be determined to within an element in ker B .

- *
However, the equivalence class p may be unique in Q'/ker B . Thus

we write

a(u,v) - [p,Bv] = £(v) , VyeV

[q,Bu] = 0, ¥ qe Q'
a(ue,v) — [pe,Bv] = f(v), ¥veV (3.14)
-1
[q,€j (pe) + Bue] = 0, ¥qeQqQ

in place of (3.5) and (3.8).

We still must show that the sequences {pe} are uniformly bounded
in € 1in some sense. For this purpose, we shall introduce the so-called

Babuska-Brezzi condition, which plays a fundamental role in the theory of

*
elliptic equations :

*The importance of conditions of this type in the theory of elliptic
equations1-4 and their approximation was first demonstrated by BABUSKA, who
used this circle of ideas in many diverse applications. Further work on
this area was done in a well-known and important paper by BREZZIS, A simi-
lar condition for the special case of Stokes' problem with the incompressi-
bility condition div v = 0 was studied somewhat earlier by LADYSZHENSKAYA,
and the condition in connection with incompressible flows has been referred
to as the LBB-(LADYSZHENSKAYA-BABUSKA-BREZZI) condition in that context.
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There exists a constant a>0 such that

) inf + = -
@ in * lip q"q‘ (= a ”p”Q‘fker B*)
q £ ker B
(3.15)
v
Clearly, when (3.14) and (3.15) hold,
. Bv]
a||p Il * < sup [Ps'
€'Q'/ker B veV —";“;
a(u ,v) - f(v)
= sup £
veV "v“v
< ulllu [l + Nl
< C = constant (3.16)

Thus, there exists a subsequence of functions P, > which converge
*
weakly in Q'/ker B to a unique element p . One can easily show
the weak limit (u,p) of (ue"Pe') is the unique solution of problem
(3.14)1.

Strong Convergence. When conditions N.1, N.2, and (3.15) hold, the

situation is actually much better than that implied above. Indeed, sub-

tracting (3.14)3 from (3.14)1, gives

a(u - ue,v) = [p- pE,Bv] ¥velV - (3.17)

Thus, from (3.15),

c‘”1:’ = 'Pe “Q'lker B*< M”U = _uE”V . (3.18)
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Likewise, from (2.5)2 and (3.17)
: m[h: -u ||2 <afu-u ,u-u)
e'V— A
= [p= PesB“ - BUE] (3.19)
. .—1
= elp-p., 3 ()]
On the other hand, inequalities in (3.9) implies
2 2
e llg <5 FGv) - Flu))

for v, € V such that Bvo = 0 . Since u is uniformly bounded in €

in Vv, it follows from the inequality that

£
e llgr < p (3.20)

for a proper positive number C>0 . Thus we have

L]

2 g
m[lu_uellv .‘.(. CII p_PE ”Q'/ker B* HPEZ”Q.

.E c /E ” p—pE " Q'/ker B* 3 (3-21)

since j._1 is an isometry. Combining (3.18) and (3.21), we have

Ll

= o-n *
lfu-u_ll, < ¢,/ and [l p-p_ llq,,ker g* < c,7e (3.22)
where C1 and 02 are positive numbers independent of € . _Tﬁus,
: %
u *u in V -and P, P in Q'/ker B strongly as € + 0 .

ér/ker B* in the

2
definition of the perturbed Lagrangian instead of ||‘||Q', then it

*
1f ker B = {0} or if we use the norm ||-]|

is possible to obtain a rate of convergence of 0(e) instead of
*
0(¥E). For example, if ker B = {0}, then (3.19) is changed to

of [p-pellq' < Ml lu-ully (3.18)"
and
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2 -1
mflu-u_|[G < elp-p o3 (p )]
—1 :
< elp-p,3 " (p)] (3.19)
Then we have
_ *
||u—u€||v < Ce and Ilp—pe|lq, < Cye (3.22)

instead of (3.22).

