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This paper addresses thc general problem of formulating continuum models of a large class of
dynamic frictional phenomena and of developing computation methods for analyzing these phenomena.
Of particular interest are theories which can adequately predict stick-slip motion, frictional damping in
structural dynamics, and sliding resistance. This work is divided into three principal parts. In Part I, a
large body of experimental and theoretical literature on friction is critically reviewed and interpreted as
a basis for models of dynamic friction phenomena. In Part II, continuum models of interfaces are
developed which simulate key interface properties identified in Part I. Variational principles for a class
of dynamic friction problems are also established. In Part III, finite element models and numerical
algorithms for analyzing dynamic friction are presented. Also, a dynamic stability analysis is presented
in which it is established that stick-slip motion can be associated with dynamic instability of the
governing nonlinear system for certain ranges of slip velocity and coefficient of friction. Numerical
results suggest that the new models derived here can satisfactorily depict a large and important class of
dynamic friction effects.

l. Introduction

The contact and rubbing of solid bodies: to many it must seem remarkable that an event so
common, so intrinsic to the mechanics of everyday life, so important in a multitude of
applications of mechanics to engineering problems, and so often the subject of experimental
research, has not been satisfactorily depicted by a sound continuum model to date. However,
to those who have taken more than a superficial look at the subject, the absence of a universal
continuum model of friction may not be surprising. The nature of dynamic friction forces
developed between bodies in contact is extremely complex and is affected by a long list of
factors: the constitution of the interface, the time scales and .frequency of the contact, the
response of the interface to normal forces, inertia and thermal effects: roughness of the
contacting surfaces, history of loadings, wear and general failure of the interface materials, the
presence or absence of lubricants, and so on. Thus, dynamic friction is not a single
phenomenon but is a collection of many complex mechanical and chemical phenomena
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entwined in a mosaic whose features cannot be grasped through isolated simple experiments.
Successful computational methods in nonlinear mechanics are generally those based on a

thorough familiarity with the natural phenomena bcing simulated and on a good understand-
ing of the mathematical models available to describe it. A major issue in the computer
simulation of many natural events is the absence of a physically and mathematically sound
model of the phenomena. This may not be a critical issue in large areas of fluid and gas
dynamics where the models characterized by the classical Navier-Stokes equations or the
Euler equations are regarded as acceptable, but it is an especially important issue in many
areas of nonlinear solid mechanics, where debates still rage over appropriate models of finite
elastoplasticity, thermomechanical phenomena, etc. The study of friction effects in solid
mechanics is particularly hampered by the absence of sound, generally accepted, models.

Thc rccognition that it may not be reasonable to attempt to describe all dynamic friction
etTects by a single theory seems to be a major step forward. Just as a theory of linear elasticity
may provide an appropriate model of the behavior of mild steel only for a limited range of
deformations, so also can any single model of friction be expected to be valid only under a
limitcd set of conditions. Thus, we shall focus here on a limited but very important class of
friction problems: the dynamic contact and relative sliding of dry, metallic surfaces with
engineering finishes (ground, abraded, scraped, polished, etc.) Still further restrictions are
required. We choose to divide this general class of frictional effects into three general
categories:

Type I. Quasi-static dry friction.
Type II. Dynamic, sliding friction.
Type III. Wear and plowing. .

While these classifications are by no means sharp and exclusive, they are adequate for our
present purposes.

By quasi-static dry friction (Type I friction), we mean frictional mechanisms present when
two possibly polished, metallic surfaces are pressed slowly together and are in static equili-
brium or are slowly displaced relative to one another, and for which normal loads are
sufficiently small that no severe penetration and gouging of the contact interface occurs. Here
the most conspicuous mechanisms contributing to friction are the plastic deformation of
asperities, the formation of elastoplastic junctions on the contact surface, the strong coupling
between normal and tangential plastic deformations, and the dissipative mechanisms afforded
by the history-dependence of junction deformation and possible fracture of these junctions.
The frictional forces may depend upon histories of micro-tangential displacements of particles
on the contact surface. Theories describing such frictional effects are basically static in nature;
inertia effects are generally not important and the modeling should capture the elastoplastic
deformation of the interface in some way. Models and computational procedures for studying
these classes of problems have been advanced by saveral investigators, and we mention as
examples the papers of Fredrickson [40], aden and Pires [70], Pires and aden [73],
Michalowski and Mroz [64], and Campos, Oden and Kikuchi.[27].

By dynamic sliding friction (Type II friction), we refer to that large and important class of
truly dynamic problems which include such elfects as frictional damping, dynamic sliding,
stick-slip. motion, chatlering,<;tc.Th~ constitution of the material interface is essentially stable;

_ , J. - '.- t. t' . .-.

there'is no mar\<ed penetration or normal plastic deformation of the interface and, at least
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from a global point of view, the frictional forces developed on the contact surface appear to
depend on the sliding velocity of one surface relative to another. To obtain reproducible
experimental data on these types of frictional effects, it is generally necessary to rub the
contacting surfaces together for a period of time until a steady-state condition of the interface
is reached. Such pre-conditioning may fracture and work-harden the surface asperities and
result in a smoother contact surface for which, unlike category I, plastic deformations normal
to the interface are not significant or do not occur at all.

A significant distinguishing feature between Type I and II friction is that of scales: In Type
I, the local frictional forces on the intcrface depend upon surface micro-displacements which
may be of an order of magnitude of ten microns; in Type II, much larger rigid relative motions
can occur and frictional forces vary with sliding velocity.

The wear and plowing phenomena (Type III) encompasses cases in which substantial
damage and penetration of the metallic interfaces occurs; thcre may be phase changes in the
interface materials, and portions of the material may be removed or relocated during contact.
These types of contact situations may involve the transfer of large normal forces across a small
contact area. Wear may be experienced in all three of the categories mentioned, but in
categories I and II it is either ignored or assumed to be negligible. We shall not consider these
types of frictional phenomcna in the present work. We also do not consider here problems of
collision and impact, which differ from those mentioned earlier due to the occurrcncc of
significant jumps in particle vclocities at the contact surface, and instantaneous transfer of
momentum from onc body to another, and the propagation and reflcction of stress waves.
Morcover, whilc all contact problems with friction invQlve thermal effects to varying degrees,
we shall ignore such effects in the present investigatiOl1.

The present paper is a study of modcls and computational procedurcs for analyzing contact
and friction problems that fall into category 11: sliding friction and stick-slip motions of dry,
rough, metallic surfaces.

The first and perhaps most difficult step in the analysis of dynamic friction is the develop-
ment of an acceptable model of the contact interface. It is wcll known that the interface
through which bodies contact is a mechanically-complicated media, the constitution of which is
different from that of the parent material of either contacting body. The interface may be a
rough irregular pair of surfaces composed of impurities, oxides, work-hardened or crushed
materials, gases and lubricants. Therefore, it is natural in developing phenomenological models of
friction, to assign to the interface a separate structure characterized by constitutive equations
independent of those characterizing the parent metals.

Toward assessing what features these interface models should exhibit, we devote the first
part of this study to a review and critique of a substantial body of experimental literature on
this subject. Then, on the basis of our interpretations of this data. we propose forms of
constitutive equations for the contact interface, particularly its response to normal stress.

In Part II, we incorporate these dynamic friction effects into a nonlinear continuum model
of contact and sliding friction of elastic bodies. The contacting bodies are assumed to be
linearly elastic, but the overall theory is highly nonlinear, owing to nonlinearities in the contact
constraints, frictional behaviors and interface response. We derive new vafiational principles
governing these dynamic problems.

Part III of the study is devoted to the numerical analysis of the dynamic friction models
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developed in Part II. There we describe several numerical algorithms for studying dynamic
friction. Dynamic stability and other qualitative features of sliding friction phenomena are
studied numerically using a simple mechanical model and finite element discretizations of our
continuum model. Several representative problems are solved numerically.

There are several results of this study which we feel are particularly significant:
(1) Contrary to a widely accepted belief that has prevailed since the time of Coulomb, the

coefficient of friction may not necessarily change with increasing relative sliding velocity. Our results
confirm the experimentally-based conjectures of Tolstoi [103] and some other researchers. This
apparent change is traditionally interpretedas a decrease from a static to a kinetic coefficient. It is,
however, only the average value of the friction force that may decrease after the initiation of sliding
and not necessarily instantaneous ratios tangential to normal stress components on the contact
surface. Of course, if the sliding body is modeled as a single (tangential) degree-of-freedom system,
as is so often the case, then the reduction of the coefficient of friction upon sliding is the only possible
device for incorporating these experimentally observed phenomena. Such crude models, experimen-
tal and/or analytical, cannot take into account normal force oscillations, and tlzus omit a critically
important property of dynamic friction.

(2) A key feature of acceptable interface models for dynamic friction is the characterization of the
response of the interface to normal forces. This mechanical response for most metal-an-metal
interfaces is highly nonlinear.

(3) Stick-slip motion may be a manifestation of dynamic instabilities inherent in the coupling
of normal and tangential relative motions of cotltacting bodies. This phenomenon is not necessarily
the result of a decrease in the coefficient of friction w~th changes in sliding velocity, and. can
in fact be observed when the coefficient of friction is constant and equal to its so-called static
value. -

(4) It is possible to develop and to incorporate simple nonlinear interface models into a
continuum model of elastodynamics which captures many fundamental features of dynamic
friction. In particular, frictional damping can be depicted in such models in a natural and
straightforward way.

(5) Hnite element approximations of the continuum models can be developed which feature
consistently-derived frictional damping/stiffness matrices. These finite element methods, together
with numerical schemes for solving associated systems of nonlinear ordinary differential equations,
are capable of modeling stick-slip motion, dynamic sliding, friction damping, and related
phenomena in a significant range of practical problems.

Part I. Physical aspects of dynamic- friClioif -. -

This portion of our study is devoted to a review of a selected body of literature, mostly
experimental in nature, that deals with the subject of dry friction on metilllic surfaces. It is
necessarily· an incomplete review."since this subject ,is an old and active one in which a large
volume of literature exists; but we. have attempted to focus on a selected sample of results that
collectively provide some basis for friction-interface models to be proposed later.

\
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2. Some properties of metallic surfaces

2.1. Prelim inaries

We begin with a quotation from Whitehouse and Archard [110]:

"All surfaces are rough. This is the starting point from which current ideas about
friction, wear, and other aspects of surfaces in contact have evolved."

It is well known that the most polished metallic surfaces are not perfectly flat. Under
magnification, one observes that these surfaces have undulations that form hills and valleys the
dimensions of which are large in comparison with. molecular dimensions. These deviations
from the plane are called asperities.

Many experimental techniques have been used to observe and mcasure the roughness of the
surfaces. Summary accounts of these techniques and references for morc detailed descriptions
can be found, e.g., in [22,67,99]. Recent developments can be found in [91]. A popular
instrument to measure surface roughness is the Taylor-Hobson Talysurf, with which the
vertical movement of a stylus moving over a representative length of the surface under
examination is amplified electrically and recorded on a moving paper chart. Since the length
traversed by the stylus is very large compared with the height of the asperities, a different scale
is used for the horizontal and vertical magnifications (see Fig. 1).

Depending on the method of production of the surface, the height of the peaks may vary
between 0.05 µm to 50 µm while the spacings betweer them range from 0.5 µm to 5 mm [86].
The average slope of the asperities is usually very .sntall, of the order of 5° to 10° [98].

Various quantities have been proposed as measures of surface roughness. For example, let

(b)

(c)

Fig. 1. Profiles of mild steel specimen after three surface treatments. (a) Surface ground only; (b) Surface ground
and then lightly polished; (c) Surface ground and then lightly abraded on 600 paper (reproduced from [42)).
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Fig. 2. Geometry or a profile.

z(x) denote the actual height of particles on a material surface about a fi~ed datum plane at a
point x on the plane (indicated in one dimension iri Fig. 2). The center-line, average of
asperity-heights over a test length L, is obviously

I fL
L 0 Iz(x)1 dx.

We can relocate this datum on the mean profile plane, and compute as roughness measures
the r.ol.s. ('root-mean-square') deviation u, the r.m.s. of derivatives u', r.m.s. of second
derivatives utI, the autocorrelation C or the power spectral density P,

[
1 JL 112

~ = L 0 z2dX] , [
1 fL - \12

u' = - Z,2 dx I ;,
L 0 .•

[If L \12
utI = L 0 Z,fl dx] ,

1 L 1 co

C(.1) = - f z(x)z(x + L1)dx = - J peA) exp(iA.1) dA ,
L 0 21T -co

peA) = L~C(L1) exp(-iA.1) d.1.

Here .1 is the delay interval and A is the angular frequency of asperities. The parameters u'
and utI are regarded as sensitive indicators of the slope of the asperities and of the degree of
sharpness at asperity peaks, respectively.

The autocorrelation fwiction of a profile C(.1) describes the extent to which (on an average)
the height at any point on the profile is correlated with the h~ight at another point
downstream. For a random signal, C(.1) declines from u2 at .1 = 0 to zero, as .1 becomes large.
The power spectral density function P (A) is the Fourier transform of C(L1) and represents the
rate of change of mean square value with frequency, where the mean square value is taken in
a narrow frequency band at various center frequencies. For this reason peA) is also known as
the mean square spectral density.

2.2. Constitution of metallic surfaces

The frictional properties; of. unlubricated metals are greatly affected by the presence of
surface films. Fig. 3 illustrates schematically the surface layers encountered on metallic
surfaces in industrial environments [77]. According to Rabinowicz, the contaminant layer may



y l. T. Odefl. l.A.C Martins, Models and computarional methods for dynamic friction phenomena

31\ I100A

10,0001.

Fig. 3. Schematic illustration of films on a metal surface (not to scalc) (rcproduced from [77]).
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be derived from a variety of sources, among them the oil drops found in industrial environ-
ments and the lubricants applied during the preparation. of the surface. When in contact with
the air, the main constituents of the adsorbed layer are generally molecules of water vapor and
oxygen. The oxide layer is produced by reaction of oxygen from the air with all metals (except
with the noble metals, such as gold and platinum, which are generally free of oxide or other
surface films). The work-hardened layer results from the heavy deformation of the metal due
to the mechanical preparation of the surface.

According to Bowden. and Tabor [23], if the preparation of the surface involved polishing at
high speeds, the surface layer may consist of a smeared 'fudge' of metal, metal oxide, and
polishing powder. Below the severely deformed layers, the metal usually shows vestigial traces
of deformation produced in earlier stages of abrasion., A schematic representation of this is
shown in Fig. 4.

~ Oxide ca 0.01 to
.' ." 0.1 micron

~ Severe deformation
1-2 microns

Polish or Beilby layer
_ 0.1 micron

'\\\\\ Gross ~eformation
5-10 mlcrons

\ \ \MinOr deformation
\ \ 20-50 microns

Fig. 4. Schematic diagram showing topography and structure of a typical polished metal specimen (reproduced
from (23)).
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3. The normal contact of metallic bodies

3./. Static contact of rough surfaces

In this section we summarize several theoretical and experimental results on the static
normal contact of rough surfaces. For the theoretical developments we follow. essentially. the
survey papers of Archard [6], Thomas [991 and Whitehouse [109]. For the experimental work
we follow, essentially, the survey papers of Back. Burdekin and Cowley [9] and Woo and
Thomas [113]. We are especially interested in answers to the following questions: What is the
stiffness of two asperity-covered surfaces when pressed against each other? What is the corresponding
true area of contact?

3.1.1. Various m ode/s of contacting rough surfaces .
Because surfaces are rough. the true area of contact is much smaller than the apparent area

of contact. As a result, the true contact surfaces may often support pressures so large that they
are comparable with the strengths of the materials of the contacting bodies. Bowden and
Tabor [22] suggested that these pressures would be always high enough to produce plastic
flow. The contacting regions would deform plastically until the true area of contact would be
just large enough to support the load. The true area of contact Ar would be then proportional
to the applied load N. With this proportionality, Ar ex N, it is possible to provide a simple and
elegant explanation of Amontons' laws of friction (see Sections 4.1 and 4.2).

Objections to the concept of plastic deformation of the asperities were put forward by
Archard [5]. According to this author, when materials'of comparable hardness rub together, a
protuberance may be plastically deformed at its first encounter with the other surface, but its
relaxation would be elastic. At its many subsequent encounters with the other surface the
protuberance would bear the same load by elastic deformation. Archard shows then that
although the simple Hertzian theory does not predict the proportionality between Ar and N, a
generalized model in which each asperity is covered with microasperities, and each micro-
asperity with micro-microasperities, gives successively closer approximations to the law Ar ex N as
more stages are considered (Fig. 5). Archard explained that the essential part of the argument
was not ·the choice of asperity model: it was whether an increase in load creates new contact
areas or increases the size of existing ones. For physically plausible surfaces any elastic model
in which the number of contacts remains constant, we find that Ar :x N2I3; but if the average
size of contacts remains constant (and its number increases) then Ar :x N. Although admittedly
artificial, Archard's models were thus very important in showing the admissibility of elastic
deformation of the asperities and the effect of the superposition upon the surfaces of asperities
of widely differing scales of sizes.

The next step came with the development of su-rface models based on knowledge gained
from the examination of the actual surface topography. Greenwood and Williamson [42], and
others, have shown that, for many surfaces. the distribution of heights is very close to
Gaussian. These authors also investigated the distribution of peak heights and concluded that it
was also close to Gaussian (see Fig. 6). The model developed by Greenwpod and Williamson
thus assumed a Gaussian distribution of peak heights (asperity heights). They also assumed
that the asperities, at least near their summits, were spherical with a constant radius of
curvature. The topography of the surface was described in terms of three parameters: u*, the

\
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a I b

c

Fig. 5. Models of surfaces containing asperities of differing scales of sizes. The relationships between the true area
of contact (A,) and the normal load (N) are: (a) A, ocN4,s; (b) A, ocN14/1S; (c) A, oc N44,4S. (Reproduced from [6].)
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standard dcviation of thc distribution of asperity heights, R, the mean radius of curvature of
the asperity tips (assumed constant in the model), and 17, the surfacc density of asperities
(later, Whitehouse and Archard [110] showed that these parameters are not indcpendent).

The deformation of the asperities was assumed to be elastic (Hertzian). The material
property required was thus the equivalent elasticity modulus of the two surfaces E', defined as

1 1- vi 1- v~-=-+-
E' EI E2'

(3.1)

where E. and E2 are the moduli of elasticity of each of the contacting bodies and VI and V2 are
the corresponding Poisson's ratios.

