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General Preface

During the past decades, giant needs for ever more sophisticated mathematical
models and increasingly complex and extensive computer simulations have arisen.
In this fashion, two indissociable activities, mathematical modeling and computer
simulation, have gained a major status in all aspects of science, technology, and
industry.

In order that these two sciences be established on the safest possible grounds,
mathematical rigor is indispensable. For this reason, two companion sciences,
Numerical Analysis and Scientific Software, have emerged as essential steps for
validating the mathematical models and the computer simulations that are based on
them.

Numerical Analysis is here understood as the part of Mathematics that describes
and analyzes all the numerical schemes that are used on computers; its objective
consists in obtaining a clear, precise, and faithful, representation of all the
"information" contained in a mathematical model; as such, it is the natural
extension of more classical tools, such as analytic solutions, special transforms,
functional analysis, as well as stability and asymptotic analysis.

The various volumes comprising the Handbook of Nllmerical Analysis will
thoroughly cover all the major aspects of Numerical Analysis, by presenting
accessible and in-depth surveys, which include the most recent trends.

More precisely, the Handbook will cover the basic met/tods of Numerical Analysis,
gathered under the following general headings:

- Solution of Equations in R",
- Finite Difference Methods,
- Finite Element Methods,
- Techniques of Scientific Computing,
- Optimization Theory and Systems Science.

Itwill also cover the numerical solution of actual problems of contemporary interest in
Applied Mathematics, gathered under the following general headings:

- Numerical Methods for Fluids,
- Numerical Methods for Solids,
- Specific Applications.

v



vi General Preface

"Specific Applications" include: Meteorology, Seismology, Petroleum Mechanics,
Celestial Mechanics, etc.

Each heading is covered by several articles, each of which being devoted to
a specialized, but to some extent "independent", topic. Each article contains
a thorough description and a mathematical analysis of the various methods in
actual use, whose practical performances may be illustrated by significant numerical
examples.

Since the Handbook is basically expository in nature, only the most basic results
are usually proved in detail, while less important, or technical, results may be only
stated or commented upon (in which case specific references for their proofs are
systematically provided). In the same spirit, only a "selective" bibliography is
appended whenever the roughest counts indicate that the reference list of an article
should comprise several thousands items if it were to be exhaustive.

Volumes are numbered by capital Roman numerals (as Vol. I, Vol. II, etc.),
according to their chronological appearance.

Since all the articles pertaining to a given heading may not be simultaneously
available at a given time, a given heading usually appears in more than one volume;
for instance, if articles devoted to the heading "Solution of Equations in R"" appear
in Volumes I and 1II, these volumes will include "Solution of Equations in IR"
(Part I)" and "Solution of Equations in IR" (Part 2)" in their respective titles.
Naturally, all the headings dealt with within a given volume appear in its title; for
instance, the complete title of Volume I is "Finite Difference Methods (Part 1)-
Solution of Equations in R" (Part 1)".

Each article is subdivided into sections, which are numbered consecutively
throughout the article by Arabic numerals, as Section 1, Section 2, ... , Section 14,
etc. Within a given section,formulas, theorems, remarks, and figures, have their own
independent numberings; for instance, within Section 14, formulas are numbered
consecutively as (14.1~ (14.2~ etc., theorems are numbered consecutively as Theorem
14.1, Theorem 14.2, etc. For the sake of clarity, the article is also subdivided into
chapters, numbered consecutively throughout the article by capital Roman numerals;
for instance, Chapter I comprises Sections 1 to 9, Chapter II comprises Sections 10
to 16, etc.

P.G. CiARLET

J.L. LIONS

May 1989
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Finite Element Methods
(Part 1)



Finite Elements: An Introduction

1. Tinsley Oden

Finite elements; perhaps no other family of approximation methods has had
a greater impact on the theory and practice of numerical methods during the
twentieth century. Finite element methods have now been used in virtually every
conceivable area of engineering that can make use of models of nature characterized
by partial differential equations. There are dozens of textbooks, monographs,
handbooks, memoirs, and journals devoted to its further study; numerous
conferences, symposia, and workshops on various aspects of finite element
methodology are held regularly throughout the world. There exist easily over one
hundred thousand references on finite elements today, and this number is growing
exponentially with further revelations of the power and versatility of the method.
Today, finite element methodology is making significant inroads into fields in which
many thought were outside its realm; for example, computational fluid dynamics. In
time, finite element methods may assume a position in this area of comparable or
greater importance than classical difference schemes which have long dominated the
subject.