3.4 Penalty Methods. 1In view of (3.14)4, the perturbed multiplier

can be eliminated from (3.14)3 to give the variational problem

a(u ,v) + E_l[j(BuE—gO),Bv] = f(v) ¥veV (3.23)

This is precisely the characterization of the minimizer of the penalty

functional FE: V-+ R
F(v) = F(v) +—=|Bv-g |2 (3.24)
€ 2¢e 0o''Q '

‘Thus, the perturbed Lagrange method is completely equivalent to the fol-

lowing (exterior) penalty method:
i) For each € > 0 , find a minimizer of Fe over all of V
Fe(ue) j_FE(V) ¥VveV _ - (3.25)

ii) Under conditions N.1l and N.2, we will have a unique solution
u_ of (3.25) for every € > 0 and, moreover, uo + u as
€ + 0 , where u is the unique solution to the minimization
problem (2.1)

iii) To obtain an approximation of the Lagrange multiplier p ,
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take P, = - %j (BUE-BO) .
iv) If the Babuska-Brezzi condition (3.15) holds, then we are
assured that subsequences P, p in Q'/ker B* as € > 0.
Similar formulations to (3.23) can be obtained for problems involving
constraints represented by inequalities. Let B be a linear cpntinuous
operator from V into Q , and let 8 be a given data in Q . Using

the partial ordering relation "<"

defined on the space Q , the con-

strained set K 1is supposed to be given by
K = {ve V: Bv-g < 0} (3.26)

Then we have

(Lagrangian Multiplier Method)

(u,p) e V.x M :

<DF(u) ,v> - tp,Bv] =0, ¥veV

(3.27)
[q-p,Bu-g ] >0, VgeM
(Perturbed Lagrange Multiplier Method)
(ue,pe) e VXxXM:
<DF(uE),v> —[pE,Bv] = 0, V¥velV
(3.28)

Sl
le-p_, €3 "(p ) + Bu-g ] >0, ¥qeM
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(Penalty Method)

u eV:
E
1 + ;
<DF(u€),v> + Z[j(Bu —go} ,Bv] = 0, ¥veV (3.29)

Here <DF(uE),v> = a(ue,v) - f(v) and '"+" 1is the generalization in the
function space Q of the operation defined on IR: $+ = (¢ + |¢|)/2 for

¢ € R, and the set M 1is given by
M = {qeQ': q <0} (3.30)
We note that the penalty functional Fc : V> R is now defined by

F(v) = F(v)+-§1-£||(3v—go)+||g (3.31)

4. PENALTY METHODS AND REDUCED INTEGRATION

Of all the variational methods discussed in the previous section,
the penalty method is, perhaps, the most attractive as a basis for com-
putational methods for the following reasons:

1) It involves minimiéation of a functional FE on the entire -
linear space V rafher than on the constraint set K . Thus, it is not
necessary to construct special approximations of the constraints.

2) For each € > 0, only u, is unknown; approximationg P, of
Lagrange multipliers can be obtained by an independent and direct calcu-
lation, P, = - e_lj(BuE—go) . Thus, the number of unknowns in a dis-
cretization of the penalty formulation is substantially less than a
saddle-point formulation based on Lagrange multipliers.

3) The solutions (ue,pe) to the penalty problem will converge to

a solution (u,ﬁ) of the saddie point problem as € + 0 under the



conditions listed in the previous section. However, the penalty method
will always yield a unique solution pE for the approximate multipliers
while the direct saddle-point approximation of ﬁ may not be unique.
There are, however, some major difficulties in applying the penalty
method due to the requirement (3.15). To demonstrate the key ideas, let
us again consider the problem of incompressible elasticity. Iﬁ this case,

the penalized functional is
F (v) = 1 (v,v) - f(v) + —1—l|d1v v]|2 (4.1)
€~ 2 ~’= ~ 2e ~10 )

where a(-,+) is defined by (3.6) and |

2 2
-[|0 is the L"-norm (Hv1|0
= fg vz dx) . The associated variational boundary-value problem is then

to find u €V ‘such that
a(ge,y) + e_l(div Ee,div v) = f(v) ¥velV (4.2)