The results obtained using this theory, for typical values of u*, R, 17 and E' are shown in
Figs. 7 and 8. In Fig. 7, the separation h,;, is the distance between the mean planes of the
distributions of peak heights of the two surfaces. It is clear that the separation decreases
approximately proportionally to the increase of the logarithm of the normal load and that the
real area of contact is, approximately proportional to the normal load. Greenwood and
Williamson observed that the above proportionalities hold exactly if the distribution of
aspcrity heights is assumcd cxponential rathcr than Gaussian. For such a distribution, which is
a fair approximation to the uppermost 25 percent of the aspcrities of most surfaces, it is
possible to obtain closed form expressions for the relation: load-separation, area of contact-
separation and, consequently, area of contact-load. These relations are the following:

-p
Ar = V;V Rlu* E"
A

(3.2)

- -.' .
4

10

3

h*I (ja 2

10-\
N (Kg)

Fig. 7. Relation between separation and load (reproduced from [42)).
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NlKg)

Fig. 8. Relation bctween true arca of contact and load (rcproduced from (42)). nominal arca
A = 10cm1

; -------- nominal area A = I cm2
•

where p is the nominal contact pressure, A is the nominal area of contact and Ar is the real
area of contact.

Tsukizoe and Hisakado [105, 106] developed a statistical model for the contact of rough
surfaces under the assumption of plastic deformation of the asperities. They further assumed a
Gaussian distribution of surface heights and that the material displaced due to plastic
deformation could be neglected. This approach, which works well for light to moderate loads,
leads to the following relations involving load, area of contact and separation:

~ = !erfc (Ji:)'
Ar 1 (1 h)
A = 2 erfc vi a '

Ar=.!!....
A H

(3.3)

Here the separation h is the distance between the mean planes of the distributions of surface
heights (see Fig. 9), and H is the indentation hardness. (H = applied load/permanent in-
dentation area when a hard indenter is pressed into a 'flat' surface.)

Some of the limitations of these early statistical models of elastic or plastic contact have
been successively overcome by more sophisticated models proposed by other authors.

Whitehouse and Archard [110] used the fact that, if a surface profile is of a random type,
then it can be defined completely (in a statistical sense) by two characteristics: the probability
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Fig. 9. Separation and penetrating approach between a rough and a flat surfacc. ------- current mcan linc of lhe
rough surface; ------- mean line of the rough surface at the beginning of contact; h current separation; ho
separation at the beginning of contact; a = ho- h penetrating approach.

density of the height distribution and the autocorrelation function, More recently, Whitehouse
and Phillips [111, 112] have generalized the previous model in order to incorporate a general
autocorrelation function C(L1)and in order to have a fully 2D surface model (rather than a 10
profile model).

An alternative model was developed by Nayak [68]. In his model, the height of a rough
surface z = z(x, y) is considered to be a two dimensional random variable, the cartesian
coordinates x and y being the independent variables, The essential differences between this
model and those of Whitehouse et aI. are the following: this model is based on continuous
(rather than discrete) properties of random waveforms and uses the power spectral density
function (rather than the autocorrelation function), In this paper Nayak also emphasized the
distinction between the statistics of the surface and the statistics of a profile of the surface,
This author then shows how the higher-order surface statistics of interest can be correctly
obtained from the parameters u, u' and u" (Lm,s, values of z and its first and second
derivatives, respectively) of a single profile, for Gaussia,n isotropic surfaces,

Bush, Gibson and Thomas [26] developed a model bas'ed on Nayak's random surface theory
with the additional assumption that the cap of each asperity is replaced by a paraboloid
having the same height and principal curvatures as the summit of the asperity. The asperity
deformation was assumed to be elastic (Hertzian). The authors conclude that for large
separation the contact area is proportional to the load and for smaller separation the
proportionality is only approximate. The normal stiffness becomes vanishingly small at large
separations and, at constant separation, the stiffness is proportional to the load. Also the
stiffness is inversely proportional to the square of the r.m.s. roughness. The explicit relations
obtained, for large separation, h, are the following:

Ar = V;.!!...
A u' £'

(3.4)

where S is the normal stiffness per unit area of contact.
O'Callaghan and Cameron [69], using a model with some features in common with the

previous one, obtained results (also for elastic contact) that are qualitatively analogous to
those of previous authors: approximate proportionality between real area of contact and
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normal load and also approximate proportionality between separation and minus the logarithm
of the load.

Other authors have also modeled conditions on the contact that are more complex than a
simple elastic or plastic deformation of the asperities. Mikic [65] modeled elasto-plastic
conditions. He assumed that the real contact pressure is equal to the lower hardness of the
<;ontacting materials and that the total deformation of each asperity is the sum of elastic and
plastic deformations produced by that pressure. Analogous assumptions were later used by
Ishigaki et aI. [48] to model loading-unloading situations. Work-hardening of the asperities
was first considered by Halling and Nuri [44]. Work-hardening and the mechanics of
unloading-reloading were incorporated in the model of Francis [39].

3.1.2. The mode of deform ation-plasticity indices
While many elastic and elasto-plastic models of surface response to normal loads have been

proposed, the question of what circumstances dictate the use of an elastic or a plastic
representation remains central. In particular, when can plastic deformations be expected to be
sufficiently large to be a necessary ingredient in a reasonable model of surface behavior? In an
attempt to resolve this question, several authors have proposed parameters to indicate which
mode of surface deformation may be dominant in various situations.

Greenwood and Williamson [42] used their model of the surface topography to study the
limits of the elastic deformation of rough surfaces. Although their model assumed elastic contact,
they used it to study the early stages of growth of plastic contact areas with increasing load.
The criterion for the initiation of plastic flow at the aspt1rity level was based on the analysis of
ball indentation tests. The criterion for the limit of elastic behavior of the contacting surfaces
was based on the ratio: plastic area of contact/total area of contact. For values of this ratio
greater than around 0.02, the surfaces can no longer be considered to behave elastically.

These authors found that a nondimensional parameter could be defined which predicts the
mode of deformation of the surface over very wide ranges of loads. This parameter is the
so-called plasticity index,

1/1 = E' /u*
H VIi'

...
When 1/1 is less than 0.6, plastic contact could be caused only if the surfaces were forced

together under very large nominal pressures; when 1/1 is greater than 1.0 plastic flow will occur
even at trivial nominal pressures. The load has thus little effect on the mode of deformation of the
surface. The essential factors are the material properties (E/H) and the surface finish (U*/R)I/2.
For most engineering materials and surface finishes I/J> 1. We can conclude that during
the initial contact of these surfaces the deformation will be mainly plastic even at the lightest
loads.

The repeated loading-unloading-loading of the metal surfaces, as in normal sliding or in
metal/ographic polishing, wil/ produce changes in the shape of the asperities (decrease of 0'*/ R)
and the deformation will become elastic. It ,turns out that over a wide range· of experimental
conditions the real contact pressure on the asperities becomes of the order of 0.1H to O.3H
[96]. However, Greenwood and Williamson [42] observed that the wear debris procedure in
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Fig. 10. Effect or continued sliding on the plasticity index. The behavior of three mild steel specimens slid against a
stainless steel woven grid at 100cm/s under loads of 1.5kg. (Reproduced from (42).)

sliding can rcversc this trend and, by damaging the surface, can prevent I/J from reaching the
elastic range.

The effect on the plasticity index I/J of the continued sliding of two metal surfaces, under
conditions which prevented severe wear damage of the surfaces, is shown in Fig. 10, which is
due to Greenwood and Williamson [42]. In this figure the decrease of I/J down to values which
correspond to an elastic normal deformation of the asperities is easily observed. Several other
such indices have been proposed by other authors, and we mention as typical those in the
papers of Whitehouse and Archard [110], Onions and Archard [71], and Mikic [65].

A simplified ~nalysis of Tabor [95] based on the indices proposed by Greenwood and
Williamson [42] and Whitehouse and Archard [110], showed that a critical geometrical factor
in the transition from elastic to plastic deformation of a rough surface is the average slope of
the asperities.

3.1.3. Some experimental results
Early experimental results on the stiffness of contacting surfaces and their real area of

contact can be found in [55]. Kragelskii [55] refers to the work of Sokolovskii [88], Bobrik [17]
and Votinov [108] who proposed a relationship between th'e approach (a) and the nominal
pressure .(p) of the form

a= Cpm +K" (3.5)
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Fig. I I. Real area of contact VS. pressurc for differcnt mctals in contact with a glass prism. (I) lead; (2) cadmium;
(3) magncsium; (4) aluminum; (5) coppcr; (6) stcel 10. Maximum height of surface asperities: 40 µ. (Reproduccd
from (55}.)

where C, m and K are constants determined experimentally. According to Sokolovskii, these
constants are usually In = 0.3-0.5 and K = O. Fig. 11, also from [55), illustrates the experimen-
tal relationship bctween the real area of contact .~Ar) and thc nominal pressure (p) for
different metals in contact with a glass prism. It can be seen that some of the curves obtained
depart appreciably from linearity. According to Kragelskii, the relationship may only be
considered linear at low pressures or for materials which do no work harden appreciably.

Important sources of experimental results on the contact of metallic surfaces can be found
in the literature devoted to the design of machine tools. The research of several workers who
studied the stiffness, damping, friction and wear characteristics of fixed and sliding joints has
been summarized in a paper by Back, Burdekin and Cowley [9]. The essential conclusions
related with the stiffness of contacting surfaces are the following:

(1) For low nominal pressures, characteristic of sliding connections, no plastic deformation was
observed and the approach-normal load relationship is of the form of (3.5) with K = 0 and
with m having values in the range m = 0.32-0.5, in perfect agreement with the observations of
Sokolovskii mentioned above.

While these authors' reference to 'no plastic deformation' represents a mild contradiction to
those results described earlier, a study of available discussions of the experimental set-up
indicates that some rubbing of the surfaces may have been done prior to the experiments in -
order to obtain reproducible results (e.g. [34]).

(2) For higher nominal pressures, characteristic of fixed ~r bolted connections, the general
behavior to be expected when successive loadings and unloadings of the surfaces are
performed, is shown in Fig. 12. It is clear that the total approach of the sl.{rface has an elastic
and a. plastic component and that (if the joint orientation is not disturbed) the unloading and
.reloading paths, are practically coincident. For these elastic paths, Connolly and Thornley [28]
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Fig. 12. Penetrating approach due to successive loadings and unloadings of a metal surface (reproduced from [29]).
TIle experimental values a contain the deformation of the surface asperities (penetrating approach) and some
deformation of the solid material in the neighborhood of the interface.

proposed the following relationship between the approac,h and the normal load:

1
a = BIn p+ Q, (3.6)

where Band Q are constants.
Tables with experimental values of the constants C and m in (3.5) and B in (3.6) can also be

found in [9] together with the corresponding ranges of validity.
The elastic stiffness of the surface per unit area (S) is thus given by

dp p(1-m)

S=-=-
da mC

when (3_5) is used, and by

S=Bp

(3.7)

(3.8)

when (3.6) is used. It was also found experimentally that for mild steel specimens with shaped
or turned surfaces the constant B is inversely proportional to the surface roughness in c.I.a.
Consequently, the stiffness (3.8) is inversely proportional to the surface roughne.ss.

In recent years, rµuchexperimenta\.work has been done to test the statistical models of the
surface geometry and con tact. The essential conclusions of a survey paper of Woo and Thomas
[113] are the following:
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Fig. 13. Bearing area ratio vs. dimensionless load. Least squares straight line obtained on the basis of the
cx~rimental results of 6 different papers by various authors. (Reproduced from [113).)
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Fig. 14. Dimensionless separation.vs. dimensionless load. Regression line obtained on the basis of the experimental
results of 7 different papers by various authors. (Reproduced from [113].)

(i) The bearing area ratio (ArIA) increases as the 0.8 power of the dimensionless load
(pIH) up to values of pIH of the order of 0.1 (see Fig. 13).

(ii) The dimensionless separation (h!er) decreases proportionally to the increase of the
logarithm of the·dimensionless'load (pIH) (seeFig~ 14): ' ..-,' . ./ ..

3.1.4. Conclusions
Since the assumptions on the roughness of the surfaces and their mechanical behavior are

different, the relationships involving area of contact, load and separation .derived from the
models descriiJed e~rli~r are. also·different and, in some cases, difficult to compare. However,. .
comparing the theoretical predictions of those models with the experimental results presented
above, some broad conclusions can be drawn. We summarize them as follows:
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Oil the mode of deformation of metal surfaces:
(i) Tht; essential factors affecting the mode of deformation of a rough surface are the

material properties (E', H) and the surface finish. The normal load is expected to have little
effect on the mode of deformation of the surface.

(ii) For most engineering materials and surface finishes the initial contact of the
surfaces is expected to be plastic even at light loads.

(iii) The repeated loading-unloading-reloading of the metal surfaces, as in normal sliding
or in metallurgical polishing, produces changes in the shape of the asperities, which lead to a
subsequent elastic deformation, provided that severe wear is prevented during ~he process of
sliding.

On the stiffness of compressed rough surfaces:
(iv) At small penetrating approaches (large separations) the stiffness of rough surfaces

becomes vanishingly small.
(v) The stiffness of a surface is inversely proportional to its roughness.

(vi) The normal load increases roughly as an exponential function of the penetrating
approach (the separation decreases proportionally to the increase of the logarithm of the
load).

(vii) For light loads, because of (iv), the normal load is closely proportional to a power, in
the range 1/0.5 to 1/0.3, of the penetrating approach.

(viii) For the same normal load the stiffness during the first loading is smaller than the
stiffness during unloading or reloading, due to the plastic deformation which occurs during the
first loading.

On the real area of contact: '.
(ix) Most of the statistical models developed predict, for both elastic and plastic contact,

an exact or an approximate proportionality between real area of contact and noimalload.
(x) Experimental results show that, often, the real area of contact increases with a power

of the normal load which is slightly smaller than one, even for light loads.
A definitive precise conclusion seems difficult due to the absence of a really satisfactory

method for the experimental determination of the real area of contact - a fundamental
difficulty pointed out by Tabor (98].

3.2. Dynamic contact of rough surfaces

In Section 3.1 we presented a review of theoretical models and experimental results on the
static contact of rough surfaces. Our purpose in this section is to determine whether or not the
conclusions drawn for the static deformation of rough surfaces can be expected to hold for
dynamic situations. We are only interested in dynamic situations for which no bulk plastic
deformation of the metallic bodies occurs. In the following we describe experimental obser-
vations of two phenomena for which the above criterion is satisfied: the low velocity impact of
metallic bodies and the dynamic response (to a sinusoidal excitation) of metallic bodies
compressed together with some preload.

The problem of the impact of two elastic bodies (two spheres or a sphere and a massive
body) with relative velocity before impact smaller than the critical velocity required to initiate
plastic deformation, has been studied by several authors on the basis of the Hertz theory of
impact (see [60]). It has been observed [59] that the predictions of this theory for the time of
contact of a steel sphere with a polished face of a mild steel block is given, with good accuracy,
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by the Hertz solutian (even up to velocities of impact that are eight times larger than the
critical velocity corresponding to the onset of plastic defarmatian in the block). On the other
hand, the Hertz theory does not predict any energy dissipation and, consequently, for
velocities af impact smaller than the critical velocity mentioned above the velocity of rebaund
would be expected to equal the velocity of impact, i.e., the caefficient of restitution

e = VrlVo (3~9)

would be expected to equal unity (in (3.9) Vo and Vr are the absolutc values of the velocities af
impact and rebound of the sphere, respectively).

However, the above predictions are not confirmed experimentally. Coetlicients of restitu-
tian of the arder 0.90-0.95 (energy lasses af the order 10-20 percent) are reported by Hunter
[47] for collisions between ball bearings and steel blocks and coet11cients of rcstitution of the
order 0.985 (energy losses of the order 3 percent) are reported by Tillet [102] for steel balls on
glass blacks. These discrepancies between the theory and the experimental observations
prompted several authors to study the possible sources of energy dissipation. Hunter [47]
estimated the energy lost by the impacting ball due to. the excitation of elastic vibrations an
the massive body subsequently to the impact. Jenckel and Klein [49), and Tillet [102)
correlated the energy lost by the impacting ball with the energy dissipated in the block due to
internal friction.

It was concluded that the effects considered above, together with surface frictian, air
damping, etc., were sufficient to explain the small losses obscrved in the impact of the steel
balls on glass blocks. However, the same was not truc Jor the case of steel blocks. Lifshitz and
Kolsky [59] then investigated the possibility of those losscs being the result af local plastic
deformatian of the steel block - flattening of microscopic protuberances (asperities). To.
investigate this, measurements of caefficients af restitution of steel balls impacting on mild
steel blocks with different surface finishes were carried out. Those authors found that with
blocks with finely. ground surface finish.es the cqefficients of restitution were very scattered and
never exceeded 0.82; for surfaces polished with very fine emery paper the results were much
less scattered and a maximum value of 0.87 was obtained; for a highly polished surface (highly
reflecting mirror finish) the coefficient of restitution was faund quite consistent at 0.95. Lifshitz

. and Kolsky . thus conclude that· the coefficient. of restitution is very sensitive to the surface
finish and that, probably, further polishing would produce higher values of e, closer to the
theoretical predictions.

We note that these observations on the effect of the surface roughness on the rebound of
metallic bodies can be easily predicted, at least qualitatively, from the models discussed in
Section 3.1. We recall that far most engineering surface finishes and materials the plasticity
index'~ssumes values'which correspond to a plastic deformation of the asperities, upon first
loading, for a wide range of normal loads. This obviously leads to important energy dissipation
which contributes, in the manner experimentally observed, for the low values of coefficient of
restitution. In particular, for mild steel (the material of the blocks used by Lifshitz and Kolsky)
the model of Greenwoad and Williamson [42] predicts that only far a higWy polished surface
and small loads, can the deformatian of the asperities be essentially elastic (see Fig. IS, due·to
Tabor [96]). We can thus conclude that Greenwood and Williamson's model allows for an
interpretation of the experimental results which corroborates the conclusions of Lifshitz and
Kolsky.
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Experimental results of more quantitative nature on the dynamic characteristics of metallic
surfaces were provided by Andrew, Cockburn and Waring [2]. In their experiments the
annular interfaces of several mild steel discs compressed together with some preload were
subjected to a normal harmonic force. From their dynamic response, the stiffness and damping
of the interfaces was evaluated for different dimensions of the apparent area of contact,
surface finishes, and for various values of the normal preload. Although some of their
experimental results (influence of apparent area of contact and roughness on the stiffness)
cannot completely be interpreted from the static contact results, other results are clearly
similar to those observed in the static case. The linear dependence of the stiffness on the
normal load and the (small) difference between the initial loading and unloading stiffnesses,
shown in Fig. 16, could be predicted from (3.8) and Fig. 12, respectively, obtained experi-
mentally for static contact. .

Although the experimental evidence available is not abundant, we think that the facts
collected in this section suggest clearly that the dynamic behavior of most rough surfaces is
consistent with the stiffness characteristics analyzed in detail in the static case.