Why finite clemen Is?

A natural question that one may ask is: why have finite element methods been so
popular in both the engineering and mathematical community? There is also the
question, do finite element methods possess properties that will continue to make
them attractive choices of methods to solve difficult problems in physics and
engineering?

In answering these questions, one must first point to the fact that finite element
methods are based on the weak, variational, formulation of boundary and initial
value problems. This is a critical property, not only because it provides a proper
setting for the existence of very irregular solutions to differential equations (e.g.
distributions), but also because the solution appears in the integral of a quantity over
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4 J.T. Odell

a domain. The simple fact that the integral of a measurable function over an
arbitrary domain can be broken up into the sum of integrals over an arbitrary
collection of almost disjoint subdomains whose union is the original domain, is
a vital observation in finite element theory. Because of it, the analysis of a problem
can literally be made locally, over a typical subdomain, and by making the
subdomain sufficiently small one can argue that polynomial functions of various
degrees are adequate for representing the local behavior of the solution. This
summability of integrals is exploited in every finite element program. It allows the
analysts to focus their attention on a typical finite element domain and to develop an
approximation independent of the ultimate location of that ~lement in the final
mesh.

The simple integral property also has important implications in physics and in
most problems in continuum mechanics. Indeed, the classical balance laws of
mechanics are global, in the sense that they are integral laws applying to a given
mass of material, a fluid or solid. From the onset, only regularity of the primitive
variables sufficient for these global conservation laws to make sense is needed.
Moreover, since these laws are supposed to be fundamental axioms of physics, they
must hold over every finite portion of the material: every finite element of the
continuum. Thus once again, one is encouraged to think of approximate methods
defined by integral formulations over typical pieces of a continuum to be studied.

These rather primitive properties of finite elements lead to some of its most
important features:

(1) Arbitrary geometries. The method is essentially geometry-free. In principle,
finite element methods can be applied to domains of arbitrary shape and with quite
arbitrary boundary conditions.

(2) Unstructured meshes. While there is still much prejudice in the numerical
analysis literature toward the use of coordinate-dependent algorithms and mesh
generators, there is nothing intrinsic in finite element methodology that requires
such devices. Indeed, finite element methods by their nature lead to unstructured
meshes. This means, in principle, analysts can place finite elements anywhere they
please. They may thus model the most complex types of geometries in nature and
physics, ranging from the complex cross-sections of biological tissues to the exterior
of aircraft to internal flows in turbo machinery, without strong use of a global fixed
coordinate frame.

(3) Robustness. It is well known that in finite element methods the contributions
of local approximations over individual elements are assembled together in
a systematic way to arrive at a global approximation of a solution to a partial
differential equation. Generally, this leads to schemes which are stable in appropriate
norms, and, moreover, insensitive to singularities or distortions of the mesh, in sharp
contrast to classical difference methods. There are notable exceptions to this, of
course, and these exceptions have been the subject of some of the most important
works in finite element theory. But, by and large, the direct use of Galerkin or
Petrov-Galerkin methods to derive finite element methods leads to conservative
and stable algorithms, for most classes of problems in mechanics and mathematical
physics.
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(4) Matlzematicalfoundation. Because of the extensive work on the mathematical
foundations done during the seventies and eighties, finite elements now enjoy a rich
and solid mathematical basis. The availability of methods to determine a priori and
a posteriori estimates provides a vital part of the theory offinite elements, and makes
it possible to lift the analysis of important engineering and physical problems above
the traditional empiricism prevalent in many numerical and experimental studies.

These properties are intrinsic to finite element methods and continue to make
these methods among the most attractive for solving complex problems.

They represent the most desirable properties of any numerical scheme designed to
handle real-world problems. Moreover, the basic features of finite element
methodology provide an ideal setting for innovative use of modern supercomputing
architectures, particularly parallel processing. For these reasons, it is certain that
finite element concepts will continue to occupy an important role in applications
and in research on the numerical solution of partial differential equations.