To construct a finite elemen£ approximation of (4.2), we develop, in
the usual way, a family {Vh} of finite-dimensional subspaces of V
.using Co—piecewise polynomial basis functionsion a sequence of meshes.
The mesh size h identifies a space Vh<: v ;obtained through regular,
uniform refinements of the mesh. We then approximate (4.2) on Vh with
one provision: In anticipation of some difficulties to be described below,
we shall evaluate the penalty term (25)_1"d1v Y”é using numerical quad-

rature. fn particular, let I(:) denote the quadrature rule (for a conti-

nuous function f£)

E G
I(f) = I (f) ; I(f) = weE(E®) (4.3)
e£1 e e jgl i3
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where E 1s the number of finite elements, WS the quadrature weights,

3
e .
and Ej the integration points in element Qec: . Then approximation
of the penalty method (4.2) consists of seeking UE € Vh such that
h _h -1
a(Ec’Y ) + e "I(div 32 div vh) = f(vh) ¥ vh € Vh (4.4)

Of course, if the order G of the integration rule (4.3) is sufficiently
large, we can expect I(+) to yield exact integration: I(fg) = (f,g)
= [, fg ax .

It is a remarkable fact that (4.4), in general, provides physically
unacceptable numerical results under certain boundary conditions if exact
integration is used. This has led many investigators to use ''reduced inte-
gration" for finite element methods based on penalty formulations - by
which is meant the use of an integration rule I(+) of order G lower than
that which is necéssary to integrate the penalty terms exactly. Such
devices have been advocated by Zienkiewicz, Taylor, and Tool6, Hughess,
Malkus and Hugheslz, and others; for a complete analysis of such‘methods
and additional references, see.Oden, Kikuchi, and Songla’ls. J

A key to understanding penalty methods and reduced integration is the
realization that, for fixed mesh size h , the solution to the discréte
penalty problem should converge, in some sense, to a mixed finite element
approximation of (3.5). Thus, there must be inherent in any discrete
penalty method, a finite-dimensional space QL approximating the space
Q' of Lagrange multipliers. With this in mind, we choose the space Qh

to satisfy the following three conditions for reduced-integration/penalty

(RIP) methods:
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o]
-

h h
Qh is such that V q ¢ Qﬁ and ¥ v € vy o

(qh,div Yh) = I(qhdiv Yh) (4.5)

R.2 Let Bh:Vh + Qh " Bg:Qﬂ + Vﬁ be defined by

1" div v") = ("B "] = <Brd",y (4.6)

h

(i.e. Bh is the discrete approximation of .the operator div defined by

our choice of integration rule I). Then Qa must have the property that

constants @ > 0 exist such that the following discrete

Babuska-Brezzi conditions hold:

1(q" div gh)

- u°h h
“h”q [|0/kerBﬁ = EUP ¥q ¢ Qﬁ (4.7)

h
VvV E Vh ‘ ”Y “V

R.3 There exists a unique pg € Qa such that
h, e _ -1 h, e
pg(gj) = -¢ = div Ee(éj) (4.8)

for 1 <e<E, 1< j <G (effectively, the nodal points of elements
defining Qh are the integration points given in the definition of I(-)),

and the notation

h h,*
ol @l

O
ety (q )*EkerB;
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is applied where keng is the kernel of the map B; . If kerBﬁc:.kerB*,

we have

o
lla" | = 1§
0/kerB} 9 llo/kerB* *

o
h -
and q may be identified with the coset qh with respect to the kernel

of B* ,

Condition R.1 does not hold for all reduced - integration - penalty
methods. In some instances, where, for example, quadratic polynonials
are higher are used for the velocity but only 1 - point integration
is used for the penalty, this condition does not hold and a loss of
accuracy due to quadrature results. Nevertheless, conditions R.2 and
R.3 are imposed.

