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Abstract 

Several computational and mathematical features of the h-p cloud method are demonstrated in this paper. We show how h, p 

and h-p adaptivity can be implemented in the h-p cloud method without traditional grid concepts typical of finite element 
methods. The mathematical derivation of an a posteriori error estimate for the h-p cloud method is also presented. Several 
numerical examples illustrate the main ideas of the method. 

1. Introduction 

In recent months, there has been growing interest in several new families of methods for the 
computer simulation of complex problems in science and engineering. They have been categorized 
under diverse headings such as meshless methods, particle methods, wavelet-type methods, element- 
free methods, finite point methods, etc. All of these techniques have one common feature: they do not 
rely on traditional grid concepts typical of finite element, finite difference, or finite volume methods. 
While many of these methods are not truly ‘meshless’ in that they may involve somewhat structured 
collections of quadrature points, they possess a number of interesting computational and mathematical 
properties which suggest they could be used advantageously for a broad class of scientific and 
engineering problems. Also, there is a strong connection between these methods and the so-called 
particle methods which have been in use for a number of decades to study highly non-linear problems in 
physics and mechanics. 

Duarte and Oden [lO,ll] have shown that the moving least squares functions (MLSF) [12] constitutes 
a partition of unity and have developed a new meshless method called h-p clouds. The basic idea of the 
method is to multiply a partition of unity (i.e. MLSF) by polynomials or other appropriate class of 
functions. The resulting functions, called h-p clouds, retain good properties of the MLSF, such as high 
regularity and compactness, and linear combinations of these functions can represent polynomials of 
any degree. This property allows the implementation of p and h-p adaptivity in the h-p clouds context 
with the same remarkable features of h-p finite element methods but without the burden of a mesh. 

Following this introduction, the construction of the h-p cloud spaces is discussed in Section 2. 
Practical aspects of the h-p cloud method like the implementation of essential boundary conditions and 
the handling of domain geometry are also discussed in Section 2. An a posteriori error estimate for the 
h-p cloud method is presented in Section 3. In Section 4 a number of interesting mathematical and 
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computational properties of the h-p cloud method are demonstrated along with the solution of three 
boundary-value problems. The first problem demonstrates how h, p and h-p adaptivity can be 
implemented in the h-p cloud method. The algorithms used are also discussed. The second problem 
investigates the sensitivity of the method to Poisson locking and compares the performance of the 
method to the h and p version of the finite element method. The third problem in Section 4 focuses on 
the use of p-orthotropic approximations using the h-p cloud method. Finally, in Section 5 the 
conclusions are outlined. 

2. Construction of h-p cloud spaces 

In this section, the construction of the h-p cloud basis functions is described and some properties of 
these functions are reviewed. One key idea used in the construction of h-p cloud spaces is that of a 
partition of unity. These class of functions can be used to construct linearly independent functions that 
have many properties in common with the global basis functions used in the finite element method like 
local compactness and polynomial reproducing properties. But, unlike the finite element basis 
functions, the functions used in h-p cloud method can be as smooth as desired, even C”(0) functions. 
And, most remarkably, there is no need to partition the domain into smaller subdomains, e.g. finite 
elements, to construct the h-p cloud functions. All that is needed is an arbitrarily placed set of nodes 
which serve as origins for local spectral-type approximations. 

2.1. The Partition of unity 

Let 0 be an open bounded domain in R”, n = 1,2 or 3 and QN denote an arbitrarily chosen set of N 
points X, E 0 referred to as nodes 

We associate with the set QN a finite open covering of 0 (Fig. 1) in the following way: let w,, 
CK=l,... , N, denote a set of segments/balls/spheres (referenced simply as clou& from now on) 
centered at X, and with radii h, chosen in such a way that 5.,, : = {w,}~=~ constitutes an open covering 
of n 

A class of functions YN : = {q,} f= 1 is calied a partition of unity subordinated to the open covering TN 
if it possesses the following properties: 

Fig. 1. Example of an open covering of a 2D domain a. 
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Note that CP,(X) may be negative. 
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The following approach is used in the h-p cloud method to build a partition of unity YN: 
Let We: IF!” + R denote a weighting function that belongs to the space Ct,(w,), s 30 with the 

following properties: 

. Wa(y)aO VyER 

. Y(Y) := K(Y - %) 

where the functions W, belong to the space Ci(Sh,), s 3 0 and a,, e is a cloud of radius h, centered at 
the origin 

Bhu = {X E R” : I(&” <h,} 

Next, we introduce a family of inner products defined on &? by 

(fl g), : = $ “u’-,(Y)f(%)g(?J 7 f,g:fl+rw, f,gEC’@)l*O (2.1) 

ASSUMPTION 1. Given a set of m functions P = {P,, P2, . . . ,P,}, P,:n+lF8, P,EC’(fi), la0 for 
i=l,..., m, the weighting functions We defined above and the functions Pi are such that VX E fi 
there holds 

k$,a,(Pk,P,),=O forI=l,... ,mifandonlyifa,=O fork=l,....m. 

Necessary and sufficient conditions for the satisfaction of Assumption 1 have been presented in 
[lO,ll]. 

The partition of unity function cp, associated with the cloud o, is defined by 

(2.2) 

where 

l 

l 

0 

P(x) := {P,(x), P*(x), . . . , P,(x)}f, 3 P, s.t. P,(x) = 1 , 

A,(x) := (P,, P,), , Pi, P, E P 

B,(x) := W&(X)P(X,) . 