The early history

When did finite elements begin? It is difficult to trace the origins of finite element
methods because of a basic problem in defining precisely what constitutes a "finite
element method". To most mathematicians, it is a method of piecewise polynomial
approximation and, therefore, its origins are frequently traced to the appendix of
a paper by COURANT[1943] in which piecewise linear approximations of the
Dirichlet problem over a network of triangles is discussed. Also, the "interpretation
of finite differences" by P6LYA [1952] is regarded as embodying piecewise
polynomial approximation aspects of finite elements.

On the other hand, the approximation of variational problems on a mesh of
triangles goes back much further: 92 years. In 1851. SCHEll BACH[185]] proposed
a finite-element-Iike solution to Plateau's problem of determining the surface S of
minimum area enclosed by a given closed curve. Schell bach used an approximation
Sh of S by a mesh of triangles over which the surface was represented by piecewise
linear functions, and he then obtained an approximation to the solution to Plateau's
problem by minimizing Sh with respect to the coordinates of hexagons formed by six
elements (see WILUAMSON[1980]). Not quite the conventional finite element
approach, but certainly as much a finite element technique as that of Courant.

Some say that there is even an earlier work that uses some of the ideas underlying
finite element methods: Gottfried Leibniz himself employed a piecewise linear
approximation of the Brachistochrone problem proposed by Johann Bernoulli in
1696 (see the historical volume, LElBNIZ [1962]). With the help of his newly
developed calculus tools, Leibniz derived the governing differential equation for the
problem, the solution of which is a cycloid. However. most would agree that to credit
this work as a finite element approximation is somewhat stretching the point.
Leibniz had no intention of approximating a differential equation; rather, his
purpose was to derive one. Two and a half centuries later it was realized that useful
approximations of differential equations could be determined by not necessarily
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taking infinitesimal elements as in the calculus, but by keeping the elements finite in
size. This idea is, in fact, the basis of the term "finite element".

There is also some difference in the process of laying a mesh of triangles over
a domain on the one hand and generating the domain of approximation by piecing
together triangles on the other. While these processes may look the same in some
cases, they may differ dramatically in how the boundary conditions are imposed.
Thus, neither Schell bach nor Courant, nor for that matter Synge who used
triangular meshes many years later, were particularly careful as to how boundary
conditions were to be imposed or as to how the boundary of the domain was to be
modeled by elements, issues that are now recognized as an important feature offinite
element methodologies. If a finite element method is one in which a global
approximation of a partial differential equation is built up from a sequence of local
approximations over subdomains, then credit must go back to the early papers of
HRENNIKOFF[1941], and perhaps beyond, who chose to solve plane elasticity
problems by breaking up the domain of the displacements into little finite pieces,
over which the stiffnesses were approximated using bars, beams, and spring
elements. A similar "lattice analogy" was used by McHENRY [1943]. While these
works are draped in the most primitive physical terms, it is nevertheless clear that
the methods involve some sort of crude piecewise linear or piecewise cubic
approximation over rectangular cells. Miraculously. the methods also seem to be
convergent.

To the average practitioner who uses them, finite elements are much more than
a method of piecewise polynomial approximation. The whole process of partitioning
of domains, assembling elements, applying loads and boundary conditions, and, of
course, along with it, local polynomial approximation, are all components of the
finite element method.

If this is so, then one must acknowledge the early papers of Gabriel Kron who
developed his "tensor analysis of networks" in 1939 and applied his "method of
tearing" and "network analysis" to the generation of global systems from large
numbers of individual components in the 1940s and 19505 (KRON [1939]; see also
KRoN [1953]). Of course, Kron never necessarily regarded his method as one of
approximating partial differential equations; rather, the properties of each component
were regarded as exactly specified, and the issue was an algebraic one of connecting
them all appropriately together.

In the early 1950s, ARGYRIS[1954] began to put these ideas together into what
some call a primitive finite element method: he extended and generalized the
combinatoric methods of Kron and other ideas that were being developed in the
literature on system theory at the time, and added to it variational methods of
approximation, a fundamental step toward true finite element methodology.