Oden, Kikuchi, and Songl4 have shown that if conditions R.1, R.2,

and R.3 hold, then the following can be concluded:

i) For every € >0 and h > 0 , there exists a unique solution

h
g, to (4.4)

ii) The sequence '{(gz,pg)} , where p: is given by (4.9), con-
h °h h °h
verges to (u ,p) as € + 0 for fixed h , where (u',p) is a solu-

tion of the mixed finite element approximation:

(o]
h
a(uh.vh) - I(ph div yh) = f(v) ¥ \_:h A

(4.9)

I(qh div gh) = 0 ¥ qh € Qﬂ



23

i1ii) For fixed € > 0 and, h > 0, the following error estimates hold.

h -1
Mo -wlly ¢ A+ T (u,p)

0 _ ©op * -1 -2
1P - g IIO,M_,,,Bhic2 Ao +a™ I (wp)
- : ' (4.10)
I, e = ™ flu-v'l] + /e
N v eV T
~ h
inf . .h
- *
+ qp‘ieql'1 e - a4 o kers
where Cl’ C2 are constants independent of € and h. If kerB* = {0},

h
then Y€ can be replaced by €.

iv) According to (4.9 ), every RIP-method is related to a mixed
method. However, there is one major difference: the direct approximation
(4.!9) may not have a unique solution! On the other hand, by construction,
a u;ique (ug,pg) solution to (4.9 ) is obtained for each € > 0 . The point
here is that, in general, kerBﬁié kerB* and kerBﬁ # {0} , particularly
for rectangular elements. Thus, the conventional mixed finite element
method may produce approximate multipliers ph with components in kerB; .
Then the system (4.9 ) is singular! However, any RIP-method satisfying

R.1-R.3 will have
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h -
Pe(gi) = - ¢t aty }_1:'(5;) (4.11)

Thus, let qz € keng ; i.e.

h h
I(qo div v') = <B* q:, Yh> = 0 ¥ vh eV

Then, from

h h
I(pE qo) = 0 ¥ q: e kerBk (4.12)

In other words, p: is orthogonal to keng with respect to the dis-
crete inner product I(fg) . Indeed, if (4.5) holds, this orthogonality

is with respect the LZ(Q)—inner product .

5. A PATCH TEST FOR RIP-METHODS

The numerical stability of the RIP-method is governed by the discrete
Babuska-Brezzi condition (4.7). If it is not satisfied, there may occur
oscillations in the approximate pressure p: as h + 0 which quickly be-
come unbounded. It is obvious that a necessary cdnditidn for (4.7) to hold
is that the matrix B approximating the constraint of full rank, i.e., if

h h i rs
dimV, =n, dimQ =m, (q ,divv) = I B' qV
h h ~ ros=1 rs
]

where q,.,v, are the degrees-of-freedom of the approximatefpressures and

displacements, respectively. Then we must have
rank (Brs) = m ' (5.1)

if (4.7) is to hold.
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However, (5.1) is not enough! For an unconditionally stable method,

we must generally have o in (4.7) independent of h .

We shall now describe a method for testing the LBB-condition for
specific choices of elements and integration rules that is based on some
techniques of Girault and Raviart? for mixed methods. The idea is to find
a function ?h in the finite element space Vh such that, for any

r

veV,

J div(ﬁh—v) qh dx =0 ¥ qh € Qﬁ
” . =

(5.2)

~h
1§11, < clivlly

Then it can be shown (cf. Oden, Kikuchi, and Songla) that whenever (5.2)
holds, the discrete LBB-condition (4.7) is satisfied with a constant o
independent of h .

From these facts, we can construct a "patch test" for verifying the

stability of RIP-methods:

1. Pick an arbitrary gh € Vh %

2. Construct the patch integral

div (Yh—gh)qh dx = - th . (Yh-gh) dx

Lh L

+1 I n e (Wyh " ds
e ‘930

for a patch Qh of elements with interelement boundaries ane , (n a unit

outward normal to 392) with qh ¢ kerB; .
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3. Determine, by direct calculation, if there exists a Vh such

h h
that 1, =0 ana [Vl < clls"l, .