4. Dry sliding friction of metallic bodies

4.1. Classic laws of friction

When two metallic bodies in contact are subjected to applied forces which tend to produce
relative sliding motion, friction stresses develop on" the interface that tend to oppose that
motion.

In the following only the resultants of the stresses on the contact surface will be considered:
N, the compressive normal force and F, the friction force. The metallic bodies are considered
essentially as rigid bodies with a well defined tangential relative velocity UT'

According to Moore [67], the classic laws of friction, as they evolved from early studies in
the past centuries, are the following:

(i) The friction force (at the onset of sliding and during sliding) is proportional to the
normal contact force,

IF\=µ.N. (4.1)

The coefficient of proportionality, µ., is known as the coefficient of friction. Often two values
of µ. are quoted: the coefficient of static friction, µ's, which applies to the onset of sliding and
the coefficient of kinetic friction, ILk, which applies during sliding motion. _.

(ii) The coefficient offriction is' independent 'of the apparent area of contact.
(iii) The static coefficient is greater than the kinetic coefficient.
(iv) The coefficient of kinetic friction is independent of the sliding velocity.
Another important characteristic of the friction force is the following [77]:
(v) When tangential motion occurs, the friction force acts in the same direction of the

relative velocity but in opposite sense,

(4.2)
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TI1C first two laws, usually known as the Amontons' Laws of friction, arc generally observed
to hold for gross motions of effectively rigid bodies. However, we notice that deviations from
the first law have been rcported at various circumstances: an increase of the coefficient of
friction for light loads [23], or an in'crease of friction for loads greater than a fairly wcll defined
value which corresponds to the breaking of the oxide films on the surface [23] or yet a
decrease of the friction coefficient for very high loads when the true area of contact
approaches the magnitude of the apparent area of contact and bulk plastic deformation of the
bodies in contact occurs [12].

The third law derives from classical experiments [38]: if a body rests in equilibrium on an
inclined plane and the inclination of the plane is slowly increased up to the angle at which the
sliding initiates (this anglc is known as the angle of static friction O. = tan-I µ.) it is often
observed that, when the motion starts. it starts abruptly and the body acquires a large velocity
in a short time. If the kinctic friction force were equal to.the maximum static friction force, the
slippage down the inclined plane, at the critical angle Os, would be infinitely slow, since no
source for tangential acceleration would cxist. The source for the observed acceleration is thus
the difference between the maximum static friction force (µ.N) and the kinetic friction force
(µ.kN). The stick-slip phenomenon discussed in Section 5 is also intimately associated with this
law .

The fourth law is now known to be invalid. A large volume of experimental data and
empirical formulas for thc variation of the friction coefficient with sliding velocity can be
found, e.g., in [55,67]. However, as notcd by Rabinowicz [77], for many purposcs in which
only limited velocity ranges are of interest, the kinetic friction coefficient may be taken to be a
constant independent of the sliding velocity. :'

Also according to Rabinowicz [77], the fifth law has been, esscntially, confirmed by
experiment: for surfaces without pronounced directional properties, the instantaneous friction
force may fluctuate by a degree or so from its assigned direction, changing direction
continuously and in random fashion as sliding proceeds.

4.2. The origins of friction - A brief review

In this section we present a summary account of the theories that have been proposed to
expiain the origins of the friction force. Detailed historical accounts and thorough discussions
of these theories can be found in [23, 35, 55, 56].

4.2.1. The early theories of friction
Many of the early theories of friction, developed during the eighteenth and nineteenth

centuries, attempted to explain the frictional behavior in terms of the surface roughness and
the interlocking of the surface asperities. It was thought that the sliding of two contacting
bodies involved the riding of rigid asperities of one surface over the other. If the average
asperity angle is 0 the coefficient of friction would be equal to tan 0 and consequently it would
be independent of the load or the size of the contacting surfaces. This provided an explanation
for the Amontons' laws:' The' assumption 'that the' asperities 'on one' surface could traverse the'
gap between asperities on the other provided an explanation for the fact that often the kinetic
friction is smaller than the static one. According to Tabor [98], the main weakness of this early
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work on friction [1,30,38] is that basically the models proposed are non-dissipative and
friction is cerlainly a dissipative process - a critique which was first cxpressed by Leslie [58].

4.2.2. The adhesion-plowing theory
A substantialIy different explanation for the friction phenomena was provided by Bowden

and Tabor. Their theory (reviewed in [22,23.94,96,98] .has been the most widely accepted in
recent decades among the researchers of solid contact phenomena. The interfacial friction
betwecn metallic bodies is attributed essentially to two causes: the formation and shearing of
metallic junctions between the surface asperities and the plastic deformation of the softer
surface by hard asperities. As a consequence, the friction coetlicient can be given as the sum of
two components resulting from each of the above effects,

(4.3)

where µa results from the adhesion (welding) and µp results from the plastic deformation
(plowing).

The adhesion component of friction. As noted earlier, Bowden and Tabor [231 assume that
when two clean metal bodies are put in contact, plastic flow at the tips of the asperities and
local welding between opposing asperities occur. TIle true area of contact is then proportional
to the normal load,

A,= NIH. (4.4)

Here H is the hardness of the softer of the contacting materials.
Neglecting the contribution of plowing, the friction force is then equal to the force Fa

required to shear the junctions formed in the manner described above. If Tj is the average
shear strength of the junctions, then

Fa = ArTj = (Tjl H)N,

or, dividing by N,

µa= TjIH.

Due to plastic yielding and work-hardening, the interface between welded asperities is as
strong or probably stronger than the undeformed material in the hinterland. For this reason,
the average shear strength of the junctions (Tj) can be assumed to be equal to the shear
strength of the softer of the contacting materials (T). Consequently,

(4.5)

The Amontons's laws of friction are then verified: the friction force is proportional to the
normal load and independent of the apparent area of contact. •

For most .materials, T is of :the·.order·of O.2H so that, for this simplified model,

µa=0.2.
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However, for clean metals enormous values of µ. may be obtained and even for metals in air
µ. may b~ of the order unity.

According to the same authors, this discrepancy can be overcome if the plastic junction
growth due to combined normal and tangential loading of the asperities is considered. The
yield criterion assumed for this situation is of the form

(4.6)

where pr and Sr are the normal and tangential stresses at each asperity, i.e., the average true
stresses on the true area of contact and a is a constant of the order 10.

The above criterion predicts that when an asperity, initially in pure normal contact, has its
tip plastically deformed,

pr= H.

When a small tangential stress Sr is applied, further plastic flow will occur. However, although
the newly added stress is tangential, the normality rule dictates that the initial plastic
movement will be a normal approach and, because of the shape of the asperity, it will lead to
an increase in the area of contact. As Sr is increased, the plastic displacements will become
more nearly tangential.

If Ao = NIH is the initial true area of contact, due to the normal load alone it can be shown
from (4.6) that the equation governing the increase of the true contact area with the tangential
load is

(4.7)

~-...
With real surfaces in air this process of junction growth is terminated due to the presence of

the contaminant layers which are weaker than the bulk material. If Tj = KT (with K < 1) is the
critical shear stress of these interface films, the junction growth terminates when the tangential
stress on the interface reaches the value Tj; then gross sliding occurs. From (4.6) sliding occurs
when

The adhesion component of the coefficient of friction is then

ArTi 1
µ'a = ArPr = a 1/2(K-2 - 1)1/2 . (4.8)

Fig. 17 correlates the tangential force coefficient cp. = Fal N with the growth of the true
contact area Arl Ao for different values of K. It can be seen that:

(i) For K-+ 1 µ.. -+ 00; this corresponds to perfectly clean ~surfaces of very ductile metals,
where junction growth goes on indefinitely.
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Fig. 17. Growth in arca of contact for different values of K (rcproduced from [23]).

(ii) A very small amount of weakening of the interface (say, K = 0.95) reduces the
coefficient of friction to reasonable values (of the order unity).

(iii) For a very weak interface (say, K <:0.2) the junction growth is very small; this situation
corresponds to the presence ofa good boundary lubricant or a thin film of a softer metal; for this
case µ. can be written with sufficient accuracy as

and using (4.6),

(4.9)

which is formally analogous to (4.5).
We wish to point out that the theory described above not only gives an explanation for the

Amontons' laws of friction, but also allows for interpretations of the other classic laws (Section
4.1). Following arguments of Rabinowicz [74,77], the static friction is often greater than the
kinetic one because the strength of the junctions would increase with the time of stationary
contact (we will discuss this point in Section 5.1); the weak dependence of the friction force on
the sliding velocity would be a consequence of the small rate dependence of the strengths of
most solids; the opposite directions of friction and sliding velocity would be a consequence of
the plastic deformation of the isotropic material on the contact.

We also point out that all the theory is based on the proportionality Ar ex N (d. (4.4». We
recall, from Section 3.1., that the assumption of plastic deformation of the asperities is not
essential to obtain this proportiomility. Consequclitly, arguments similar to those presented
earlier can also be used to explain Amonton's laws in the case of ~Iastic deformation of the
asperities. On the other hand, deviations from the proportionality Ar ex N, would lead to
deviations from the Amontons' laws.

Finally, we note that in recent years an extensive effort has been dew;}ted to the under-
standing of-the physical nature of·the interfacial bonds between metallic bodies and the factors
that may influence the existence, strength and persistence upon unloading of these bonds
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Fig. 18. Plowing component of friction for a cone sliding on a softer metal,

(mutual solubility of the metals, ductility, roughness, surface films, etc.). Reviews of these
developments can be found in [63,97,98].

The plowing component of friction. The plowing component of the friction can be estimated
using the simplified model of a hard conical asperity grooving on a softer surface, as shown in
Fig. 18. Assuming that the plastic-yielding metal is iSG!ropic, the plowing component of the
coefficient of friction, µp, can be shown to be

2
µp = - tan ().

7T
(4.10)

Due to the small slopes of the asperities, this expression leads to values of the order of 0.07
(for'() = 5°) to 0.14 (for () = 10°). As a consequence of these small values, the contribution of
the plowing component of friction will be negligible unless the adhesion is small.

4.2.3. Recent theories
Despite the wide acceptance of the theory described above and its effectiveness in

explaining the basic laws of friction, several serious criticisms have been offered and some
alternative theories have been proposed, especially in recent years.

Some of the criticisms [14] result from the fact that, in the air, most of the solids are covered
with various films which prevent atomic contact between the bulk materials of two contacting
bodies. As a consequence, the force required to pull apart two contacting bodies is, in daily
life, zero (if gravity is compensated). Furthermore, according to Bikerman, the formation of
adsorbed layers in the air is so fast that all the effects associated with sliding are comparatively
slow. From these facts and the critical review of several experimentaJ observations on
adhesion and friction, Bikerman [14] concludes that the importance of the adhesion in
frictional phenomena is negligible, as long as the term friction is used in the sense of a force
which, for a given path, is reproducible and is a definitcfunction of the normal load.
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Other alternative theories have been developed by authors who are especially concerned
with the el!0lution of the friction force during prolonged sliding and with the interaction
between friction and the wear damage of the surfaces. In the following we summarize some of
the more elaborate theories that have been proposed. Our purpose is only to exemplify the
type of ideas which have been advanced: a renewed interest on the interlocking effects of the
roughness, now associated with plastic deformation - plowing by hard asperities and entrapped
wear particles and deformation of the asperities and of the subsurface layers.

Rigney and Hirth [80] developed a new model to explain the origin of friction during the
steady-state sliding of metals. This steady-state sliding is the advanced stage of sliding during
which a near surface micro-structure of the type indicated in Fig. 19 (developed during the
initial break-in stage) remains constant. In particular, the average thickness of the highly
deformed region with cell structure, remains constant" during the steady-state sliding. With the
assumptions that the frictional force arises from plastic. deformation in the near-surface region
and that most of the deformation work is confined to the cell region. those authors equate the
work of the friction force to the work of deforming plastically the subsurface volume and
obtain an expression for the friction coefficient.

Kuhlmann-Wilsdorf [57) proposcs the modification of the adhesion theory of friction to
include the interlocking effect due to the micro-roughness supcrimposed on the hills and tops
of the asperities. This micro-roughness is thought to be due to inhomogeneities in the ncar
surface deformations and its importance during sliding is suggested by its persistcnce during
the sliding process and by the observation of micro-grooves on the wear tracks. The same
author analyzes the importance of the adhesion during sliding and concludcs that only for very
smooth surfaces (average slopes ~ 0.9°) the adhesion -'\'ill be strong. A detailed analysis of the
plastic deformations in the subsurface material, using concepts of the theory of dislocations, is
then presented and quantitative expressions for friction and wear are proposed.

Suh and Sin [92] offered the following explanation of the genesis of friction: 'The
coefficient of friction between sliding surfaces is due to the various combined effects of an
asperity deformation component µd, a component µp from plowing by wear particles and hard
surface asperities and a component µa hom adhesion between the fiat surfaces. The relative
contribution of these components depends on the condition of the sliding interface, which is

o
~%<
~.D- •
3 ~<c.~

I ; •.•. .' \'

Fig. 19. LOllgitudinal scction or a wear specimen. The curved lines indicate strain and the arrow indicatcs the
sliding direction (reproduced from [80]).
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affected by the history of sliding, the specific materials used, the surface topography and the
environment."

The asperity deformation coefficient JLd is expected to be very important at the onset of
sliding (static coefficient of friction) and is also expected to contribute for the steady-state
sliding if new asperities are continuously generated as a consequence of wear; JLd is not
expected to contribute significatively in early stages of sliding. High values for the plowing
component JLp are associated with two identical metals sliding against each other with deep
penetration by wear particles while low values are obtained either when wear particles are
totally absent from the interface or when a soft surface is slid against a hard surface with a
mirror finish. The component µp is expected to contribute continuously during the sliding
process and its contribution is expected to increase when, due to wear, the number of particles
entrapped between the two surfaces increases. The low values for the adhesion component JLa
are associated with the sliding of well lubricated surfaces and high values with identical metals
sliding against each other without any contaminants or oxide layer; JLa is expected to be zero
(or negligible) at the onset of sliding due to the presence of contaminants. With the
deformation of the asperities and the exposure of fresh new surfaces, the adhesion is expected
to increase.

The history dependence of the friction force is then the consequence of the evolution of the
variables that, respectively, affect the components µd, µp and JLa of the friction force: the
roughness, expressed by the average slope of the contacting asperities, 0; the ratio of the
width of asperity penetration to the diameter of the particle, w/2R; and the interface shear
strength factor TilT which is the ratio of the interface shear strength to the shear flow strength
of the softer contacting material, '

JL = JL(O, w/2R, TJT) .

4.3. Some remarks on friction and plasticity theory

(4.11)

Although specific details may differ (significatively ... ), most current theories of the origin
of friction single out plastic deformation on the contact neighborhood as a major phenomenon
associated with the frictional sliding of metallic bodies. On the other hand, the model of a
particle sliding with friction on a surface is often presented as a prototype of plastic behavior.
A question which then arises is why classical plasticity theory has not been applied successfully
to friction problems (viewed as boundary plasticity problems).

One reason for this has been pointed out by several authors (e.g. Drucker [36], K1arbring
[54], Michalowski and Mroz [64], Sanchez-Palencia and Suquet [85]): The sliding rule dictated
by the Coulomb's law of friction is /lot an associak:d flow rule as defined in the Classical
Theory of Plasticity. In particular, a pointwise version of Coulomb friction is encompassed in
the relations (see [73])

JUTI ~µIanl, an ~O,

lh= 0 if IUTI <JLlanl,

-UT= AUT if JUTI = JLld"l, A ~O.
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Here zh is the tangential sliding velocity at a point on the contact surface, Un is the normal
stress (the 'cQntact pressure'), A is a real number, and O"T is the tangential stress vector (the
frictional stresses). (Thus, Un corresponds to Nand O"T to F in the classical rigid-body case.)
Thus, one can define a slip surface, such as that shown in Fig. 20, in the spirit of a yield surface
in plasticity, such that contact stress states on the surface correspond to states at which sliding
occurs. Since - zh = AUT on this surface, classical friction does not satisfy the classical
normality rule. And, therefore, most of the standard arguments of classical plasticity do not
have a straightforward extension to frictional phenomena (unless the normal forces on the
contact boundary are known a priori, in which case the frictional forces are essentially
derivable from a convex dissipation functional (see [37])).

We observe that the theory of Bowden and Tabor [23] suggests a way to analyze friction
contact problems in terms of the classical (associated) plasticity theory. The yield criterion
(4.6) can be rewritten in terms of the nominal normal and tangential stresses in the following
way:

where (j = AriA E [0,1] is the bearing area ratio. In the above equation (j plays the role of a
hardening (softening) parameter, which can make the yield surface shrink to the point p = 0,
s = 0 if there is loss of contact «(j = 0).

Similar ideas were also proposed by Michalowski and Mroz [64] who included an additional
hardening parameter to describe the contact hardening due to tangential sliding. However,

Fig. 20. The slip-surface corresponding 10 Coulomb's law for which the normality rule is clearly violated.
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these authors assume that the elastic part of the contact deformation is linear which, as seen
earlier, does not apply to rough metallic surfaces.

IndepenClently of the difficulties that might be encountered in trying to usc the theories of
Bowden and Tabor [23] or of Michalowski and Mroz [64] in continuum models for quan-
titative purposes (and Bowden and Tabor [23] advise readers not to try to push their theory too
far), it seems that their essential applicability would be to quasistatic friction problems (which we
calIed Type I in Section 1).

The recent theories mentioned in the end of the previous section are not of much use for us
here either, since it is not our final goal to analyze the effects of prolonged sliding and wear on
the friction phenomena.

We still have to look for further experimental evidence on the transition between static and
kinetic friction before we can try to develop a model for computational mechanics.

S. Static and kinetic friction. Stick-slip motion

5.1. The initiation of sliding .

5.1.1. Preliminary micro-displacements
The classic laws of friction described in Section 4.1. dictate that, at the onset of sliding, the

friction force is equal to the (static) .coefficient of friction times the normal force. However,
this law is valid only in a macroscopic sense, since, before macroscopic sliding is observed,
some preliminary micro-displacements occur at lower' force levels. Several experimentors have
studied the evolution of these microdisplacements when the bodies aresubjectcd to increasing
tangential forces. References for these works can be found in [23].