Around the same time, SYNGE[1957] described his "method of the hypercircle" in
which he also spoke of piecewise linear approximations on triangular meshes, but
not in a rich variational setting and not in a way in which approximations were built
by either partitioning a domain into triangles or assembling triangles to approximate
a domain (indeed Synge's treatment of boundary conditions was clearly not in the
spirit of finite elements, even though he was keenly aware of the importance of
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convergence criteria and of the "angle condition" for triangles, later studied in some
depth by others).

It must be noted that during the mid-1950s there were a number of independent
studies underway which made use of "matrix methods" for the analysis of aircraft
structures. A principal contributor to this methodology was LEVY[1953] who
introduced the "direct stiffness method" wherein he approximated the structural
behavior of aircraft wings using assemblies of box beams, torsion boxes, rods and
shear panels. These assuredly represent some sort of crude local polynomial
approximation in the same spirit as the Hrennikoff and McHenry approaches. The
direct stiffness method of Levy had a great impact on the structural analysis of
aircraft, and aircraft companies throughout the United States began to adopt and
apply some variant of this method or of the methods of Argyris to complex aircraft
structural analyses. During this same period, similar structural analysis methods
were being developed and used in Europe, particularly in England, and one must
mention in this regard the work ofTAIG [1961] in which shear lag in aircraft wing
panels was approximated using basically a bilinear finite element method of
approximation. Similar element-like approximations were used in many aircraft
industries as components in various matrix methods of structural analyses. Thus the
precedent was established for piecewise approximations of some kind by the
mid-1950s.

To a large segment of the engineering community, the work representing the
beginning of finite elements was that contained in the pioneering paper of TURNER,
CLOUGH,MARTINand Topp [1956] in which a genuine attempt was made at both
a local approximation (of the partial differential equations of linear elasticity) and
the use of assembly strategies essential to finite element methodology. It is
interesting that in this paper local element properties were derived without the use of
variational principles. It was not until 1960 that CLOUGH[1960] actually dubbed
these techniques as "finite element methods" in a landmark paper on the analysis of
linear plane elasticity problems.

The 1960s were the formative years of finite element methods. Once it was
perceived by the engineering community that useful finite element methods could be
derived from variational principles, variationally based methods significantly
dominated all the literature for almost a decade. If an operator was unsymmetric, it
was thought that the solution of the associated problem was beyond the scope of
finite elements, since it did not lend itself to a traditional extremum variational
approximation in the spirit of Rayleigh and Ritz.

From 1960 to 1965, a variety of finite element methods were proposed. Many were
primitive and unorthodox; some were innovative and successful. During this time,
a variety of attempts at solving the biharmonic equation for plate bending problems
were proposed which employed piecewise polynomial approximations, but did not
provide the essentials for convergence. This led to the concern of some as to whether
the method was indeed applicable to such problems. On the other hand, it was clear
that classical Fourier series solutions of plate problems were, under appropriate
conditions, convergent and could be fit together in an assemblage of rectangular
components (aDEN [1962]) and, thus, a form of "spectral finite element methods"
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was introduced early in the study of such problems. However. such high-order
schemes never received serious attention in this period, as it was felt that piecewise
polynomial approximations could be developed which did give satisfactory results.
It was not until the mid- to late I960s that papers on bicubic spline approximations
by BOGNER,Fox, and SCHMIT[1966J and BIRKHOFF,SCHULTZ,and VARGA[1968J
provided successful polynomial finite element approximations for these classes of
problems.

Many workers in the field feel that the famous Dayton conferences on finite
elements (at the Air Force Flight Dynamics Laboratory in Dayton, Ohio, USA)
represented landmarks in the development of the field (see PRZEMIENIECKIet al.
[1966J). Held in 1965, 1968, 1970, these meetings brought specialists from all over
the world to discuss their latest triumphs and failures, and the pages of the
proceedings, particularly the earlier volumes, were filled with remarkable and
innovative accomplishments from a technical community just beginning to learn the
richness and power of this new collection of ideas. In these volumes one can find
many of the premier papers of now well-known methods. In the first volume alone
one can find mixed finite element methods (HERRMANN[1966J), Hermite approxi-
mations (PESTEL [1966J), CI-bicubic approximations (BOGNER,Fox and SCHMIT
[1966]), hybrid methods (PIAN [1966]) and other contributions. In later volumes,
further assaults on nonlinear problems and special element formulations can be
found.