4. For arbitrary v € V , set gh =P v , where P, is the

h h
V-orthogonal projection of V.  onto Vh . Determine C , inde-

h
pendent of h , such that IP =0 and "\_i’ "V < C"g"v .

If these four steps prove to be possible for a given choicé of Vh and

I(-) , ther (4.7) holds for an a independent of h .

h
There are actually only a limited number of elements which have been
shown to satisfy such patch tests. For two-dimensional problems with

smooth domains and Dirichlet boundary conditions, the following choices

satisfy the discrete LBB-condition:

Vh I Qh
- 1., 6-node, quadratic l-point Gaussian Piecewise
triangles quadrature constants
2. 9-node, biquadratic "l-point" Piecewise
rectangle integration ? constants/infegration
3. 8-node, seredipidity "1-point" | Piecewise
element integration constants/integration
4. Composite of four "3-point" Piecevise
equal 4-node integration linear

biliﬁear elements
5. 9-node-biquadratic "3-point" Piecewise
integration linear
In these examples, kerBE(Z kerB* and the analysis is based on a
uniform mesh on a rectangular domain. By "l-point" and "3-point" integra-

tion in the examples, we mean that the method is equivalent to some
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l1-point and 3-point rule, but that the actual calculations are done using

a perturbed-Lagrangian formulation; e.g. for a typical element we have

(5.3)

where K and f are the element stiffness matrix and load vector o the

"connecting vector" of forces (which vanish upon assembling the elements)

and B is the "constraint matrix". In (5.3), M is the mass matrix cor-

responding to the local pressure approximations assumed here to be dis-

continuous across interelement boundaries. If we use piecewise constant

or linear approximations for P, we then calculate

-~

_ -1 -1 T
Eg - =€ 11:1 § ‘.'.Ig; (5.4)

Then (5.3)l results in a penalty method

RKu +e¢ BM Bu =£f+g
even though no integration scheme has-actually been identified. It is
such schemes that are understood to be used in the examples above.

Numerical results indicate that the Babuska-Brezzi constant uh for

schemes 1-5 is independent of h :

= = constant > 0
o a, [

Then, these schemes are numerically stable. However, there is a price to

be paid for schemes 1-3: the low integration rule leads to a loss of one

complete order in the asymptotic rates of convergence of these methods.
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Thus, while stable, they converge slowly. Schemes 4 and 5 appear to be
much better and are theoretically sound, but their analyses remains

incomplete.

We mention two other examples which are popular in the literature:

Yh I %
6. 4-node bilinear 1-point Gaussian _?iecewise
éonstant
7. 9-node bilinear 2-point Gaussian Piecewise
quadrature - bilinear

In both of these cases (see [15]), we obtain

a, = aoh = 0(h)

h
for mixed boundary conditions and
2 * *
a = 0(h%); kerBy & kerB

for Dirichlet boundary conditioms.

Thus, these methods might be unstable. The convergence of such methods

for rectangular uniform meshes has been explained in analyses by Johnson
and Pitkaranta8 and in an independent study by the authors11 using a
different approach. Nevertheless, the pressure may diverge in L2(Q) (due
largely to the presence of spurious components in kerB:). Likewise,

method 7 may have a suboptimal rate of convergence for displacements in

V and lead to pressure approximations which diverge in LZ(Q).

It is true, however, that "filtering" schemes can be devised for
these elements which produce pressure approximations which are stable and
converge in LZ(Q). According to the results in 14 scheme 4 might be
interpreted as the filtering strategy for scheme 6. However, method 6

and 7 still appear to be delicate: they are sensitive to singularities
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and distortions in the mesh geometry. Despite their popularity, these

observations indicate that they should be used with great care.