Typical experimental curves of the tangential force coefficient <I> = FIN versus the tangential
displacement UT, obtained by Courtney-Pratt and Eisner [31], are shown in Fig. 21. Courtney-
Pratt and Eisner [31] also measured the electrical conductance of the contacting surfaces
during their experiments. Neglecting the conductance of surface films, the increase in conduc-
tance clco is related with the increase in the true area of contact ArlAo according to

Fig. 21. Tangential microdisplacements due to successive loadings - unloadings. Platinum surfaces. Normal load
N = 920 g. (Reproduced from [31}.)
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Fig. 22. The irreversible part of the tangcntial displacemcnl. Platinum surfaccs. Normal load N = no g. 0
Observed displaccments UT whilst the tangcntial forcc is applicd .• Rcsidual displaccmcnts u~ obtaincd by
subtracting from the observcd displacements UT. thc clastic displacements (deduced from the cxpcrimcntal rcsults
of Fig. 21), --111eoretical clastic displacemcnts computcd assuming that they rcsult from clastic distortion of thc
slider according to the equation UT= [(2- v)/4Gr]F due to Mindlin [601 wherc G = modulus of rigidity and
v = Poisson's ralio. (Rcproduced from [23], afler cxperimental rcsults of [31).)

c (A 1/2

Co = A)
.. Using this expression, a comparison of the experimcr'ltal results with the prcdictions of (4,7) is

given in Fig. 23.
An important point made clear by Ihe experiments of these authors was the nature of the

preliminary displacements. As shown in Figs. 21, 22, these displacements are essentially
irreversible (plastic). The origin of the elastic component was not clear for the authors who
were not able to separate it into the elastic deformation of the specimen and that of the

0,6

0·4

o

Fig. 23. Tangential force coefficient versus real area of contacl. Platinum surfaces: 0 clean; • lubricated. The full
line is the theoretical curve plotted according to (4.7) with a = 12. (Reproduced from (31}.)
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Fig. 24. Creep sliding. Steel on indium, clean; normal load N = 300 g; tangential force F = 200 g (constant). (a)
Displacement as a function of time; (b) Sliding velocity as a function of time. (Reproduced from (25).)
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apparatus. Bowden and Tabor [23], analyzing the same experimental results of Courtney-Pratt
and Eisner, attribute that elastic component to bulk elastic distortion of the slider. On the
other hand,' the fact that the plastic component of the displacement (u~) satisfies du~1 d¢ = 0
at ¢ = 0 strongly suggests that when the tangential force begins to be applied the plastic
deformation of the asperities is normal (rather than tangential) exactly as predicted by the
junction growth theory of Bowden and Tabor.

5.1.2. Creep sliding
In all the experiments mentioned above, whether with hard or with soft metals, Courtney-

Pratt and Eisner observed that the micro-sliding of the specimens continued for long periods
of time after each increment of tangential force was applied. For example, with the soft metal
indium, at th,e end of half an hour the rate of movement could be 2 x 10-6 cms-1

• For harder
metals, after a fcw minutes, the movement was imperceptible.

Burwcll and Rabinowicz [25] also observed the creep sliding on low melting point metals at
low velocities (see Figs. 24, 25). In Fig. 25 each point on the initial increasing branch of the
µ - lh curve corresponds to the final steady state sliding (constant velocity Ih) attained by a
slider acted upon by a constant tangential force, which (divided by the normal force)
corresponds to a friction coefficient µ. The same authors point out that, for harder metals,
such as aluminium, copper, steel, etc., it is probable that an initial increasing branch of the
µ- liT curve also exists. The difficulty to provide additional experimental evidence of this, at
velocities of the order 10-9 cm/s, is obviously extraordinary. In any case, sin~e those velocities

2·

o

Q (ems-I)
T

Fig. 25. Coefficient of friction as a function of final sliding velocity. Clean stcel on indium: nOfmalload N = 300 g.
Each point on the incre,!sing branch of the µ. - UT cUlVe corresponds to the final stcady state sliding obtained by
imposing a constant tangential force. For tangential forces corresponding to µ. > µ...... no steady state sliding was
obtained. The points on the decreasing branch of the µ. - UT cUlVe were obtained. using conventional experimental
techniques by imposing a much higher sliding velocity. (Rcproduced from [25).)



560 l. T. Oden, l.A.C. Martins, Models and computational methods for dynamic friction phenomena

are so small, it can be concluded, following Bowden and Tabor [23], that the frictional
behavior of ordinary engineering metals at room temperature is reasonably well explained in
terms of their plastic properties without introducing the part played by creep.

5.1.3. Rate dependence of the static coefficient of friction
A more important time dependent effect on the static friction has been observed by several

authors who have studied the stick-slip motion (see Section 5.2).
Consider a slider resting on a surface with no macroscopic sliding motion relative to the

surface and a tangential force F, applied to the slider, being increased at constant rate ¢ = FIN
until gross sliding occurs. Under these conditions, it can be observed that the vaillc µ. of
c/> = FIN at which the macroscopic sliding occurs depends on the rate ¢ of increase of the
tangential force. As shown in Fig. 26, µ. decreases with the increase of the rate of application
of the tangential force.

The interpretation given by early researchers for this phenomenon was esscntially the same
used to explain the difference between static and kinetic friction (recall Section 4.2). The
strength of the contact junctions would increase with the time of stationary contact. Con-
sequcntly, the smaller the time of stationary contact, t., thc smaller the coefficient of static
friction would be (see Fig. 26). Expressions proposed by several authors for this time
dependence of the coefficient of static friction can be found in a survey papcr by Richardson
and Nolle [78] and are reproduced in Table 1. Sketches of the corrcsponding behaviors arc
shown in Fig. 27.

However, the experimental work of several authors has madc clear that this interpretation
was not correct. ..

Simkins [87] carricd o'ut experiments similar to those of Courtney-Pratt and Eisner [31] to
observe the micro-displacements before gross-sliding. He found that higher rates of loading
inevitably led to macroscopic sliding at lower force levels. However, in other experiments

Fig. 26. Rate dependence of the static coefficient of friction. SI and S2 are the points at which gross sliding initiates;
4>1 and 4>2 are the rates of increase of the tangential force coefficients q,. and q,2: '.1 and 't.2 are the times of
stationary contact; µ,I and µt.2 are the static coefficients of friction. 4>1 < 4>2=> µ.I > µs2.



Table 1
Variation of µ., with time of stationary contact (t.) (reproduced from [781)

µ.. = µ.... - (µ.... - µ'o) exp( - ')II': ) [51,52]

Equation Expression

µ., = µ'k + cltfl

I

2 µ.. = µ'o + (9._ - µ.0)(1- e -d.)

3 µ.. - µ'k = (µ.... - µ'k)t,/(t, + 7')

4

Year where
References first used

[19,33,75) 1958
(with 1946
data)

[18,45] 1955

[32) 1957

1970

Basis for
derivation

Empirical and idealised
model of melallic
junction
Theoretical considera-
tion of Van derWaa)s'
forces
Empirical. on the basis
of observed behavior
Initially empirical,
later shown to be in
qualitative agreement
with theory

Experimental
support

Stick-slip oscillation
between lubricated
metals
Oscillation of glass
surfaces

Self excited stick-
slip oscillations
Stick-slip oscillation
between lubricated
metals
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Fig. 27. Coeflicient of static friction VS. time of stationary contacl; equations from the literature (see Table I).
(Reproduced from [78].)

designed to assess the influence of the time of stationary contact on the value of the static
coefficient of friction, he could not find any correlation between the time of stationary contact
and the value obtained for that coefficient.

Johannes, Green and Brockley [50] and Richardson and Nolle [781carried out experiments
in such a manner that they could vary independently the rate of application of the tangential
force and the time of stationary contact. This was achieved by interrupting the increase of the
tangential force or delaying its application (see Fig; 28). Richardson et aI. found that, if no
delay was introduced (Fig. 28(a» the best fit to the experimental data (expressing µ. as a
function of ts! which in this case is not independent of cb) was obtained with Equation 4 of
Table 1. However, if the time of stationary contact was made independent of the rate of
application of the tangential load (Figs. 28(b), 28(c» Johannes et al. and Richardson et aI.
found that the governing variable was the rate of increase of the tangential force and not the
time of stationary contact. The dependence of µ. on cb obtained by Richardson and Nolle [78]
is shown in Fig. 29. It can be seen that, for sufficiently small load rates, the coefficient of static
friction is constant and equal to a value which is the usually quoted coefficient of static friction.

(0)

t--- tsii-+t

(b)

cp
J1-,

~ tsc

(c) •

Fig. 28:' Dep~'~d~~t (a) '~nd indep~ndent (b), (c) rates or loading and times of stationary contact. Since the load rate
cj, is the same for the three experiments µ. would be the same regardless of the differences in the times or stationary
contact. Sa, Sb, Sc are the points at which gross sliding initiates.
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Fig. 29. Static Criction vs. loading rate. Logarithmic <P scale and static coellicicnt of friction normalized by dividing
by µ.. the coefficient of static friction at low loading rates. (Reproduced from (78).)

For large loading rates the coefficient of static friction tends to be constant and equal to a
value which is usually interpreted as the coefficient of kinetic frictiOfI, although comparative
measurements have rarely been made. As a consequence of these observations, those authors
conclude that empirical expressions of the type shown in Table 1 should be recast with loading
rate as the independent variable. .

5.2. Stick-slip motion

5.2.1. Introduction
When two surfaces in contact slide relative to each other (Fig. 30), intermittent vibration of

(a) ~]~~£±1
(b)

driver fixed

N
slider

M

UT driver

µ.

Fig. 30. Models of two (equivalent) sliding systems which may have stick-slip oscillations. K = linear stiffness:
C = linear damping; M = mass of the slider; N = normal load; UT= driving velocity; µ = friction coefficient.
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slip

(0)

slick

slip

stick

t

..
Fig. 31. Typical traces of stick-slip motion for systems (a) and (bUn Fig. 30. UT = displacement of the slider;
I = time; UT = driving velocity. .

the relaxation type can often be observed, especially at low driving velocities (Fig. 31). This
phenomenon, usually known as stick-slip motion (after Bowden and Leben [201) is highly
undesirable in tables of machine tools, the precise positioning of which is fundamental for the
accuracy of the work performed. In other applications, violent oscillations may lead to surface
damage and failure of machine components.

Many authors have studied the stick-slip phenomenon. We shall describe here some of the
more fundamental experimental observations on stick-slip motion and the most common
interpretations for the phenomenon. For more complete lists of references see, e.g., [4, 13].

Blok [15], analyzing experimental results of Bowden and Leben [20] (obtained with metallic
bodies) and of Papenhuyzen [72] (obtained with a rubber specimen on glass and road·
materials) concluded that the essential condition for the occurrence of stick-slip motion is a
decrease of the frictional force with increasing sliding speeds. In the same paper, Blok provided
also the first systematic study of frictional vibrations and established a quantitative criterion
for their appearance.

In experiments carried out, using either especially designed apparati or slightly modified
machine tool tables and slideways, it has been observed that the amplitude of the stick-slip
motion decreases when:

(a) the driving velocity UT increases (see Figs. 32-34);
(b) the damping coefficient C increases (see Fig. 32);
(c) the spring stiffness K increases (see Fig. 33);
(d) the mass M of the slider decreases (see Fig. 34).
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Fig. 32. Relation between amplitude of the stick-slip motion and velocity for various damping coefficients.
(Reproduced from (18).) Theoretical: Model (I). (lie) of Fig. 38. System (I) C = om Ib.scc.in-l. Systcm (2)
C = 0.32Ib.sec.in-1• Systcm (3) C = O.59Ib.sec.in-'.
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Fig. 33. Relation between amplitude of the stick-slip motion and driving velocity for various spring stiffnesses (K).
Steel on steel unlubricated. Normal load N = 1750g. (Reproduced from [77).)
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Fig. 34. Relation between amplitude of the stick-slip motion and driving velocity for various masses of the slider.
(Reproduced (rom [511.) K = 86.9 Kg/mm. Lubricant A; ----..:---- Lubricant C. • M = 53.2 Kg; O.
M = 36.0 Kg; () M = 11.3 Kg.

/0

° (in. sec-I)r

Fig. 35. Variation of stick-slip frequency with driving velocity for various normal loads. (Reproduced from (33).)
Natural frequencies of the system: tangential mode -150 Hz; normal mode -200 Hz. Unlubricated.



•

l. T Oden, 1.A.C Martins, Models and computational methods for dynamic friction phenomena 567

It has also been observed that the frequency of the stick-slip motion increases with the
increase of the driving velocity and that the maximum value of this frequency approaches the
undamped natural frequency of the system (Figs. 35-37) although in some cases the oscillation
stops at a level below that natural frequency.

12

-Nr 8

4

a
0.001 0.0\ 0.1 1.0

Fig.. 36. Variation of stick-slip frequency with driving velocity for various lubrication conditions. (Reproduced from
{I3].) Natural frequencies of the systems (tangential motion) at 1\.6 Hz. Lubrication conditions: • Unlubricated; x
Lubricant 1; 0 Lubricant 2.
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Fig. 37. Variation of stick-slip frequency with driving velocity for various lubrication conditions. (Reproduced from
[13).) Natural frequencies of the systems (tangential motion) at 25 Hz_ Lubrication conditions: • Unlubricated; x
Lubricant 1; 0 Lubricant 2.
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The frictional properties of the contacting surfaces and the dynamic characteristic of the
bodies involved (mass, stiffness, damping) are thus required to study the stick-slip motion.

The equation that governs the tangential movement of the slider in the model of Fig. 30(b)
is the following (note that appropriate choice of variables leads to analogous equation for the
model of Fig. 30(a):

(5.1)

where F is the instantaneous friction force.
The difficulties obviously arise from the friction force F. The essential problems have not

been mathematical, they have been mechanical and experimental. The question is: how does
the friction force vary when the sliding velocity is zero or in the neighborhood of zero?

(I)

t~ (Iineor scolel

JLs

(0) (b) (c)

sliding
velocity

sliding
velocity

sliding
velocity

(e)

sliding
velocity

(g)

slidin
velocity

slidin
velocity

sliding
velocity

JL

(II)

Fig. 38. Models of the Varia'lIon of the friction force. (If Variation of IL. with time of stationary contact (I.). (For
analytical expressions used and discussion recall Section 5.1) (II) Variation of ILk with sliding velocity. (lIa) is used
in [\5]; (I). (Ha) in [76]; (I), (lIb) in [32]; (I), (lIc) in [18]; (lId) and (lIe) in [\3]; (IIf) in [11). and (ilg) in (16).
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5.2.2. The assumed friction characteristics
Models with different assumptions on the dependence of the friction on time, displacement.

velocity and acceleration have been used to characterize the occurrence of stick-slip motion.
We summarize some of the most representative in Fig. 38.

These models, with the input of appropriate data will simulate stickslip motion. The
accuracy of their predictions (e.g., the amplitude and frequency of the oscillation and the
critical driving velocity U'T above which no oscillation is observed) will depend on how close
the assumed characteristic for the friction force is to the actual characteristic existing under the
particular conditions involved. Another difficulty is the determination of unique data to
incorporate in the above models.

5.2.3. The experimental friction characteristics
The limitations of the above models can be better appreciated by analyzing the charac-

teristics obtained experimentally by several authors, as shown in Figs. 39-43. We wish to point
out the following:

(i) In obtaining these characteristics some authors (e.g. Sampson et al. [84]) have
smoothed and numerically differentiated the data available: traces of the displacement
oscillations. Some irregularities inherent to friction processes plus effects assumed of secon-
dary importance by the authors, may have been partially obscured by using these techniques.

(ii) Other author~ (Beli 'ct aI. (13), Kato et al. [53]) have measured simultaneo,usly
displacements, velocities and accelerations using differcnt transducers. As pointed out by
Antoniou et al. [4] since each transduccr has its o,wn response, which does not coincide

µ'S

0.45

0.40

µ.

0.35

----------------------

0.002 0.004

Distance slid (mm)

Fig. 39. Relation between coefficient of friction and distance slid in an impact experiment. Clean copper on mild
steel. The sliding of a body on an inclined plane is iniliated with Ihe impact of anolher body. (Reproduced from
[74].)
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Fig. 40. Relation between coefficient of friction and distance slid in a stick-slip experiment. (Reproduced from
[53].)

absolutely with the response of the other two transducers, the results obtained may contain the
effects of calibration and hysteresis errors.

(iii) Most of the authors have studied only the tangential movement of the slider. Con-
sequently, they have assumed the normal load on the contact to be constant and equal to the
weight of the slider or to the force which produces the static deflection of their elastic normal
loading system. Explicitly.or implicitly, all variations observed on the friction force are thus
assumed to be the consequence of corresponding variations in the friction coefficient. We note
that Blok, in his early work, rightly emphasized that, in general, curves showing a decrease of
frictional force with velocity do not imply a corresponding decrease of the coefficient of
friction, as fluctuations of load might also occur.

Some comments and conclusions suggested by Figs. 38-42 are presented in the following:
(a) The change-of friction force from the- maximum static value to 'the minimum -kinetic

value occurs in a very short distance - of the order of 10-2 mm in the impact experiments of
Rabinowicz, and of the order of 10-1 mm in the stick-slip experiments of Kato et a!. (Figs. 39,
40).

(b) The existence of a second slip in the experiments of Sampson et al. (Fig. 41(b» shows
again the rate dependence of the maximum static friction force: in the second slip (large load
rate, short time of stationary contact) the friction remains at a level close to the kinetic
friction.
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Fig. 41. Coefficient of friction vs. sliding velocity. (Reproduced from [84].) (a) Steel on Babbitt; (b) Wood's metal
on Babbitt (I-first slip; 2-second slip); (c) Steel on steel.

(c) The friction force is not a reversible function of the sliding velocity. The accelerating
and decelerating branches of the curves friction-velocity are usually distinct during stick-slip
motion (Figs. 41-43).

(d) Different pairs of metals in contact and different lubrication conditions may produce
characteristics with shapes clearly distinct (Fig. 41); according to Sampson et aI. interchange of
the metal on the slider and on the driving surface often makes a great difference.

(e) Even for the same combination of metals and lubrication, the shape and slope of the
characteristic and the separatIon between the two branches will depend on' the dynamic
properties of the system (mass, stiffness) and on the driving velocity (see Fig. 42). This means
that the experimental friction-sliding velocity curve is not defined uniquely by the nature of
the surfaces in contact - it is a consequence of all the dynamic variables involved.

From the above observations, mainly from (e), we conclude that an acc~ptable theory of
stick-slip motion will have to explain the complex relationship between the friction force and
the sliding velocity, rather than assume a simplified relationship from which the experimental
evidence will deviate often.
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Fig. 42. Friction force vs. sliding velocity charactcristics for various driving velocitics and natural frequencies of the
system. Un lubricated. (Reproduced from (13].)

5.3. Memory-dependent friction

Several authors have attempted to interpret the stick-slip oscillations on the basis of friction
laws which allow for a dependence of the friction force on the previous sliding history. Early
studies with metals suggesting friction laws of this type are due to Rabinowicz [75, 76]; more
recent studies with rocks are due to Ruina [82,83], Rice and Ruina [79], and Gu et al. [43].