Near the end of the sixties and early seventies there finally emerged the realization
that the method could be applied to unsymmetric operators without difficulty and
thus problems in fluid mechanics were brought within the realm of application of
finite element methods; in particular, finite element models of the full Navier-Stokes
equations were first presented during this period (ODEN [1969], ODENand SOMOGYI
[1968], ODEN [1970]).

The early textbook by ZIENKIEWICZand CHEUNG[1967] did much to popularize
the method with the practicing engineering community. However, the most
important factor leading to the rise in popularity during the late 1960s and early
1970s was not purely the publication of special formulations and algorithms, but the
fact that the method was being very successfully used to solve difficult engineering
problems. Much of the technology used during this period was due to Bruce Irons,
who with his colleagues and students developed a multitude of techniques for the
successful implementation of finite elements. These included the frontal solution
technique (IRONS[1970]), the patch test (IRONSand RAZZAQUE[1972]), isoparametric
elements (ERGATOUDlS,IRONSand ZIENKIEWICZ[1966]), and numerical integration
schemes (IRONS[1966]) and many more. The scope of finite element applications in
the 1970s would have been significantly diminished without these contributions.

The mathematical theory

The mathematical theory of finite elements was slow to emerge from this caldron of
activity. The beginning works on the mathematical theory of finite elements were
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understandably concerned with one-dimensional elliptic problems and lIsed many
of the tools and jargon of Ritz methods, interpolation, and variational differences.
An early work in this line was the paper of VARGA[1966] which dealt with "Hermite
interpolation-type Ritz methods" for two-point boundary value problems. We also
mention in this regard the paper of BIRKIIOFF,DEBOOR,SCHWARTZand WENDROFF
[1966] on "Rayleigh-Ritz approximation by piecewise cubic polynomials". This is
certainly one of the first papers to deal with the issue of convergence of finite element
methods, although some papers on variational differences yielded similar results but
did not focus on the piecewise polynomial features of finite elements. The work of
KANGFENG [1965], published in Chinese (a copy of which 1 have not been able to
acquire for review) may fall into this category and is sometimes noted as relevant to
the convergence of finite element methods.

The mathematical theory of finite elements for two-dimensional and higher-
dimensional problems began in 1968 and several papers were published that year on
the subject. One of the first papers in this period to address the problem of
convergence of a finite method in a rigorous way and in which a priori error
estimates for bilinear approximations of a problem in plane elasticity are obtained,
is the often overlooked paper of JOHNSONand McLAY [1968], which appeared in the
Journal of Applied Mechanics. This paper correctly developed error estimates in
energy norms, and even attempted to characterize the deterioration of convergence
rates due to corner singularities. In the same year there appeared the first of two
important papers by OGENESJAN and RUCHOVEC[1968,1969] in the Russian
literature, in which "variational difference schemes" were proposed for linear
second-order elliptic problems in two-dimcnsional domains. These works dealt with
the estimates of the rate of convergence of variational difference schemes.

Also in 1968 there appeared the important mathematical paper OfZLAMAL[1968]
in which a detailed analysis of interpolation properties of a class of triangular
elements and their application to second-order and fourth-order linear elliptic
boundary value problems is discussed. This paper attracted the interest of a large
segment ofthe numerical analysis community and several very good mathematicians
began to work on finite element methodologies. The paper by Zlamal also stands
apart from other multidimensional finite element papers of this era since it
represented a departure of studies of tensor products of polynomials on rectangular
domains and provided an approach toward approximations in general polygo-
nal domains. In the same year, C1ARLET[1968] published a rigorous proof of
convergence of piecewise linear finite element approximation of a class of linear
two-point boundary value problems and proved Lex)estimates using a discrete
maximum principle. We also mention the work of OLIVEIRA[1968] on convergence
of finite element methods which established correct rates of convergence for certain
problems in appropriate energy norms.