6. CHECKERBOARDS AND NUMBERS

Several authors (e.g. Lee et 3111) have observed that in mixed finite
element approximations of certain constrained problems, particularly
Stokes problems or incompressible elasticity problems with constraints
such as div u = 0, spurious checkerboard patterns for the pressures are
present which appear to be superimposed over solutions which are physically
reasonable. These spurious patterns are explained without difficulty in
the theory outlined previously for the case of square uniform meshes.

Observe that for RIP methods, the approximation PZ of the hydrosta-~
tic pressure may include components in ker B:, even though it is clear
that B p. #0 .

Let us attempt to characterize keng for a representative finite
element for which spurious nodes have been detected. In particular, in
the case of a square domain on which Dirichlet boundary conditions have
been imposed, we considgr a uniform mesh of Q—ﬁode bilinear elements for
approximating thé displgcement Yh and piecewlse constants for the pres-
sures ql-l . This corresponds to l—point.Gauss integration fof the rule
I(*) in the RIP—method discussed in Section 4. For a mesh of N elements
of width h , it can be shown ([15])

= 2 3 4

h h; 1
(q,div v') = 2h kEl[vkl(qk +aq -9 - q)

12 _ 3. 4
+ Ve - g -+ q] (6.1)
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where vki is the i~th component of yh at node k (1 = 1,2), and

q: is the value of the (constant) pressure qh in cell m surrounding

node k , m=1,2,3,4, with m =1 for the lower left quadrant and the

reét numbered in counterclockwise sequence around node k. Let us make the

identification, Q = Qﬂ . If qh ¢ ker B;, then qh is in the range of
h

h and one can find a v ¢ V., such that B Yh = qh . Hence, if

B h h

ql.-l € kerBﬁ , we must have

1 2 3 4 1 2 3 4
qk+qk_qk_qk=0' qkhqk_qk."—qk:o
This is precisely the checkerboard pattern indicated in Fig. 1. Thus,
the spurious modes observed in mixed finite-element calculations are merely
the components of the approximate pressure in keng .
ponents should not appear in any RIP method for which condition R.1, R.2,

These spurious com-

and R.3 of Section 4 hold, provided there are no singularities in the
solution. However, as will be shown in examples, spurious components are
sometimes observed in the pressure Pt locally, e.g. In certain subsets of
%f the mesh. This generally occurs in methods for which a = 0(60), >0,
in which case the method'may unstable in Lz(ﬂ) .

Spurious components in p: by e.g. the scheme 6 (4-node bilinear and
and l-point integration) can be eliminated by taking the filtering operation
used in convergence analysis and also introduced in the workll. Indeed, the
component of '"local" ker B is defined in a composite of four equal 4-node

h

bilinear elements as
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2 3 4
c = (pt =P+ P, " PJ (6.2)

where pi = ptlni , 1 <1i<4, and Q; is the i-th 4-node element
€ = = ' .
[
within the e-th composite element. Then the pressure p: is filtered by

5: defined by

-1 1 =2 2 -3 _ 3 -4 4
p_=p_~-C, p_=p_*+C, P_=p_ C, p.=p, . +C (6.3)

within each composite element. The pressure ﬁ: is then with linear func-
tion which corresponds to the case of scheme 4. As shown in the following
example, ﬁ: does not include any spurious mode any more.

Example: One example involves a Dirichlet problem of plane strain of
a square slab of incompresseible linearly elastic material subjected to a
constant body force £ = (800,800) applied over a square domain QO .
Let Young's modulus be E = 103 . "We use the rather coarse mesh of 16

elements shown in Fig. 2 and employ

Q, - elements (9-Node Biquadratics) for Vo

/ I(+) ~ 2 x 2 - Gaussian Quadrature

Eﬁgure 3 shows compuééd ﬁy&;;;tatié_pressure along section A-A.

For other choice of data, we observe the checkerboard modes in hydro-
static pressure. Indeed, if a point load f = 200(8(x-x,y-y), &6 (x-x,y-y))
is applied at point (E};) € 1 , then the checkerboard modes in keng

appear to be activated as numerical. results in Fig. 4 shows.