Ruina [83] assumes that the frictional surface has at any instant in time, a state which can be
characterized by a collection of variables ai (internal variables). These variables represent the
surface memory of previous sliding - in general they are weighted averages of some function of
the recent sliding velocity. If only constant normal stress histories are considered and the
friction stress is assumed to be proportional to the normal stress, then:

(i) the instantaneous coefficient of friction is assumed to be a function of the sliding velocity
and the state;

(ii) the instantaneous rate of change of state is assumed to depend also on the sliding
velocity and on the state.

These assumptions can be expressed in the form

T = pf(UT' a),

For each constant sliding velocity the functions gi are such that the state variables evolve
towards steady state values a~(l~T) satisfying g;(uT, aSS) = 0, i = 1,2, ....
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Fig. 43. Coefficient of friction versus sliding velocity, (Reproduced from [53).)

Several examples of state variables friction laws were provided by the same authors. The
simplest one, involving only one state variable, is of the form

T= p[µ. * + a + A In(lh/ u{)}, . UT [ B I (' /. "')]a = - de a + n UT UT , (S.la)

where u:;' is an arbitrary positive constant and µ. *, A, B and de are positive empirical
constants. According to this law, the frictional stress has a positive instantaneous rate
dependence expressed by ,A In(uT/ u:;') and the state variable a evolves towards the steady
.state value aSS = - B In(uT/ u{) with a characteristic slip distance de. .

A dynamic stability analysis of the sliding with constant driving speed UT, leads to the
following conclusion (for single state variable friction laws):' for values of the spring stiffness K
(Fig. 30(a)) greater than a critical value Kcr the steady motion is stable; for values of K smaller
than Kcr the steady motion is unstable. The value of Ker is found to be •

. •;., l . ..'. • • . .', • .. '. :' • , .' . Ii'. ~". •I . " ': " .. . ,
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evaluated at UT = UT. A necessary condition for instability is then

dT~UT) I . <0.
dUT tiT=UT

For the simple law (5.1a), Kcr reduces to

_ (B-A)p [ MUi]
Kcr - • 1+ d .

c cpA

This expression predicts the following experimental observation: an increase of the stiffness or
a decrease of the mass increases the stability of the steady motion. However, this expression seems
to contradict a known experimental fact (see the results of-Rabinowicz in Fig. 33): the larger the
driving velocity, the smaller the minimum stiffness required for a smooth sliding.

Finally, we note that a detailed study on the applicability of state variable friction laws to
metal surfaces has not yet been done.

5.4. The importance of the normal degree of freedom in sliding friction

Here we follow essentially the fundamental paper of Tolstoi [103]. Other relevant con-
tributions will also be mentioned.

It was seen in Section 5.2 that the stick-slip motion is a consequence of the decrease of the
friction force with sliding velocity, i.e., .

dF <0.
dUT

(5.2)

As in Section 4.2, let F be equal to the product of the real area of contact by the average
shear strength of the material being sheared,

F= ArT.

As in Section 3.1, let Ar be a (differentiable) function of the separation between the contacting.
bodies,

Ar = Ar(h).
- .

Finally, assume that both rand h are differentiable functions of the tangential velocity,

Then
• l .--+ ++-. _ ".\ ,.

dF dAr dh dr
-=r--+A-.
dUT dh dUT r dUT (5.3)
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We shall analyze this relation in hopes of establishing conditions for the occurrence of stick-slip
motion.

The second term in the second member (Ar dr/dlh) of (5.3) is always positive (or zero) at
a constant temperature, because it represents the rate of increase of the rheological shear
strength with the rate of shear. It is also clear that dF/dh = r dAr/dh, in the first term of the
second member, is always negative since, as h is increased, the true area of contact decreases.
Furthermore, Tolstoi confirmed experimentally the dF/dh < 0 in static experiments, the results
of which are shown in Fig. 44. In this figure it can be seen that, for the particular surfaces used
in the experiment, friction is halved as the slider rises by only about 0.2µm. TIze friction force
is thus very sensitive to the normal separation.

In the same paper, Tolstoi presents, among others, the following argument to show that
dh/duT> 0: an increase in the speed of the slider increases the upward vertical components of
the impulses exerted on the slider asperities as they collide with those of the underlying
surface; this increases the amplitude of the normal natural vibrations of the slider, the
frequency of which depends on the contact stiffness and mass of the slider; due to the
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Fig. 44. Normal load (N, curve I) and static friction force (F, curve 2) versus the separation h (arbitrarily h is taken
10 be iero for the maximum normal load used in the experiments). Dry steel surfaces. (Reproduced from (103).)
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nonlinearity of the normal force-separation relationship (recall Section 3.1 and Fig. 44), the
normal vibrations of the slider are highly asymmetric; consequently, an increase of the
amplitude of those normal vibrations raises the mean level on which the slider moves. We note
that, for steady state sliding of lubricated surfaces, Bell and Burdekin [13] obtained experi-
mental results which confirm that dh/dl~T> 0 under those conditions.

Having shown that dF/dlt = T dAr/dlt <0, dh/duT > 0 and Ar dT/duT ~ 0, it follows that con-
dition (5.2) (or occurrence of stick-slip motion may not be always fulfilled. For example,
whenever It is kept constant, dF/duT is positive and the sliding must be smooth. To illustrate
this point, Tolstoi shows two ways to keep It constant and obtaining a smooth sliding:

(1) By using an extremely small driving velocity.
(2) By using an external damping of the normal oscillations.
The author presents experimental results corresponding to both the above situations (see

Fig. 45). .
In case (1), a lower bound for the extremely small velocity required is estimated by the

author in terms of the asperity height and spacing, the coefficient of friction, the normal yield
stress and the creep viscidity. In fact, the small velocity obtained is that required for the creep
deformation of the asperities without normal displacements (recall the information in Section
5.1.2 on creep sliding).

In case (2), the effect of the normal damping is such that no reduction on the friction force is

" ".'. I 0.7 ',' ",

7--<>---

·'

0.6 ~
2" "" Q!'X>o

0,5

OAt- 3

/
0.3

0.2

4 D Co 0 ~

Sliding velocity (ems I.)

Fig. 45. Coefficient of friction as a function of sliding velocity under external normal damping (curves 1-8) or
without normal damping (curves 9-lO). I, 2, 5, 6, 7: un lubricated steel; 3, 4. 9, 10: lubricltted steel.
smooth sliding; "stick-slip oscillations (the points plotted correspond to mean values of the friction
coefficient during the oscillations). Note that only when no external normal damping is imposed, the stick-slip
oscillations do appear (curve (0). (Reproduced from [lO3].)
. : ,
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observed when the sliding velocity is increased. There exists no quantitative difference
between kinetic and static friction. Furthermore, if the normal damping is introduced, with no
change on the driving velocity during a run which shows stick-slip oscillations, it is observed
that these oscillations disappear and that the value of the coefficient of friction for the
subsequent smooth sliding is even greater than the maximum values obtained at the end of the
stick periods of the stick-slip motion.

The responsibility of the freedom of normal displacement for both the falling F-UT relation
and the stick-slip motion was corroborated in two ways:

(a) Sufficiently heavy external damping of the tangential vibrations alone could suppress these
vibrations but failed to affect the negative slope of the F - l~T curve.

(b) Direct observations of the normal displacements of the slider carried out at low driving
speeds showed that the forward movements of the undamped slider invariably occurred in strict
synchronism with its upward jumps (see Fig. 46).

We note that several authors have also done observations analogous to (b). In their early
study Bowden and Tabor [2l} measured the electrical conductance during stick-slip motion
and observed a marked fall of electrical conductance during the slip phase of the motion. This
suggests the occurrence of normal, jumps of the 'slider during the slip phase. Oscillograms of
the normal contact oscillations which occur in stages of tangential jumps of the slider during
stick-slip motion were obtained by Tolstoi, Borisova and Grigorova [104]. Study of those
oscillations revealed a fundamental frequency consistent with the normal interface stiffness
properties (see [24]). Direct measurements of the separation of unlubricated and lubricated
surfaces during stick-slip motion were also done. by Bo and Pavelescu [16] and by
Tudor and ~.o [107], respectively. Other experimental evidence of the inOuence of the normal
oscillations on the stick-slip motion was presented by Antoniou, Cameron and Gentle [4].

In summary, Tolstoi [103] emphasized the fundamental role played by the normal stiffness
of the contacting asperities in sliding friction. In particular, he concludes that the decreasing
friction-velocity characteristic at small velocities is not an intrinsic property of sliding friction:
it is solely the consequence of the microvibrations in the direction normal to the sliding.
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Fig. 46. Simullaneous tangential (UT vs. t) and normal (II vs. t) jumps of the slider during stick-slip motion.
Unlubricated. (Reproduced from [(03).)
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As might be expected, the influence of the normal contact vibration on the friction force is
not exclusive of the stick-slip motion.

Tolstoi [103] and Godfrey [41] report, for both lubricated and unlubricated conditions, a
resonance fall of the friction force when a normal forced oscillation of the slider (or of the
surface on which it slides) is produced by an external vibrating source. Tolstoi [103] also
reports a fall of friction force due to the normal oscillations produced by the normal impact of
a small sphere on the slider.

Large normal and frictional force oscillations during smooth unlubricated sliding of two
steel surfaces are reported by Soom and Kim [89,90]. Again, synchronism between those two
oscillations is observed experimentally and, except at very low speeds, those oscillations are
dominated by frequencies in the vicinity of the normal .contact resonance.

Aronov, D'Souza, Karpakjian and Shareef [7,8J observed, with a pin-on-disk experimental
apparatus. that an increase in normal load leads to the transition from a steady-sliding with
small oscillations to high frequency self-excited oscillations (intermediate states were also
observed). Strong coupling among the different degrees of freedom (tangential, normal,
rotational) was observed in the course of those self-excited oscillations. Modelling the sliding
system as a rigid body with plane motion and using experimentally determined modal
frequencies and damping ratios, those authors provided an approximate solution for the
oscillatory motion and showed its dynamic instability.

The experimental evidence collected in this section leads us to the conclusion that an
appropriate model for sliding friction must incorporate physically reasonable normal contact
conditions. In addition, all the major sources of coupling between normal and tangential
degrees of freedom should be taken illto account in such ~ model.

Part II. Continuum models and variational principles for dynamic friction

In this part of our study, we formulate continuum models of dynamic friction effects in
elastodynamics which reflect some of the experimentally-observed properties discussed in Part
I.

6. A simple model of normal interface response

6.1. Preliminary considerations

Before describing our formulation it is important to clarify what our major physical
assumptions will be. In other words, we need to explain why, among so many experimental
observations and theoretical interpretations, we will pick up only a few key features which we
hope will provide the essential ingredients for modeling a large class of dynamic friction
phenomena.

The first· key ingredient of our model is a normal contact constitutive law which takes in
account the normal deformability of the interface asperities. We will not introduce in our
model a statistical description of the interface geometry and of the normal contact, which



1.T. Oden, 1.A.C. Martins. Models and computaTional meThods for dynamic friction phenomena 579

would be a possible, defensible and interesting approach. Instead, we will introduce a
mechanical law for normal contact which does not contradict the results of those statistical
theories. As shown in Section 3.1, both theory and experiment seem to agree in an exponential
type growth of the normal contact stresses with the penetrating approach for sufficiently high
loads. For sufficiently small loads, which we will be working with, the vanishing normal
stiffness for small penetrations predicted by the theory and the power laws obtained by
experimentors are also not contradictory. We will thus assume that on the contact boundary
each macroscopic point 'contains' a number of microscopic interface asperities sufficiently
large that a power law of the type (3.5), (3.7) holds locally.

We incorporate this nonlinear boundary effect in our model instead of a classical non-
pen~trr.tion unilate~al contact ~onditi~n fo~'the following reasons: .
, (I)' For small Imear elastiC bodies With rough surfaces subjected to small loads the
deformation of thc contact intcrface may be of an Qrder of magnitude comparable with the
bulk linear elastic deformation of the contacting bodies.

(ii) Thc experimental results of Andrew, Cockburn and Waring [2] imply that such
nonlinear contact behavior cannot be disregarded in dynamic situations even if no relative
sliding occurs.

(iii) The high sensitivity of the friction force to the normal separation of the surface, the
resonance drops in friction force due to normal deformation of the contacts and the striking
observations of Tolstoi (103) and other authors described in Section 5.4 strongly suggest that a
physically reasonable normal interface model has to be used.

Obviously, for highly polished surfaces it is physically reasonable to expect that the results
obtained by including the effects of the normal interfuce deformability.:;hould approach those
given by assuming a classical unilateral contact condition. Analytical solutions for frictionless
static Hertz contact problems suggest that this is the case, although these questions have not
been studied from a mathematical point of view.

The use of the power law (3.5) for the normal contact response corresponds to an
assumption of an exclusively elastic normal response. Although this is the expected behavior
after sufficient rubbing and smoothing of the interface it is questionable, and some experi-
mental evidence contradicts that this is the case if the sliding is not smooth and severe
oscillations (accompanied probably by small normal jumps) do occur. Possible physically
consistent ways to incorporate in our model the dissipative effect of normal plastic defor-
mation on the interface will be discussed in Part III of this paper.

The other key ingredient of our model is obviously the friction law.
We will not provide a model for the preliminary (plastic) microdisplacements which occur

before gross-sliding. Essentially we will assume that these effects can be disregarded when
compared with the much larger rigid-body type displacements which occur during sliding. The
classic law of friction (i) in Section' 4.1 WIll be' thus assumed to hold locally -on the contact
boundary. Only a small generalization will be introduced in order to accommodate a possible
dependence of the coefficient of friction on normal contact forces.

Following the ideas of Tolstoi [103], we will not consider any distinction between static and
kinetic coefficients of friction. We will try to show, tiy analysis and by nlJmerical results, that
apparent decreases of measurable coefficients of friction are the result of dynamic instabilities
which are a consequence of the inherent non-symmetry of friction problems. No other variations
of the coefficient of friction with velocity will be considered either, although they could easily be
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incorporated. We avoid here the potentially stabilizing or destabilizing effects that those
variations would introduce.

Finally, we observe that creep sliding will not be modeled but the possibility of the
experimental rate dependence of the static coefficient of friction being an inertia related
phenomenon will be investigated in a forthcoming work.

6.2. Interface models

The interface between contacting bodies is a hypothetical medium of vanishing thickness,
the mechanical response of which depends upon the various geometrical and physical
properties of the surfaces in contact as discussed in Part 1. For the class of problems addressed
here, we wish to characterize the response of such an interface to normal deformations in a
way that is consistent with the experimcntal, and statistical theoretic rcsults summarized in
Section 3.1.

Considcr a continuous material body 00, in contact with anothcr material body ~ lover a
contact surface rccaOO. We establish a fixcd Cartesian coordinate system Xi, i = 1,2,3, and
consider motions of 00 relative to this fixcd spatial frame of reference. We denote by u the
displacement of particles X E 00 relative to a fixed reference configuration, the configuration
occupied by thc 'undeformed' body, and by Ui the Cartesian coordinates of u.

The notion of a contact surface rc is worthy of some claboration. This surface should
represent the boundary of the parent bulk material of which the body is composed. Onc can
regard it as parallel to a surface marking average surfac~ heights. Wc suppose that rc has a
well-defined exterior normal vector n and that the actual interface (asperities, oxide film, gas,
work-hardened material, etc.) is initially of thickness to, as shown. The initial gap between rc
and the other body that may come in contact with fjJ is defined as the distance, measured
along a line normal to rc, between the highest asperities of the bodies in the reference
configuration. The interface thickness after deformation is denoted t in Fig. 47 and the actual
displacement of rein the direction of n is Un = U • n. Thus, the approach of the material
contact surfaces is

(6.1)

This definition is valid whenever the· body !3B 1 is rigid and bounded by a surface opposing rc
which is ideally fiat, as indicated in the figure. This model is easily generalized to cases in
which 001 is deformable and rough (see [114]).

Let aij denote the Cartesian components of the Cauchy stress tensor at a particle X in 00.
The normal stress developed in rc is then

(6.2)

where the standard summation is used.
The constitutive properties of the interface are characterized by a relatioRship between an

and a. In Fig. 48 we have plotted the variation in the normal force N on a unit block of the
material with the penetrating approach. Except for very large penetrations, where the
response is essentially exponential, a large body of evidence points to a power-law relation
between an (=N/unit area) and a,
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Fig. 48. Normal force versus approach relationship suggested by experimental and statistical theoretic results.
Portion A 'light' normal loads characteristic of sliding interfaces. Portion B. 'heavy' normal loads characteristic of
fixed interfaces.
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(6.3)

Here en and mn are matcrial parameters independent of a.
Much of the experimental evidence described earlier indicated that the material parameters

en and mn can be easily determined from interface compression experiments. Other effects
could be added to this interface law, but it is sufficiently general to model the principal
mechanisms of interest here.

REMARK 6.1. The form of the interface constitutivc equation (6.4) is consistent with the
experimental observations outlined earlier (recall Section 3.1):

(a)

(b)

- -...

REMARK 6.2. Finite e1cment computations of static contact problems using such a normal
interface constitutive equation were first done by Back, Burdekin and Cowley [10].

7. A problem in elastodynamics

We shalt now formulatc a class of initial-value problems in elastodynamics which include
sliding friction effects. We begin by considering a linearly elastic body, the interior of which is
an open bounded domain n in R N (N = 2 or 3) with boundary r consisting of portions r0, rF,

rE and Fe, as indicated in Fig. 49. Displacements u are prescribed on ro, tractions tare
prescribed on rF, the body may be elastically supported by springs of modulus kif on rE, and
re is the candidate contact surface. We suppose that the body may come in contact with a
rough sliding belt (a moving foundation) which slides by the material contact surface re with a
velocity iJ~. This foundation is initially (at t = 0) at a gap distance g and re. While strains in
the body are small, certain large rigid motions relative to the reference configurations are
permitted in our theory. For simplicity, the body is assumed to be composed of a Hookean
material characterized by the classical constitutive equation,

(7.1)

where U k.1 = aUk/aX" 1 ~ i, j, k, I ~ N, and the elasticities satisfy

Eijkl = Ejikl = E;jlk = Eklij,

sup liE ilk Ill"" ~ M.
1"'1.1. k.1....N

(a.e. in n for every symmetric tensor Aij ,
a being a positive constant) ,

(7.2)
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Fig. 49. Gcometry and notation u~ed in clastodynamics problcm with sliding frietion.