A year later, SCHULTZ[1969] presented error estimates for "Rayleigh-Ritz-
Galerkin methods" for multidimensional problems. Two years later, SCHULTZ
[1971] published L2 error bounds for these types of methods.

By 1972, finite element methods had emerged as an important new area of
numerical analysis in applied mathematics. Mathcmatical conferences were held on
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the subject on a regular basis, and there began to appear a rich volume of literature
on mathematical aspects of the method applied to elliptic problems, eigenvalue
problems, and parabolic problems. A conference of special significance in this period
was held at the University of Maryland in 1972 and featured a penetrating series of
lectures by Ivo BabuSka (see BABUSKA and AzIZ [1972]) and several important
mathematical papers by leading specialists in the mathematics of finite elements, all
collected in the volume edited by AZlz [1972].

One unfamiliar with aspects of the history of finite elements may be led to the
erroneous conclusion that the method of finite elements emerged from the growing
wealth of information on partial differential equations, weak solutions of boundary
value problems, Sobolev spaces, and the associated approximation theory for
elliptic variational boundary value problems. This is a natural mistake, because the
seeds for the modern theory of partial differential equations were sown about the
same time as those for the development of modern finite element methods, but in an
entirely different garden.

In the late 1940s, Laurent Schwartz was putting together his theory of distribu-
tions around a decade after the notion of generalized functions and their use inpartial
differential equations appeared in the pioneering work of S.L. Sobolev. A long
list of other names could be added to the list of contributors to the modern theory of
partial differential equations, but that is not our purpose here. Rather, we must only
note that the rich mathematical theory of partial differential equations which began
in the 1940s and 1950s, blossomed in the 1960s, and is now an integral part of the
foundations of not only partial differential equations but also approximation
theory, grew independently and parallel to the development of finite element
methods for almost two decades. There was important work during this period on
the foundations of variational methods of approximation, typified by the early work
of LIONS [1955] and by the French school in the early I960s; but, while this work did
concern itself with the systematic development of mathematical results that would
ultimately prove to be vital to the development of finite element methods, it did not
focus on the specific aspects of existing and already successful finite element
concepts. It was, perhaps, an unavoidable occurrence, that in the late 1960s these
two independent subjects, finite element methodology and the theory of approxim-
ation of partial differential equations via functional analysis methods, united in an
inseparable way, so much so that it is difficult to appreciate the fact that they were
ever separate.

The 19705 must mark the decade of the mathematics of finite elements. During
this period, great strides were made in determining a priori error estimates for
a variety of finite element methods, for linear elliptic boundary value problems, for
eigenvalue problems, and certain classes of linear and nonlinear parabolic problems;
also, some preliminary work on finite element applications to hyperbolic equations
was done. It is both inappropriate and perhaps impossible to provide an adequate
survey of this large volume ofliterature, but it is possible to present an albeit biased
reference to some of the major works along the way.

An important component in the theory of finite elements is an interpolation
theory: how well can a given finite element method approximate functions of a given
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class locally over a typical finite element? A great deal was known about this subject
from the literature on approximation theory and spline analysis, but its particular-
ization to finite elements involves technical difficulties. One can find results on finite
element interpolation in a number of early papers, including those of ZLAMAL
[1968], BIRKIIOFF[1969], SCHULTZ[1969], BRAMBLEand ZLAMAL[1970], BABUSKA
[1970, 1971], and BABuSKAand AZlz [1972]. But the elegant work on Lagrange and
Hermite interpolations of finite elements by C1ARLETand RAVIART[1972a] must
stand as a very important contribution to this vital aspect of finite element theory.