7. CONTACT PROBLEMS IN ELASTICITY

Results similar to those described above can be obtained for problems
with inequality constraints such as’ that encountered in contact problems
in linear elasticity. Let us return to problem (2.14) with the constraint

set K being given by the set K, of (2.12):

2
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K2 = {v e V| ven-s8<0 a.e. on Pc}- (7.1)

Then the contact problem for compressible materials can be expressed as the
variational inequality

ueKk,: a(u,v-u) > f(v-u) ¥ v ek, (7.2)

whereas its corresponding penalty formulation is -

u eV : B(gé,y) + %<(j(ge)n—s)+,vn> = f(g} ¥ veV (7.3)

~E

where <-,+> denotes duality pairing on W' x W , where W is the Sobolev

space

1/2

W = H (FC)

u Zu-*an (n being a unit outward normal to TC), and (¢)+ is the posi-

tive part of the function ¢ (e.g. ¢+ = max(0,¢) relative to an ordering

defined by ¢ <0 = y(x) <0 a.e. on FC).
To approximate (7.3), we use the RIP-method:
] h hy 1 h, th _ _ h h
u eV : B(E v ) + eJ[((t_xe)n-s) vn] = f(g ) Vv e_Vh (7.4)

where Vh is, as before, a finite-dimensional subspace of V and J 1is

a quadrature rule for integration PC ; e.g.

E' G' . )
e = J ¥ Q? f(n;') (7.5)
e=1l j=1

where Q; are quadrature weights and 'n§ quadrature points on’ PC .



_The method is stable and convergent whenever J defines a finite-

h
dimensional space W, of approximate contact pressure g, such that

h
R.1 ¥ th,;h € wh ’
" = J 3P as (7.6)
I‘C
h

R.2 There exists a unique o, € Wh such that B

h _ Lo T +

og(n) = - @) ) () 7.7

R.3 There is a constant BO>-0 , independent of h (as h + 0) such

that Bh = Boh1/2 and

]J(Thv:)l

h
Bl IIO’FC £ = (7.8)
vV € Vh 1
¥ Th € Wh .

Again, the discrete Babusﬁa—Brezzi condition (7.8) is the key to
numerical stability of thé approximations of the contact pressures.

Example: As an example, we consider the plane strain problem of
indentation of a rigid cy]indrical.punch into a rectangular block of in-
compressible linearly elastic foundation which has a modulus of elasticity
of E = 103 . We model half the domain with 4 x 8-inch mesh of'rectangu—

lar elements, as shown in Fig. 9.

Figure 6 shows results obtained using

Qz—elements (9-Node Biquadratic) for Vh

I1(+) - 2 x 2 Gaussian Quadrature

J(+) -~ Simpson's Rule
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Computed reéults are quite satisfactory. However, if we use
J(*) - 2-Point Gaussian Rule

the distribution of contact pressure is no longer smooth, as shown in

Fig. 11.

These unstable pressure distributions can again be explained by the LBB-

condition (7.8). Indeed, for Simpson's rule, it is shown in [15] that

1/2
Bh BOh >0

However, for 2-point Gaussian rule, we have

_ 1/2

1/2
- Blh
Thus, this is not suitable for the Babusak-Brezzi condition (7.8).

Thus, for certain models, Bh may be negative, in which case the dis-

crete problem is ill-posed.
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APPENDIX

Some Mathematical Preliminaries

This appendix is provided for a brief review of several of the ma-
thematical ideas used throughout this paper. For additional details, see
standard texts on functional analyses; e.g. TAYLOR and LAYIT. :

i) Strong and Weak Convergence. The spaces V of admissible func-

tions described earlier, we recall, are assumed to be real Hilbert spaces

equipped with inner products (-,o)v and norm |]-|v (e.g., when V 1is
given by (2.4), (E’Y)V = (E’Y)l = IQ ui,j vi,j dx ., ”‘jllv = ”9"1 =
(u,u)ilz) . When we say that a sequence u € V converges to an element

u € V, we mean that

lim ”um--u”v = 0

m = o«

This type of convergence is called strong convergence; to be specific we may

say that u,  ~converges strongly to u and we write

-+ >
u *u (as m » «)

"For each space V one has its (topological) dual space V' which
consists of all continuous linear functionals defined on V . Thus, V'
consists of linear functions f which map V continuously into real num-

bers. As noted earlier, we use the notation

f(u) = <f,u> fe V', ueV

to denote the value of £ at u .