For a time interval [0, T], the equations governing this elastodynamics problem are grouped
as follows:

Linear momentum (constitutive equations, angular momentum, and mass conservation):

lTjj(U).j + b; = pUj in f1 x (0, T), (7.3)

where
b; = the components of body force per unit volume, assumed to be sufficiently smooth

functions of x = (Xl. X2, ... , XN);
p = the mas~density,

ap = 0,
at pEL"'(f1), p ~ po>O;

U; = particle acceleration == a2u;/ar;
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._ 0
Uj - U j on r0 x (0, T) ,

Ujj(ll)1lj = tj on rFx (0, T),

Ujj(ll)1lj = -kjj(Uj - U~) on rEX (0, T),

where U~, tj and U; are given sufficiently smooth functions.
Initial conditions:

(7.4)

U = Uo, II = til inn at t=O, (7.5)

with UO, til given smooth functions of x.
Normal interface response: Recalling (6.3), we have

(7.6)

Frictio1l c01lditions: Let UT be the tangential (frictional) stresses developed on the contact
surface (UTi:::: Ui,1l,- Un1l;). Then we shall employ the following friction law:

j
IUrtU)\::;; cTCun - g):'T , .

un>g~ luTCu)I<CrtUn-g)mT~ liT = vi,
IUrtll)j = CrtUn - g)~T ~ 3A ~ 0, lh- vi = -AuTon reX (0, T).

(7.7)

Here CT and tnT are material constants depending on interface properties (indeed, charac-
terizing further constitutive properties of the interface), UT is the tangential velocity of
material particles on Fe, and ir.f is the prescribed tangential velocity of the foundation
(adjacent body) with which re comes in contact. .
. The friction law (7.7) is a generalization of the Coulomb's friction law, which is recovered if
mn = mT' In such a case, µ = CTtCn is the usual coefficient of friction. The law (7.7) allows for a
dependence of the friction coeftlcient on the normal contact pressure (recall Sections 4.1. and
4.2).

We remark that other possible choices would also have been easy to introduce at this point.
The one presented above can be interpreted as allowing for deviations of Amonton's first law
due to a variation of the true area of contact with a power of the normal stress level different
from unity, .

(7.8)
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8. Variational formulations

8.1. A nonlinear hyperbolic variational inequality

We now consider the formulation of a variational principle corresponding to the c1asto-
dynamics problem outlincd above. Following steps similar to thosc of Duvaut and Lions [37],
the nonlinear elastodynamics problem can be shown to be formally equivalent to the following
variational problem:

Problem 1: Find the function t-+ u(t) of [0, T] -+ V such that

(u(t), v - u(t) + a(u(t), v - ti(t)) + (P(U(I)). v - ri(t)} + j(u(t), v) - j(u(t). li(e));;?;

~ (f(t), v - ri(e) \Iv E V, (8.1)

with the initial conditions

U(O) = Uo, riCO) = UI . (8.2)

We have assumed here, for simplicity, that p == I and that VI? == O. The following notations
and definitions were also used:

where

V = the space of admissible displacements (velocities)

= {v = (VIl V2,." • VN)\ Vi E H1(fl), Y(Vi) = 0 a.e. on ro},.
a: VX V -+R, a(u, v) = ao(ll. v)+ a,(yu, yv), (8.3)

£liJ(U, v) = virtual work (power) produced by the action of the stresses 0- jj (u) on the
strains (strain rates) EI/(V) = ~(Vi.j + Vj.l)

(8.4)

where u is a displacement and v is a virtual displacement (velocity);

al(~' 17)= virtual work (power) produced by the deformation of the linear springs on
r

E
.

.= f Klj~jT1i ds, ~, 17 E (e(rr,J)N.
rE .

(8.5)
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P: V-'» V',

(P(u), v) = virtual work (power) produced by the normal contact pressure on the
displacement (velocity) v

= f Cn(Un - g)~nVn ds ;
rc

(8.6)

j(u, v) = virtual power produced by the frictional force on the velocity v

= f c~un - g)'''TI VT- U~I ds ;
rc

f(t) E V',

(8.7)

(J(t), v) = virtual work (power) produced by the external forces (body forces,
prescribed tractions, initial deOectiotl of the linear springs) on the dis-
placement (velocity) v

(8.8)

-- ...

Here ( . , . ) denotes duality pairing on V' x V where V' is the topological dual of V; Y is the
trace operator mapping (H1(fl))N onto (H1n(fl))N which may be decomposed into normal
components Yn(V) and tangential components y.r{v). For simplicity -of notation, the latter are
denoted as Vn and VT, respectively. We also observe that the boundary integrals on Fe are well
defined for 1 ~ mn, mT ~ 3 if N = 3 and for 1 ~ mno mT if N = 2, because, for Vi E H1(fl),
y(vi)ELq(F), with 1~q~4 for N=3, and with 1~q for N=2. We can thus conclude that
for the case N = 2 all the experimentally observed values of mn (mn E [2, 3.33], recall Section
3.1) can be used in a mathematically consistent way in our formulation. For the case N = 3,
the mathematical restriction mn ~ 3 will be harmless in most of the cases: in [9] only one
experimental value of mn is shown (3.125) which slightly exceeds 3, the most common value
for m n being 2.

Of course, for a complete definition of Problem-1-we would need to make· precise the
assumed regularity of the displacements, velocity and acceleration relatively to the time
variable t, i.e., we would need to specify the spaces of ~bstract functions to which the
mappings t:"'" u(t), t -+ ti(t) of [0, T] -+ V and t -+ II(t) of [0, TJ -+ V' belong. Intimately related to
this question is the need for the initial conditions (8.2) to make sense and the need to be precise in
what sense the v~iational ineqµality (8.!). is satisfied along the time interval (0, T).

These questions will not be addressed here. Instead, we will proceed formally, and seek a
computational algorithm to obtain approximate solutions for the problem above.
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8.2. A regularization of the friction functional

Our first goal is to approximate Problem 1 by a family of regularized problems which lead
to the solution of a variational equation instead of a variational inequality (as (8.1».

Toward this end, we approximate the friction functional j: V X V -+ R which is nondifferen-
tiable in the second argument (velocity) by a family of functionals j. convex and differentiable
on the second argument: j.: V X V -+R,

j.(u,v)= f ~un-g)';Tl/le(vT-iJ!f)ds,
rc

(8.9)

where the function l/1e: (Lq(Fc))N -+ Lq(fc) is an approximation of the function 1,1: (Lq
(Fc))N -+ Lq(fc) and is defined for E >0, g E (Lq(Fc))N and a.e. x E Fe, according to

£1~12(1-11~/) ifl§(x)I~E,

£ (I~l-i) ifl§(x)I>E.

(8.10)

REMARK 8.1. Since for a.e. x E Fe, 1l/1.(~(x»I::::; 1~(x)1 and since I§I E Lq(fc) then l/1.(§) E
U(fc) as stated above and no additional restrictions on mT are required for the integral on
(8.9) to be well defined. ,.

The partial derivative of j. relative to the second argument, at (u, w) in the direction of v, is
then given by

Ve(u, w), v) =(ihj.(u, w), v)

= f c-r(un - g)';T[4>,,(WT- ci!f)(VT)] ds Vu, v, wE V,
rc

where, for E >0, ~, 1] E (Lq(rc))N and a.e. x E Fe,

if \§(x)\ > E ,

is the directional derivative of l/1" at § in the direction of 1].

(8.11)

(8.12)

REMARK 8.2. From the definition it is easy to see that for a.e. x E Fe, 1[4>,,(§)(1])](x)1 ~
211] (x)1 and consequently [<!>,,(§)(1])] E Lq(fc). The integral in (8.11) is then well defined
without any further restrictions on 11IT.
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Wc now define the regularized form of Problem 1:
Problem 1.: Find the function t ~ ll.(t) of [0, T] --+ V s.t.

(ii. (t), v) + a (u,(t), v) + (P(ll, (t)), v) + (1.(u, (t), Ii, (t)), v) =

= ([(t), v), 'Vv E V,

with the initial conditions

(8.13)

u,(O) = uo, (K 14)

Wc observe that now we have a variational equation instead of a variational inequality. We
also observe that this problem is formally equivalent to the problem defined by a system of
equations analogous to (7.3}-(7.6) with u. replacing II and again p == 1, lJD == O. However, the
friction conditions on Fe arc now of the form:

Regularized friction conditions:

(8.15)

In order to visualize the regularization procedure used above, we consider now its
particularization for the case of a two-dimensional (N = 2) domain {l with a boundary rc
sufficiently smooth that we can define a unit vector iT tangent to re. In this case each vector g
tangent to Fe is determined by the real number g such that g = giT. The functions 1/1. and
4>. == I/J~ are then, essentially, rcal-valued functions of a real variable, defined by!.1~I'(H I~/) ifItI" • ·

</1.«)~ • (\~I)_1) illtl>.;
(8.16)

_ {(2-1~1)~ iflgl~£,

4>,(g) - sgn (,t)
iflgl >£.

The graphs of these functions are depicted in Fig. 50 togethGr with the graphs of the functions
which they approximate: the function I·' and its derivative in R - to}, sgn( . ).

Finally we obscrve that a physical interpretation might be attributed to the above
regularization procedure. The increasing branch of the 4>.(g) curve is essentially of the same
nature as those experimentally observed during creep sliding (recall Section 5.1.2). However,
we prefer to regard it exclusively as a mathematical procedure to obtain an approximate
problem which corresponds to a variation equation. Wc do so because the values of E which



1.T. Oden, 1.A.C. Martins. Models arid computational methods for dynamic friction phenomena 589

f((}

1 I sgn (~)

----~-1

Fig. 50. Graphs of the function 4/1. and cP. for the casc of unidimensional re.

will be used in actual computations will not be so small as thosc required for the above
physical intcrpretation to be valid in the case of hard mctals with which we will be considering.
The choice of e will be dictated only by the desired proximity of the solutions of Problems 1
and Ie and the corresponding computational costs associated.

Many examples of similar regularization procedures in dynamic friction problems can be
found in the literature. Among them we refer to [37] for mathematical aspects; to [101J and
[81] for computational applications to Theory of Mechanisms and to [62] for a finite element
analysis of a simplified friction problem.

We are aware of some of the difficulties associated with these regularization procedures: a
perfect zero relative velocity between the contacting surfaces is not possible - when 'stuck' the
contact surfaces will creep with a relative velocity smaller than e; trying to impose a very small
e will imply the need to reduce substantially the steps of the time integration scheme,
particularly in unloading situations - transitions from 'slip' to 'stick'.

Part III. Finite clement models and numerical analysis

9. Finite element approximations of the regularized problem

Using standard finite element procedures, approximate versions of Problem Ie can be
constructed in finite-dimensional subspaces Vh (C V C V'). For a certain mesh (/1) the
approximate displacements, velocities and accelerations at each time t are elements of Vh,
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Within cacti clement i2~ (e = 1,2, ... , Eh) the components of the displacements, velocities
and accelerations are expressed in the form

N,

v}'(x, t) = L vJ (t)Nt(x),
1= I

N,

v7(x, t)= L vf(t)NI(x),
1=1

N,

v}, (x, t) = L vf(t)NI(x) ,
I-I

wherej= 1,2, .... ,N; N~ = number of nodes of the element; vHt), v:(t), vHt) are the nodal
values of the displacements, etc., at time rand N1 is the element shape function associated with the
node 1.

The finitc element version of Problem I, is then:
Problem 1~: Find the function t~ u~(t) of [0, T]~ VII·s.t.

(ii~(t), vh)+ a(ll~(r), vh)+(P(u~(r)), Vh)

+ U.(u:(t), u:(t)), Vh) = (J(r), Vi,) Vvh E Vh,

with the initial conditions

(9.1)

(9.2)

If Nh is the number of nodes of the finite elemcnt mesh, then this problem is equivalent to
the following:

Find the function t ~ r(t) of [0, T] ~ R NXNh, S.t.

Mr(t) + Kr(t) - P(r(t)) + J(r(t), ret)) = F(t) ,

with the initial conditions

(9.3)

r(O) = Po, reO) = PI. (9.4)

Here we have introduced the following matrix notations:
r(r), ret), r(t): the column vectors of nodal displacements, velocities and accelerations, respec-

tively;
M: standard mass.matrix;
K: standard stiffness matrix;
F(r): consistent nodal force vector;
P(r(t)): vcctor of consistcnt nodal normal forces on rc;
J(r(t), i'(t)): vector of consistcnt nodal friction forces on rc;
PO(PI): initial nodal displacement (velocity).

The components of the element vector (.>p are of the form
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(dp Ii = - f (Tn1liNi ds, (9.5)
(")rc

and the components of the element vector (")j are of the form

(")j Ii = - f (TTjNt ds.
(..)rc

10. Algorithms [or nonlinear dynamical systems

(9.6)

The algorithms that we shall use for solving the discrete dynamical system involve variants
of standard schemes in use in nonlinear structural dynamics calculations. An outline of these
computational procedures follows. .

10.1. A Newmark-type algorithm

We begin with the presentation of an implicit Newmark-type algorithm that has proved to
be effective for many problems in the general class under study.

Let P denote a partition of the time domain [0, T] into M intervals of length At such that
0= to, t" ... , tK, ... , tM = T with t K+l - tK = /).t. We shall approximate the velocities and
accelerations at time tK by expressing them as functions of the displacements velocities and
accelerations at time t K-l and of the displacements at \ime IK, by the following relations:

UK = {3:t (UK - UK-I) + (1- ;) UK-l + M(1- 2~) ilK-I,

iiK = {3~t2 (UK - UK-I)- {3~t UK-I- C~-1)iiK-I,

(10.1)

where 'Y and {3 are the so-called Newmark parameters and UK == U~(tK)' etc. are used in the
foregoing, if no confusion is likely to arise.

Introducing the above relations into the variational equation (9.1), we obtain the following
variation equation at time tK:

(lO.2)

Here
(J(UK), v) == (lc(u~, tid, v)

= (lc( UK, {3:t (UK - UK-I)+ (1- ;)liK_1 + M(1- 2~) ilK_I). v),

··(IK, v) 1:::::(J K;'V)+ (f3~t2 UK-I + {3~t UK-l + (2~ - I)u K-I. v) .



592 1.T. Oden, 1.A.C. ManillS, Models and computational methods for dynamic friction phenomena

The above variational equation can be put in the operator form

with RK: Vh ~ V" being the nonlinear operator defined by

1
(RK(UK)' V)VhXV.I = ~ (UK, v)+ a(UK' v) + (P(UK), v)

{3!::.t

+ (J(ud, v)- <1K,v), VUK, V E Vh•

(10.3)

(lOA)

Let [(K(UK) = DRK(uK) E 2(Vh, V~) be the derivative of the map RK at UK E V", Then the
Newton-Raphson iteration technique for solving (10.3) is as follows: Given a starting value
u~)E Vh

, obtain successive approximations of the soluti"on UK by using the recurrence formula

(10.5)

where i = 0, 1, ... is the iteration counter. Thus, at each iteration i, the following variational
equation has to be solved:

with !::.u<J!= U~+l)- u<J!.
In the present problem we have, for UK, W, v E Vh,

(KK(UK)(W)' v) v.xv;, =

1 -
= a(w, v) +A'2 (w, v) + (DP(uK)(w), v) + (DJ(uK )(w), v),

(3ut
where

(DP(uK)(w), v) = f cnmn(un - g)~.-I WnVnds,
rc

= f cTmTCunK - g)~T-I[<Pe(UTK - U~)(VT)]Wn ds
rc

where, for s >0, ~, '1], ~ traces on rcof Vh functions, and x Ere,

(10.6)
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REMARK 10.1. If N = 2 the above definition reduces to

if 1~(x)1 ~ E,

if 1~(x)1 > £.

(W.7)

if 1~(x)I~. £,

if 1~(x)1 > £.

We next recast (10.6) in matrix form:

where

K(i) = K + ~ M + K,,(i) + KT!'(i) +~ CT(i):'
K 13l1t2 K 1\ 13At K ' ..

R(i) = [~M + K] r(i)+ p(i)+ J(i)- F
K 13At2 KKK K

and

The element components of the matrices K", KT" and cr for the case N = 2 are of the form

(~)K" - J ( )mn-l N N dMiNj- como uo-g + ll;flj M N S,
(~lrc

where (~)rcis the part of re belonging to element e;
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. . e1 ( IUT- UTI) . e-;;2- E (UTi - UTi)njNMNN ds

if IUT- Vii ~ E,

1 . . c

I. ~1(UTi- UT;)njNMMN ds
UT- UT

ifllh-Vil>E,

where (~)rd~) is the part of (~)rc where !uT- Vii ~ E.

Physically, the matrix Kn produces a variation of the normal nodal forces due to a variation
of the nodal normal displacements; the matrix [(Tn produces a variation of the nodal friction
forces due to a variation of the nodal normal displacements; finally, the matrix cr produces a
variation of the nodal friction forces due to a variation of the nodal sliding velocities.

Both K" and cr are symmetric matrices because both are associated with terms of
(KK(UK)(W), v) which can be considered as second derivatives of functionals. In fact,

(DP(u)(w), v) = (D2p(u)(w), v)

for u, v, wE V, with p: V~ R being the deformation :energy associated with the nonlinear~
springs on re,

f Cn
p(u) = (un - g)~n+l ds.

rc mn + 1

We also have that

(J2.Te(U, u)(w), v) = (ay,,(u, u)(w), v)

is the second partial derivative of the friction functional je relative to the second variable
(velocity). We also observe that, in the two-dimensional case (N = 2) cr is the incremental
damping matrix associated with the region of Fe which is 'stuck' at some instant (the modulus
of the sliding velocity is smaller than e). Finally, we observe that the matrix KTn is not
symmetric. This results from the fact that, according to the normal contact behavior, the
normal stresses on re depend"only on the penetration-(-u~ -=-g}..:..A chaog-e- cm-th-e sliding
velocity does not produce any change on the normal contact forces.

10.2. Semi-explicit, central-difference scheme

It is well known that the central-difference technique is equivalent to the Newmark method
for /3 = 0, y = t. This special case of the algorithm described above is now outlined. The
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accelerations and the displacements at time tK are related with the displacements, velocities and
acceleratiol)s at time tK"'-1 and with the velocities at time IK, according to

(10.8)

Introducing these relations into (9.1), the following variational equation is obtained at time IK:

2 - A

6./UK' v) + (J(ud, v) = (fK, v), \Iv E Vh
,

where, now

(J(liK), v)=(J.(UK, liK), v)

= (1£(UK-1 + 6.tuK-1 + ~6.12UK-I, UK), v),

(1K, v) = (fK, v)- (P(UK-I + 6.1UK-I + ~6.t2 UK-I), v)

+(UK-l + :t tiK-h V) - a(UK-1 + 6.tUK_1 + ~6.t2UK_I' v).

(10.9)

(10.10)

(10.11)

It is important to observe that the second equation in (10.8) determines uniquely the
displacement at time tK from the values of the veloc~{-y and acceleration at the previous time
tK+ The nonlinearity involved in (10.9) results only from the nonlinear dependence of the
frictional forces on the tangential velocities. In the iterative process required to solve (10.9),
the displacements (and consequently the normal stresses) will thus remain constant.