A landmark work on the mathematics of finite elements appeared in 1972 in the
remarkably comprehensive and penetrating memoir ofBABuSKAand AZIZ[1972] on
the mathematical foundations of finite element methods. Here one can find
interwoven with the theory of Sobolev spaces and elliptic problems, general results
on approximation theory that have direct bearing on finite element methods. It was
known that Cea's lemma (CEA [1964]) established that the approximation error in
a Galerkin approximation of a variational boundary value problem is bounded by
the so-called interpolation error; that is, the distance in an appropriate energy norm
from the solution of the problem to the subspace of approximations. Indeed, it was
this fact that made the results on interpolation theory using piecewise polynomials
of particular interest in finite element methods. In the work of BABUSKA[1971] and
BABUSKAand AZIZ[1972], this framework was dramatically enlarged by Babu~ka's
introduction of the so-called "INF-SUP" condition. This condition is encountered
in the characterization of coerciveness of bilinear forms occuring in elliptic
boundary value problems. The characterization of this "INF-SUP" condition for
thc discrete finite element approximation embodies in it the essential elements for
studying the stability in convergence of finite elemcnt methods. BREZZI [1974]
developed an equivalent condition for studying constrained elliptic problems and
these conditions provide for a unified approach to the study of qualitative
properties. including rates of convergence, of broad classes of finite element
methods.

The fundamental work of NITSCHE[1970] on Len estimates for general classes of
linear elliptic problems must stand out as one of the most important contributions of
the seventies. STRANG [1972], in an important communication, pointed out
"variational crimes", inherent in many finite element methods, such as improper
numerical quadrature, the use of nonconforming elements, improper satisfaction of
boundary conditions, etc., all common practices in applications, but all frequently
leading to exceptable numerical schemes.

In the same year, CIARLETand RAVIART[1972b, c] also contributed penetrating
studies of these issues. Many of the advances of the 1970s drew upon earlier results
on variational methods of approximation based on the Ritz method and finite
differences; for example the fundamental Aubin-Nitsche method for lifting the order
of convergence to lower Sobolev norms (see AUBIN[1967] and NITSCHE[1963]; see
also OGENESJANand RUCHOVEC[1969]) used such results. In 1974, the important
paper of BREZZI[1974] mentioned earlier, used such earlier results on saddle point
problems and laid the groundwork for a multitude of papers on problems with
constraints and on the stability of various finite element procedures. While
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convergence of special types of finite element strategies such as mixed methods and
hybrid methods had been attempted in the early 1970s (e.g. ODEN[1972]), the Brezzi
results, and the methods of BabuSka for constrained problems, provided a general
framework for studying virtually all mixed and hybrid finite elements (e.g. RAVIART
[1975], RAVIARTand THOMAS[1977], BABUSKA,ODEN and LEE [1977]).

The first textbook on mathematical properties of finite element methods was the
popular book of STRANGand FIx [1973]. A book on an introduction to the
mathematical theory of finite elements was published soon after by ODEN and
REDDY[1976] and the welI-known treatise on the finite element method for elIiptic
problems by CIARLET[1978] appeared two years later.

The penetrating work of NITSCHEand SCHATZ[1974] on interior estimates and
SCHATZand WAHLBIN[1978] on L <r> estimates and singular problems represented
notable contributions to the growing mathematical theory of finite elements. The
important work of DOUGLASand DUPONT (e.g. [1970, 1973]; DUPONT [1973]) on
finite element methods for parabolic problems and hyperbolic problems must be
mentioned along with the idea of elliptic projections of WHEELER[1973] which
provided a useful technique for deriving error bounds for time-dependent problems.

The 1970s also represented a decade in which the generality of finite element
methods began to be appreciated over a large portion of the mathematics and
scientific community, and it was during this period that significant applications to
highly nonlinear problems were made. The fact that very general nonlinear
phenomena in continuum mechanics, including problems of finite deformation of
solids and offiow of viscous fluids could be modeled by finite elements and solved on
existing computers was demonstrated in the early seventies (e.g. ODEN [1972]), and,
by the end of that decade, several "general purpose" finite element programs were in
use by engineers to treat broad classes of nonlinear problems in solid mechanics and
heat transfer. The mathematical theory for nonlinear problems also was advanced
in this period, and the important work of FALK [1974] on finite element
approximations of variational inequalities should be mentioned.

It is not too inaccurate to say that by 1980, a solid foundation for the
mathematical theory offinite elements for linear problems had been established and
that significant advances in both theory and application into nonlinear problems
existed. The open questions that remain are difficult ones and their solution will
require a good understanding of the mathematical properties of the method. The
works collected in this volume should not only provide a summary of important
results and approaches to mathematical issues related to finite elements, but also
they should provide a useful starting point for further research.
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