Whenever a sequence u, € V has the property that
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lim £f(u ) = f(u) ¥fev'
m + o n
we say that u ~converges weakly to u and we write
u-u (as m + =)

Every strongly convergent sequence converges weakly, but the converse
is not true. For example, consider the Fourier series representation of

functions g in L2(0,1) 5
g(x) = z g Yy (X); y&® = V2 sinmxx; 0<x<1
m 'm m
m=1
8 =<g‘r>=J1 dx
> E 8Yp
0
The sequence &y of real numbers ‘converges to zero as m tends to infi-

nity. Hence, the sequence of functions Y, converges weakly to zero:

lim <g,ym> = lim gm' = 0 ¥ g’e Lz(ogl)
m > o m <+ w :

However, "YIILZ(O,I)ul so that the Yo does not converge strongly to zero.

ii) Weak Compactness. In Hilbert spaces, it can be shown that every

sequence bounded in norm has a weakly convergent subsequence. -In other

words, if u is a sequence in V with the property that

”um”viC = constant

then we are guaranteed the existence of a subsequence u , and an element
m

u ¢ V such that um,-'u i
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1i1) Riesz Map. The Riesz representation theorem establishes that
for every linear functional £ in the dual V' of a Hilbert space V ,

there exists a unique element ue such that

<f,v> = (“f"’)v ¥VveV

In other words, the action of any linear functional f on V ‘can be re-

produced by an inner product of the elements of V by an element ug

uniquely determined by every £ .

The correspondence between f and u_ can be characterized by a

f

mapping jgy : V> V' known as the Riesz map for V . The operator jv

is linear, continuous, invertible, and is an isometry from V onto V'
(i'e' "u”V = ”jvu”v!) X

iv) .Quotient Space. Let M and N denote a linear subspaces of

a linear vector space V such that M N = {0} and every v ¢V is of
the form v=m+n, withme M and n e N . We then say that V' is the
direct sum of M and N , written V =M+ N, and that M and N are

complementary subspaces of V ; 1in particular, N is a complement of M

and vice versa.
We introduce an equivalence relation R on V according to which

vectors v, and v, are said to be equivalent modulo M if v

1 17, € M.
An equivalence class corresponding to R 1is then the set
ve = {ueV|lv-ueM
The set of all such equivalence classes is denoted V/M . When endowed
with the operations u* + v+ = (u + v)" and ou- = (ou)", V/M is a linear

vector space, called the quotient space of V modulo M. If V is a Banach
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space with norm .“V then V/M 1is a Banach space when provided the

norm.

llvell = inf |lv - uff
v/ ueM v

If N is any complement of M , then V/M is isomorphic to N
(indeed, the map y : V> V/M, y(v) = v-, is an isomorphism, If M is
a closed linear subspace of a Banach space V , then the dual space

. 1 J_ * *

(V/M)' 1is isometrically isomorphic to M-, where M-+ = {v e V'|v (v) =
0 if v e M} . Thus, (V/M)' and HJ- are both algebraically and me-
trically (and, therefore, topologically)equivalent, and we write

4

(Vv/M)' = M-I- :
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FIGURE 2. Finite Element Model of a Dirichlet Problem.
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FIGURE 7 . Pressure Distribution by 2-Point Gaussian Rule.
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FIGURE 5. Finite Element Model of -a Rigid Punch Problem.
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FIGURE 4. Pressure Distribution on the Cross Section
A-A by 2 x 2 Gaussian Rule for a Singular
Applied Body Force.
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