Using again the Newton-Raphson method to solve (10.9) for the unknown velocities UK, the
following linear equation is obtained at each iteration:

(K- (·(i))(A ·(jl) )- (R ('(jl) ) \../ ElFK UK ~UK, V - - K UK , V, v V Yh·

In this case,

_ 2 -
(KK(UK)(W), v) = 6.t (w, v) + (DJ(uK )(w), v), \I liK, W, v E Vh,

2 - A

(RdUK)'t)= 6.t(UK,V)+(J(UK),V)-(fK'V~_ \luK,vE Vh,

(DJ(uK )(w), v) = (a2Jc(UK' liK)(w), v) .

(10.12)

(10.13)

The discrete variational equation leads to the following system of algebraic linear equations
to be solved at each iteration:

(10.14)
where
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K(i) = ~ M + CT(i)
J(!:i.t K ,

Ry!= ~tM;-Y2+J</.?-j.K,

frK = FK + M lr K -I + ~t ;-K -I] - K lr K -I+ !:i.t ;-K -I + !!:i. t2 r K -I]

(10.15)

Some computational advantages of this algorithm over the Newmark scheme described
earlier are the following:

(i) Both M and Cf-.(i) (hence K(J/) are symmetric matrices.
(ii) If a diagollalized mass matrix M is used, the only nondiagonal entries of K<{l result

from the points on re which are 'stuck'. The structure of k<{l for an appropriate numbering
of the nodes of the mesh on re suggests that the use of a symmetric skyline solver for the
solution of (10.14) may prove to be very efficient.

(iii) If, in addition to the diagonalization of the mass matrix:
(a) a rotatioll of the degrees of freedom on re is performed in such a way that the final

degrees of freedom have the direction of the normal and the tangenl to re at each contact
node;

(b) the element contributions to cr are computed with a quadrature rule which uses the
nodes as integration points (e.g., trapezoidal rule for liiiear elements and Simpson's rule for
quadratic elements);
then the matrix CJP> is also diagonal and the solution of (10.14) becomes very simple.

REMARK 10.2. The discontinuity of the Coulomb's friction law at zero sliding velocity is a
major source of computational difficulties in friction problems. Even though, in the algorithms
described in this and the previous section, a regularized form of that law is used, those
difficulties cannot be completely avoided. The situation which may arise when using the
methods described here with a constant time step is the following: in unloading situations
(passage from sliding to adhesion) the Newton-Raphson iterative techniques may fail to
converge if E is very small and the time step too large. This situation does not seem to be
dependent on the specific iterative technique used or on the type of regularization of
Coulomb's law adopted. In a previous paper [62] we found similar problems though we used a
different iterative scheme (successive approximations) and a different regularization (piece-
wise linear ¢~). Our numerical results suggest that for small values of E the radius of
convergence of the iterative scheme used is very small due to the steep changes in ¢, on the
interval [-E, E].

The critical situations arise in transitions from sliding to adhesion because it is then that the
most important changes in the solution occur. We observe that, for the nonregularized
problem, a discontinuity of the tangential acceleration arises when a point on the contact
surface-ceases to be sliding and a period of adhesion is initiated. •

One simple remedy for these difficulties is to decrease the time step until two successive
solutions are not too far apart. Obviously this increases the computational costs and other
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more sophisticated and less expensive remedies arc desirable. We fecI, howevcr, that radical
improvements in eft1ciency should not be expected.

In the computer code that we have developcd, reduction of the time step /).1 max is only
performed if the Ncwton-Raphson iteration fails to converge in a prescribed number MAX-
ITE of iterations. In that situation, successively smallcr time steps /).( arc tricd until a
convergent solution is obtained. This smaller timc step is then kept for a prescribed number of
steps KSTEPR during which thc most drastic changes in the solution are cxpcctcd to occur.
After this time interval, the time step is gradually increased again to /).(m,,'

It was found that for the smaller time steps, a reduction below 0.1/),( max was rarcly needed if
a /).tl11 •• was used which provided simultaneously for accurate computation of dynamic re-
sponse and for the stability of the central difference technique and if the values of E used were
not too small. The parameter MAXITE has been set usually to 5 and KSTEPR to a number in
the range 10-20. An indication of the extra computational work rcsulting from the reduced
time steps is given by the quotient TIT, where T is the total physical time spanned by our
analysis (with the time stcp reductions) with some total numbcr of timc steps and T is the
total physical time that would be possible to span with the same total number of time steps if
no reduction of time steps were nee<!t;d. [n most of the computations, values of this ratio of
order 1.2-1.5 were experienced. rf more restrictive values of E are used. this value will
increase significatively: for example, for e = 0.02 cm S-I in the example of the next section,
TIT = 4.2.

11. Numerical studies

In this section, we discuss several applications of the models and methods discussed earlier
to representative problems.

11.1. An elastic slab subjected to periodic loading

Our first example is designed more to test the performance and robustness of the algorithms
described in the preceding section than as a model of complex dynamic friction phenomena.
We begin with the analyses of motion of the elastic slab shown in Fig. 51. The dimensions of
the slab are 16 cm x 2 cm, as indicated, and it is assumed to be of unit thickness and to be
constructed of a linearly elastic material with properties close to those of cast iron. Young's
modulus was assumed to be E = 1.4 X 106 (103 Kg cm-1 S-2), Poisson's ratio v = 0.25 and the
mass density p = 7 X 10-6 (103 Kg cm-3). The slab is assumed to be in a state of plane strain; it
is simply supported on the portion r0 oj jts boundary a.n4 is compressed along a frictional
interface Fe by a flat 'rigid' surface, the vertical downward displacement of which is
prescribed. This corresponds to prescribing an initial uniformly distributed gap g =
-5 X 10-4 em. The prescribed tangential velocity of the 'rigid' surface is zero (U~ = 0). The
normal contact properties of the interface were taken from Table 1 of [9], assuming that both
surfaces in contact are of cast iron hand-scraped with a surface finish (peak to valley distance)
in the range 6-8 µm. The coefficient mn is then equal to 2 and, after a change of units. Cn = lOll

(103 Kg cm-3 S-2). The friction coefficient along Fe was arbitrarily assumed to be J.L = 0.3 and
independent of the normal load. Consequently, mT = 2 and CT = 0.3 X 108 (103 Kg cm-3 S-2).
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Fig. 51. Dimensions and finitc elemcnt discretization of an clastic slab.

On one of its ends (rF), the slab is subjected to a time-dependent uniformly distributed
force

Ix = t sin wt,

where t= 30 (103Kg cm-1 S-2) and w = 3 X 104rad S-1.

The prescribed initial conditions are as follows: the initial velocities in all the slab are zero
(;'(0) = 0) and the initial displacements are the static equilibrium displacements of the slab due
to the normal'compression exerted by the flat surface on re alone (no friction on re and no
applied tractions on rF).

We observe that, due to the normal deformation of the interface, the equilibrium normal
displacements and normal pressure on re are not known a priori. The initial equilibrium
displacements solution is obtained by solving the following system of nonlinear algebraic
equations: .

Kr(O) + Pr(O) = 0 . (ILl)
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The numerical solution of this frictionless unilateral contact problem is obtained by using 3

standard Newton-Raphson algorithm analogous to that discussed in Section 10.1.
The finite elements mesh used in this analysis consists of 16 nine-node isoparametric

quadratic elements, as illustrated in Fig. 51. The regularization parameter E for the Coulomb's
friction law was taken, successively, to be equal to 1, 0.1 and 0.02 em s-'. The dynamical
equations of this discrete model were integrated using Newmark's method, as discussed
earlier, with parameters {3 = 0.25, ')' = 0.5 and a maximum time step of t1tmax = 10-6 s.

The distributions of normal stresses at several time instants obtained with £ = 0.1 cm S-I, are
shown in Fig. 52.

The distributions of friction stresses on Fe at scveral time instants are shown in Fig. 53. TIle
travelling wave type evolution of these stresses can be clearly observed in that figure as can the
:;harp transition between the sliding and adhesion regions on Fe.

The effect of the regularization paramcter E on the evolution of the displacements,
velocities, and friction strcsses at the contact nodes 55 and 85 are shown in Figs. 54-59. As
might be expected, smaller values of E lead to sharper transitions between sliding and
adhesion states; large values of e smooth out the fronts in these solutions. It can be also
observed that the major discrepancies between results obtained for different values of e occur
in the tangential displacements and velocities, not on the friction stresses. This results from the
fact that when sliding occurs, the value of the friction stress is necessarily µ. times the normal
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pressure. Consequently, the only possible discrepancy is in the relative duration of stick and
slip states and in values of the friction stress during the stick state. Since, in the present case,
the alternating stick and slip states are closely conditioned by the variation of the periOdic
forcing function, it is not surprising that the discrepancies are small. It is likely that for other
situations the use of large values for £ could produce friction stress solutions much less
accurate than in the present example. _

An examination of the compu'ted variation in tne -tangential displacements and velocities
leads us to the conclusion that the essential effect of the reduction of E is to produce more
accurate adhesion states. High values of E (e.g. E = 1) lead to solutions which only vaguely
resemble those obtained with smaller values of £, no meaningful conclusion relative to stick or
slip being possible. From a practical point of view it appears reasonable to choose values of e,
that are sufficiently small relative to the order of magnitude of the tangential velocities that
occur during the sliding states. In this manner, sliding and adhesion will be essentially relative
and not absolute concepts. We observe that for tangential velocities on the order of 1em S-I,
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Fig. 54. Tangential displacements at Node 55 using different values of E.

the value of £ = 1cm S-l is obviously inadequate while results obtained with £ = 0.1,
0.02 cm S-1 seem t~ be physically reasonable.

11.2. Steady sliding and dynamic stability of a rigid block

As a prelude to examples dealing with nonlinear dynamics of a model of a continuous body,
we shall now consider applications of the algorithms developed in Section 10 to some very
simple dynamical systems. Our mission here is to construct very simple models of stick-slip
motion, consistent with the continuum models discussed previously, that have sufficient
degrees of freedom to capture--'qualitatively dynamic friction phenoniena of'the type observed
experimentally by Tolstoi [103] and others: in stick-slip motions of sliding bodies, tangential
jumps occur in strict synchronization with jumps normal to the sliding surfaces.

For this purpose, a minimum of three degrees-of-freedom seems to be necessary: two
(normal and tangential) is inadequate since this would not provide the.coupling between
tangential and normal motions observed in Part 1. A simple mechanical system, not unlike
many seen in friction experiments, that can capture this coupling is a simple rigid body in
plane motion, the rotational degree-of-freedom providing the coupling mechanism. Such a
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system is shown in Figs. 60 and 61 where we have indicated as degrees-of-freedom the sliding
and penetr.ating (normal) displacements UxG and uyG and the rotation li8'

Assuming small rotations and applying the same contact-interface laws used in our con-
tinuum interface model, we arrive at a (regularized) system of equations for this model which
is again of the form

(11.2)

. (I 1.3)

~ ],
C8 .

o 0]
M 0,
o I

Mr(t) + Cr(t) + Kr(t) + P(r(t)) + J(r(t), r(t)) = F,

p~{ ~)=B,c" (Ia(swt}s
= B,c" ( (u,G- su,)~rJs ·

where

Here M is the mass of the body, W its weight, I its moment of inertia relative to the mass
center~ C%, c;" C8 are damping coefficients introduced to model dissipation effects if needed,
K% the (tangential) spring stiffness, Bo is the transverse width of the contact surfaces, L is the
length of the sliding surface in the direction of sliding, ~H the height of the center of mass

HI2

\
HI2

i

Fig. 61. The degreesof frcedom and thc contact penetration of a rigid block with plane motion.
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above rc, and the remaining terms are recognizable from our discussions in Sections 6-10.
The penetrating approach at a point s on the contact surface is a(s) = (Uya - sU8k

We now use this to study the dynamic stability of steady sliding. By steady sliding we mean.
with reference to Fig. 60, the static equilibrium position of the body in frictional contact with
the moving belt. The equilibrium position is characterized by the equilibrium equation (set
;: = r = 0 in (11.2))

Kro + P(ro) + J(ro, 0) = F. (11.4)

During stick-slip oscillations, the body does not stay in this equilibrium position, although at
the conclusion of the 'stick part' of a cycle, one would expect the body to be in a state very
close to such an equilibrium position. The questions thilt then arise are the following: does a
solution for (l1A) exist?; is it unique?; how-can it be computed?; is it dynamically stable? We
will address here only the last two questions. While we hope to consider some questions of
existence and uniqueness of the general problem in a later paper, our numerical results are
physically reasonable and were obtained without computational difficulty.

In order to compute solutions of (11.4) for a certain range [0, cTl of values of the parameter
CT, we subdivide the interval [0, CT] into a prescribed number NINCT of increments !::.CT =
cT/NINCT and, for each increment, K = 1, ... , NINCT, we again solve the nonlinear system
of equations (I1A) by the Ncwton-Raphson method. For the Newton process, starting values
for the equilibrium solutions at the end of the Kth incremcnt are taken to be the (converged)

'solution for the (K - 1)th increment. The initial solution at CT = 0 obviously corresponds to a
frictionless unilateral contact problem of the type in (11J).

Having computed the steady sliding equilibrium position for each value of CT, we now
explore the sensitivity of these equilibrium states to small perturbations. If in (11.2) we let

ret) = ro + wet)

and subtract the equilibrium equation (11.4) from the resulting equation, we obtain

Mw + Cw + Kw + [P(ro+ w)- pero)] + [J(ro+ w, w)- J(ro, 0)] = O. (11.5)

Assuming that the perturbation wet) is small, we consider only the linear contributions for the
terms in brackets in the above equation:

api df
P(ro+ w)-P(ro)=- w = K"(ro)w,ar r-ro

(11.6)

aJ I aJ I dfJ(ro + w, w)- J(ro, 0) = - w + -:- w = KT"(r(), O)w + cr(ro, 0)>>,.
Jr r=ro. t-o ar r=ro.r=o

The matrices K", KT" and CT are precisely the three-degrees-of-freedo~ analogs of the
finite element matrices derived in Section to. It also turns out that the matrix CT(ro,O) is null
because, in the equilibrium positions of the body, the velocity of the body is zero but the
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prescribed velocity of the moving belt is different from zero, IU~I> e > O. This means that the
equilibrium ,points correspond to velocities on the horizontal branches of the friction law
depicted in Fig. 50 and consequently the derivative of the friction stresses with respect to the
sliding velocity is zero. This also means that the linearization of the equations of motion about
the equilibrium position is independent of the regularization approximation used: we are
outside neighborhoods of the discontinuity of Coulomb's friction law.

The final system of linearized equations for the small oscillations about the equilibrium
position is then

Mw + CW+ [K+ Kn+ KTn]w = o. (11.7)

The behavior of this linear system is determined by the solutions of the following quadratic
eigenvalue problem:

(11.8)

This system differs from standard structural dynamics eigenvalue problems because of the
absence of symmetry due to friction effects entering the non-symmetric structure of the matrix
KTn• To illustrate numerically what can happen due to this lack of symmetry, we compute the
equilibrium positions (11.4) of a block sliding on a moving surface, as shown in Fig. 60, for
different values of CT and for each of these positions we compute the corresponding eigenvalues
for (11.8).

The data used are close to the experimental setting devised by Bell and Burdekin [13]. This
does not mean that we will be trying to reproduce any experimental results: several geometri-
cal features are distinct and other data (niT. CT, µ, I) are arbitrarily assumed or approximated
from tables provided by other authors (e.g. Cn' mn). For the time being, we are primarily
concerned with qualitative behaviors of this simple system. The data used for our numerical
experiments are the following:

K~= 2388 1~ Kg S-2, M = 450 Kg,

1= IiM(L2+ lP) = 124.21~ Kg cm2
,

Cx = 0.0 C; = 0.0; 57.16; 571.6; 5716103 Kg S-l ,

C8 = 0.0; 1.388 x let; 1.388 x lOS; 1.388 X 106103 Kg cm2
S-l , (11.9)

L = 48.8 em, H = 30.5 cm,

W = 450 103 Kg cm S-2 .

Bo= 30.5cm,

CT = µC"' µE [0, 1.6) ,

We observe that the geometry of the problem and the conditions of support of the body
imply that a necessary condition for equilibrium is that µ<L/H = 1.6.

The values of the equilibrium displacements UxO, UyO and U8 for the different values of µ are
plotted in Fig. 62. It can be seen that U"G increases linearly with µ and that uyG and U8

increase indefinitely as µ approaches 1.6.
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Fig. 62. Equilibrium displacements of a rigid block in steady sliding on a moving belt for the admissible values of
the coefficient of friction.

Fig. 63 is a plot of the computed evolution in the complex plane of the eigenvalues
associated with the normal and rotational degrees of freedom for the; successive equilibrium
positions obtained with increasing-values-of' µ. In the absence of normal and rotati'onal
damping, these eigenvalues are found to be pure imaginary and distinct for µ = O. As µ is
increased, at some value of µ they coalesce and start having real components symmetric with
respect to the imaginary axis. At a larger value of µ they become pure imaginary again and a
conjugate pair of the eigenvalues approaches the point (0,0) along the imaginary axis as
µ....1.6. This behavior as µ-'t 1.6 is exactly what should be expected since for µ = 1.6 the
equilibrium of the body cannot be sustained and the body acquires a free 'rigid body mode
(tumbling). We also observe that for the geometric and stiff!less properties of this problem the
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Fig. 63. Evolution of the eigenvalues on the complex plane for the successive equilibrium positions obtained with
increasing coefficient of friction (no damping).

eigenvalues associated with the tangential degree of freedom are uncoupled with the normal
and rotational freedoms and remain constant for all the values of J-L.

However, the essential fact to be gained from this analysis is that the non-symmetry of the
frictional contact laws can produce, for sufficiently large values of the coefficient of friction.,
eigenvalues with positive real pan which determine the dynamic instability of the steady
sliding. It can also be shown that, due to the -uncoupling---of, the- tangential mode the
introduction of external tangential damping (Cx) would not stabilize the system; for viscous
stabilization an external normal (Cy) and rotational (CIl) damping are required. This behavior
is made clear in the complex plane diagram of Fig. 64. The essential effect of such viscous
damping is to' shift the eigenvalues towards the negative real axis. For sufficiently high
damping, all the eigenvalues associated with the normal and rotation' freedoms, for all
admissable values'oJ J-L, will have negative real parts ..... ' ... " ,-. , ,.".

A short note on the damping factors ty and ill in Fig. 64 is needed: these are merely
indicators of the amount of damping introduced. They are defined using the natural frequen-
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cies Wyo and Woo of the linearized system for the equilibrium position at µ = 0: iy = C,./2Mwyo;
i8 = C8l2Iwoo.

We will now show the effects of the eigenvalues structure of (11.8) on the motion of the
rigid body. For each set of data, we perform a transient analysis of the motion of the body
assuming that the initial conditions are the following: the displacements corresponding to the
steady sliding equilibrium and a small perturbation on the velocities - an upwards translational
velocity, i.e.,

r(O) = {O.O,-0.01 cm s-t, O.O}\. (11.10)

We first consider a case in which µ is smaller than the value at which some eigenvalues start
to have real components. The data used are

M, I, Cn' mT, L, H, Bo, W as in (11.9),

K" = 11100103 Kg S-2,

CT = µcn, µ = 0.15, (;~ = 0.080 cm S-I ,

(11.11)
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E = 0.002 cm S-I . (11.12)

In Figs. 65, 66 and 67 we show phase plane plots for the tangential (uxo), normal (uy<;) and
rotational (Ue) displacements. It is clear that the resulting motion is a small-amplitude stable
oscillation. Obviously, if we had considered some damping this oscillation would be damped
out and the steady sliding would be essentially attained after a period of time.

A more interesting situation arises when µ is such that some eigenvalues have positive real
parts. Starting from a basic data set and modifying, one at a time, several physical parameters,
it was possible to assess the influence of these parameters on the dynamic responses obtained
in this case. The data used are the following (when more than one value is given for some
parameter, the first belongs to the basic data set):

,

Kx = 2388,11100,44410 103 Kgs-2
,

{M} {450} {225} {900}Kg
I = 70' 35' 140 lQ3Kgcm2'

€" = C"/2Mw,, = 0.005,0.05,0.5, 1.6,5 ,
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Fig. 65. Phase plane plot for the tangential motion of the center of mass (µ. = 0.15).
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Fig. 66. Phase plane plot for the normal motion of the center of mass (µ. = 0.15).

ty = Cy/2Mwyo = 0.04, to = Co/2Iwoo = 0.04,

Bo= 14cm, CT= µCn, µ = 1,

U;:cc = 0.127,0.060,0.220,0.287 em S-l ,

dtm1l7. = 1x lO-s s, e/U~E [0.07, 0.25].

The following remarks summarize our interpretation of the numerical results:
(i) Due to the instability of the normal and rotational modes, the normal and rotational

oscillations grow (see Fig. 68).
(ii) The variation of the normal force on the contact produces changes in the sliding

friction force which in turn produce a tangential oscillation.
(iii) The tangential oscillation may then become sufficiently large that, for small values of

the velocity of the belt U~ the points of the body on the contact surface attain the velocity (;~
and the body sticks for short intervals of time (see Fig. 69).

(iv) With the growing of the normal oscillation actual normal jumps of the body may occur
(sec' Fig. 68).' .. ,., ..

(v) The repeated periods of adhesion have the result of decreasing the average value of the
friction force on the contact and, due to the absence of equilibrium with the restoring force on



J. T. Odell. J.A.C. ManillS. Models alld computatiollal methods for dynamic friction phenomena 613
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Fig. 67. Phase plane plot for the rotation of the center of mass (µ = 0.15).

t
3.30

the tangential spring, the tangential displacement of the center of mass decreases (see Figs.
70-73).

(vi) Then, one of the two following situations may occur:
(a) the normal, rotational and tangential oscillations evolve to what appears to be a steady

oscillation (see Fig. 74) with successive periods of adhesion and sliding, the average values of
the friction force and of the spring elongation being smaller than those corresponding to the
steady sliding equilibrium position (see Fig. 70, U; = 0.287 em S-I); .

(b) at a sufficiently small value of the spring elongation the normal and rotational damping
are able to damp out the corresponding oscillations and the body sticks (see e.g. Fig. 72) since
the restoring force of the spring is then smaller than the maximum available friction force.

Thus monitoring the spring elongations as is usually done in friction experiments, case (a)
would be perceived as an apparently smooth sliding with a coefficient of kinetic friction
smaller than the coefficient of static friction and case (b) would be perceived as Slick -slip
motion.

Fig. 70 shows that, as observed experimentally, an increase on the veloci~ U; produces an
increase of the frequency of the stick-slip motion and a decrease of'the tangential displacement
amplitude (for our data this decrease is small). It also shows that, as expected, the transition from
stick-slip motion to an apparently smooth sliding occurs abruptly at some critical velocity
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Fig. 68. Phase plane plot of the initial part of the normal oseillation of the center of mass (µ. = 1).

(DC; =0.240 cm S-I). However, for the data that we have used, that transition occurs when the
stick-slip frequency (-1.5 Hz) is excessively small compared with the tangential natural frequency
of the body (-11.6 Hz).

Fig. 71 shows that an increase in tangential damping produces a (small) decrease of the
displacement amplitude and that sufficiently large tangential damping produces an apparently
smooth sliding with an apparent coefficient of kinetic friction smaller than the coefficient of
static friction (in agreement with observations of Tolstoi [103] mentioned earlier).

Figs. 72 and 73 show that, also as expected, decreases of the tangential displacements
amplitude can be produced by increasing the tangential stiffness or by decreasing the mass.

11.3. A model for the normal contact dissipation

In Section 6.1, we remarked that if the sliding is not smooth and small (-104 em) normal
jumps occur, it is possible that some plastic deformation of the asperities will take place. In the
numerical experiments presented in the previous section, it appears that damping effects
associated with normal and rotational degrees of freedom may playa role in the deceleration
phase of the sliding portion of the stick-slip cycles. In the previous section; we assumed
arbitrarily that all the damping effects different from dry friction could be simulated by linear
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viscosity. A consequence of that assumption is the fact, visible e.g. in Fig. 68, that normal and
rotational damping act not only during contact but also while the body jumps. On the other
hand, trying to formulate a detailed model of the normal elasto-plastic behavior of the
asperities to apply in dynamic situations expected to have not too severe dissipative effects
does not seem to be worthwhile.

We can borrow one idea for a simple model of such effects from a!1analysis of vibroimpact
phenomena and impact damping by Hunt and Crossley [46]. The key point is to model
hysteresis loops of the form presented in Fig. 75(a), which may occur if the surfaces in contact
are allowed to unload completely [100], by approximate loops of the form presented in Fig.
75(b).

If the normal elastic pressure-penetratiun cu-rve- is of the· power 'Iaw type -(p = c~dmn)
possible additional dissipative terms that can produce loops of the type indicated in Fig. 75(b)
can be taken of the form bna Inti where a is the penetrating. approach and bn is a nonlinear
damping coefficient to be determined experimentally.

Hunt and Crossley [46] do propose for macroscopic Hertzian contacts slight generalizations
of the term adopted here and they also show that for the case In = mn and small energy losses
the correlation between the energy loss per cycle of contact and the damping coefficient bn is
very simple.
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With this new term, the normal contact law (6.4) for our continuum model becomes

PIP

a a
(0) (b)

Fig. 75. Hysteresis loops for the normal deformation of the interface (schematic). (a) Experimentally observed
loop, under quasi-static loading conditions. if total separation of the surfaee is allowed during unloadings; (b)
Hysteresis loop modelled by the constitutive equation (11.13) under dynamie loading conditions.
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Accordingly, a new term must be included on the left-hand side of the variational
statements (8.1), (8.13):

(Q(u, Ii), v) = J bn(u" - g)~UnVn ds.
rc

(11.14)

"
Obviously for the case of the three-dimensional domain, restrictions must be placed upon In

in order for the integral in the above expression to be well defined.
The above term does not introduce any other complication or restriction on either the finite

elements discretization nor on the algorithms described earlier. In Figs. 76, 77 we show the
hysteresis loops obtained for the case of the rigid body model with the geometric, mass and
contact properties (11.9) used in the previous section. for typical values of the impact velocities
u~, two values for the constant bn and In = mn = 2.5.

We also have checked that complex plane diagrams of the type of Fig. 64 could also be
obtained with this type of damping and that the typical stick-slip motion curves of the type of
Figs. 70-73 can also be obtained with this more realistic nonlinear damping term.
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Fig. 76. Hysteresis loops for typieal impact velocities u~= 0.5; 2.0 em S-I (bn = 4.35 x 108 (10:'kg em-4•S S-I);

In = 2.5).
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Fig. 77. Hysteresis loops for typical impact velocities li~ = 0.5; 2.0.~m S-I (b = 4.35 x IlJ"(10) kg em-·.s S-I); 'n = 2.5).

11.4. The steady sliding of a linearly elastic body and its dynamic stability

All the computations performed in Section 11.2 with a rigid body can also be done with
finite element models of linearly elastic bodies. The essential effects observed there are also
observed here.

In order to compare the results of both the computations, we consider the block of Fig. 60
as a linearly elastic body and assume a plane strain state. The geometry, total mass, total
tangential stiffness and contact properties are those given by the data (11.9). The Young's
modulus is E = 1.4 X 106 (103 Kg cm-1 S-2) and the Poisson's ratio is 1.1 = 0.25.

The finite elements mesh used consists of 4 x 3 nine-node isoparametric elements. In Fig. 78
we show the deformed mesh configurations for the steady sliding equilibrium positions at
several values of the coefficient of friction µ. As expected, for the level of forces in presence,
the block behaves much like a rigid body.' [-

As in Section 11.2 we have -also -computed the eigenvalues of (11.8) for the successive
equilibrium positions at values of µ E [0, 1.6), under the assumption of no damping. In Fig. 79
we compare the rigid body model eigenvalues associated. with the normal and rotation
displacements with those from the finite elements model which are associated with similar
modes. The results are very close, showing that the deformability of the body reduces slightly
the imaginary components. All the eigenvalues in the first quadrant of -the·complex plane are
plotted in Fig. 80. It can be observed that in addition to those corresponding to the rigid body
normal and rotationaJ displacements, there are other unstable eigenvalues with larger im-
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Fig. 78. Deformed eon figurations of a linearly elastie block for the steady sliding equilibrium 'configurations at
several values of µ. (Note: Nodal coordinates and nodal displacements arc not to scale - the apparent distortion of
the body rcsults from an amplifieation of the vertical displaeements 103 larger than the one used for the horizontal
displacements; this was needed in order to make visible the rotation of the body.)

aginary components and that one of them does appear for values of J.L below the value at
which the rigid body instability initiates.

Similar computations were also perfonned for a case where no rigid body motions of the
elastic body could occur. The body is a slab similar to the one presented in Fig. 51. The
material and normal contact properties and the boundary conditions on r0 are the same as
those in Section 11.1. The dimensions are now 16 em x 1 em and the finite elements mesh
consists of 9 x 2 nine-node isoparametric elements. The initial negative normal gap on re was
taken successively to be 5 x 10-:4.cm--and -1 X 10-3cm. -The 'rigid' flat surface that compresses
the body along re is assumed to have a velocity towards the right. Deformed mesh
configurations and distributions of normal stresses on re ~re shown in Figs. 81 and 82 for
g = -1X 10-3 cm. The effect of the increase of the compression on the real parts of the
eigenvalues is shown in Fig. 83: larger compression produces increased ins~ability.

Our final numerical examples consist of obtaining the dynamic response of the block of Fig.
60 assuming that it is linearly elastic and that it starts from the perturbed equilibrium position
considered earlier in Section 11.2.



622 J. T. Oden, J.A.c. Martins, Models and computational methods for dynamic friction phenomena

+
(>

Rllj ID BODY HODEL <>

FINITE ELEHErHS "10DEL +
(>

+
<>
+
<>

"'-REAl

Fig. 79. Comparison of the eigenvalues associated wilh 'normal and rotational displacements' obtained with the rigid
body and the finite elements models.

In these examples we will use the central-difference method with a diagonalized mass
matrix. The maximum time step used is I1tmu. = 3 X 10-6s.

The geometry, normal contact properties and total mass are again as in (11.9). We will now
assume the total tangential stiffness K" equal to 11100 (103 Kg s-~, the coefficient of friction µ
equal to 0.15 or ·0.60' and the velocity U; successively equal to 0.01, 0.08, 0.80 em S-I. No
damping effects will be considered when modelling the interior of the linearly elastic body.

We observe that for µ = 0.15 all the eigenvalues are still imaginary (in the absence of any
damping). Perturbing the equilibrium position a small stable oscillation is obtained exactly as
in the rigid body case. For this reason we do not reproduce here the corresponding plots.

For the case µ = 0.6 (some eigenvalues with positive real parts) we have assumed normal
dissipation effects on the contact boundary of the form described in Section 11.3 with
bn = 0.381 X 1010 (103 Kg cm-4

.5 S-I) and In = 2.5. The description' of the motion of the body is
essentially the same given for the rigid body case.

The evolution of the elongation of the spring is shown in Fig. 84 for the three velocities U~
considered. The decrease of the amplitude of the stick-slip motion with the increase of U; is
again observed. In Fig. 85 we show a phase plane plot of the normal oscillations of the contact
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Fig. 80. Eigenvalues with positive rcal parts for a finite elements discretization or a block in steady sliding on a
moving bclt. (The ranges of µ for which those eigcnvalues wcrc obtaincd are indieatcd in the figurc between
brackets.) NINCf = 20; µ E [0, 1.6). Maximum value of µ for which thc equilibrium solution was suecessfully
computed: ii = 1.52. + Eigenvalues corresponding to the 'rigid body' normal and rotational modes.

Node 29 and in Figs. 86 and 87 we show the evolution of the normal and friction stresses on
the same node. In order to assure the reader that the numerous spikes in Figs. 86 and 87 are
not erroneous we show in Figs. 88 and 89 what one of those spikes may look like. In Fig. 89
the occurrence at each cycle of contact of periods of adhesion and sliding is indicated. It is also
important to observe that having used values for the normal contact properties (en> mn) taken
from Table 1 of [9] and having considered a block with dimensions and weight close to those
used by Bell and Burdekin [13], it turns out that the frequency of the normal contact
oscillations observed in Figs. 85, 86 and 88 is of the order of magnitude indicated by Tolstoi
[103] as typical~·103 Hz.

For the case of the larger velocity (DC; = 0.8 cm S-I) that velocity is sufficiently large that the
tangential oscillation of the body is not sufficient to produce .any stick state. Consequently the
average coefficient of friction during sliding is equal to the static coefficient of friction. We
note also that the instability of the equilibrium position makes it impossible for the contact
dal1)P!ng .to d~mp out the nOffilal os~illation. A steady self-excited oscillation is then attained.
That can be observed in Fig. 89 (horizontal oscillation of the node connected to the spring)
and in Fig. 90 (normal oscillation of the contact Node 29). In our computations we have
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Fig. 81. Undeformed (x), and deformed mesh configurations of a eompressed slab in steady sliding equilibrium for
µ = 0 (*), µ = 0.5 (0), and µ= 1.0 (0).
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observed these self-excited oscillations (also in the rigid body case) whenever the velocity U; is
sufficiently large compared with the critical velocity at which the transition from (global) stick-slip
motion to (apparently) smooth sliding occurs and the coefficient of friction is large enough that the
steady sliding equilibrium position is not stable.

12. Summary, conclusions and final comments

• In this paper a large body of literature on the frictional contact of metallic surfaces was
reviewed. Particular emphasis was given to the normal deformability of rough interfaces, the
transition between static and kinetic friction, the occurre!lce of stic~-slip motion and the
fundamental role played by normal contact oscillations on the frictional behavior.

To provide some focus for this investigation, we have proposed that dry metallic friction
phenomena be divided into (at least) three basic categories which perhaps require different
theories for their characterization: Type I, quasi-static plastic deformation of interfaces; Type
II, dynamic friction phenomena of materially stable interfaces, and Type III, cases in which
plowing and wear are significant. The present investigation focuses on Type II friction.

Simple continuum mechanics models for normal and tangential interface response which
reflect essential experimental observations were formulated. Variational principles which
govern a large class of frictional contact problems in elastodynamics were also presented.
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Numerical algorithms for the analysis of finite element approximations of the continuum
problems f<;lrmulated earlier were also proposed. Several numerical experiments show the
feasibility of the techniques proposed.

The dynamic stability of steady sliding and its consequences on the behavior of sliding
bodies ('rigid' or linearly elastic) was numerically studied. Occurrence of apparently smooth
sliding with an apparent coefficient of kinetic friction smaller than the static one and
occurrence of stick-slip oscillations were numerically demonstrated. These were shown to be a
consequence of dynamic instabilities which occur for sufficiently large values of the coefficient
of (static) friction and appropriate values of the other physical parameters involved. Those
instabilities were shown to be the consequence of the inherent non-symmetry of frictional
contact problems and they may occur even if the coefficient of kinetic friction is assumed to be
equal to the coefficient of static friction.

Preliminary numerical results on the effect of the variation of several physical parameters
on the qualitative behavior of the sliding at small velocities give evidence that our models are
very promising simulators of these classes of dynamic response.

The experimental facts summarized in this paper and the numerical results obtained here do
have implications for both the experimental and numerical study of frictional dynamic
problems.

Experimental results on the normal deformabilityof metallic interfaces at low contact
pressures for all the combinations of materials and surface finishes of interest in practical
applications are desperately needed. A thorough test of the models proposed here will only be
possible with close cooperation between experimentalists and numerical analysts.

The dispersion of the values reported in the literature for the coefficient of friction is not
too surprising in view of our results. Our results and the experiments of several authors (e.g.
Tolstoi [103]) strongly suggest that the (apparently) smooth sliding motion and the cor-
responding apparent value of the coefficient of kinetic friction are highly dependent on the
geometric and dynamic properties of the apparatus used (stiffness, mass, damping). The
following observations of Madakson [61] are easily understandable in the above context: "It
has been demonstrated that the friction of a given material depends also on the test system.
Samples of an identical material were distributed to different laboratories to measure the
friction at given conditions. Using different measuring systems each laboratory reported a
different value of the friction."

The normal deforffiability of the interface is an essential feature of dynamic contact
problems involving metallic bodies. Not taking into account this deformability in finite
elements models of these phenomena (even if frictional effects are negligible) leads to some
serious physical inconsistencies. For example, the absence of normal deformability leads to
models which can provide oscillations, depending on the mesh used, with frequencies as high
as 106 Hz but these models may be incapable of delivering experimentally observed contact
oscillations of frequencies of the order of 103 Hz.

We believe that some difficulties encountered in practical finite element calculations of
dynamic friction problems (rapidly alternating contact-release and stick-slip situations) have
the same origin as the oscillations observed in our numerical computations - inherent non-
symmetry of contact friction contributions to the governing dynamical equations and con-
sequent dynamic instabilities.

These effects are certainly unrealistically exaggerated by the use of an infinitely rigid normal
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contact interface response and a programmed (artificial) discontinuous drop of the friction
coefficient from a static value to a lower kinetic value upon sliding.
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