The set of functions P is, in general, a set of complete polynomials in R” and, therefore, they are 
C”(0) functions. The weighting functions W6, can be constructed in such a way that they are also 
C”(0) functions [9]. The following theorem is proved in [lO,ll]: 

THEOREM 1. Let Pi, i = 1,. . . , m, 3 Pi s.t. P,(x) = 1 and Wm, (Y = 1, . . . , N be the basis functions and 
the weighting functions used to construct the functions ‘p, defined in (‘2.2). Suppose that Pi, i = 
1 ,.-a 3 m E C’(n) and ‘Evb,, a = 1, . . . 
space C;inV.q) 

, N E Ci(w,). Then the functions ‘p, defined in (2.2) belong to the 
(0,) and C, q(x) = 1 V x E 0. 

Therefore, if the functions Pi and the weighting functions We are sufficiently smooth, the definition of 
‘p, given in (2.2) satisfies the definition of a partition of unity. It can also be shown that [lO,ll] 
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XEn 

REMARK 1. If P= {l}, then 

(2.3) 

(2.4) 

which are known as Shepard functions [18]. In all numerical examples of Section 4, this partition of 
unity is used in the construction of the family of functions S:p defined in Section 2.2. The main appeal 
of this particular partition of unity is its low computational cost and the simplicity of computation. 

2.1 .l. Choice of the weighting functions 
The approach described above is quite general and can be used in any dimension. Also, the choice of 

the weighting function “wb, is very flexible. These functions can, for example, be constructed in such a 
way that the decay of the functions cp, towards the boundary of w, is fast. Melenk [16] has shown 
recently that if a function uhp can approximate u much better on the interior of a ball w, than on the 
whole of w,, the decay of the functions 40, towards the boundary of o, can be used to get better local 
estimates of the error on w,. 

It should be noted that the support w, of the weighting functions does not have to be a circle or a 
sphere. It can, for example, be an ellipse or a rectangle in two dimensions. 

One important situation where the judicious choice of the weighting functions can be beneficial is in 
the imposition of essential boundary conditions. Lancaster and Salkauskas [12] have shown that if the 
weighting functions are of the form 

(2.5) 
with p an even positive integer, x$Q,, then the functions ‘p, corresponding to P = {l} constitute a 
partition of unity and have the property 

cp,(x~)=s,, %p=l,...,N (2.6) 

This property, as demonstrated in Section 2.4, is very useful to impose Dirichlet boundary conditions. 

2 2 The Families SkPp . . N 

The fundamental idea in the h-p cloud method is the construction of the family of functions S:’ 
using the partition of unity YN defined in the previous section. These class of functions can be 
constructed at a cost comparable to the computation of finite element shape functions and has the 
property that, for a proper choice of the set P, we can ensure that .Yp C span{9;P} where Pp denotes 
the space of polynomials of degree less or equal to p. In this section the construction of the families 
S$p is described and some theorems concerning fundamental properties of these functions are stated. 

Let 3’ denote a set of tensor-product complete polynomials L,, in R3, 

L,,(x)= Li(XI)Lj(X*)Lm(X3) Y Oci, i,mc P 

where Li is a polynomial of degree i in R. Other sets of complete polynomials can be used as well; e.g. 
the smallest set of complete polynomials II,. In the following, 9’: : = {cp~}~= 1 denotes a partition of 
unity that is 6P,-reducible for the set Q,,,; 
VxEfi: 

that is, given any element L,, E Zk the following holds 

Lijm(x) = Ii Lijm(xa)cPt(x) 
a=1 

(2.7) 

Therefore, k represents the polynomial degree that the partition of unity .Yk can represent through 
linear combinations. 

The family of functions $2” is defined by 
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~~“={{cp~(x)}U{cp~Lij~(~)}:lQcr~N; Oci, j,mSp, 

ior jorm>k; p*k} (2.8) 

If, instead of tensor-product polynomials, the set IIP is used, then 

~~P={{~~(~)}U{~~L,m(x)}:l~cu~N; Osi, j,msp, 

k<i+j+mSp;p>k} (2.9) 

The idea behind the definition in (2.8) or (2.9) is to add, hierarchically, appropriate elements to the 
set 9: such that the resulting set can reproduce, as linear combinations, polynomials of degree p 3 k. It 
can be shown [lO,ll] that those elements are precisely the product of the functions cpk with the 
elements from the set ZP that are missing from the set .J&. 

For consistent results, regardless of the scale of the problem, the h-p cloud functions introduced in 
(2.8) are implemented using the mappings given by 

F<, :;+, 

F,(5)=h,5 +x,, SE& 

where 

(2.10) 

t := (5 ER”: ]]&“<l} 

is a cloud of radius one and 

W, := {xEW: JIX, -&,<h,} 

is the (interior of the) support of the function cp,. 
Note that a different mapping is used for each cloud w,. Each of the mappings (2.10) represents a 

translation and a dilation. Nonetheless, there are situations where more general mappings involving 
also rotations are useful. One example is discussed in Section 4.3. 

The h-p cloud function ‘P,L~~~(x) is implemented in R3 by 

‘P,‘ij,(x) := cPa(x)(‘ij, “F,‘(x)) (2.11) 

where i,,(g) is a polynomial defined on [-1, 113. In the numerical examples of Section 4, the 
polynomials 

ii,=~‘nl O<i+j=Sp 

are used to build the families %LCo,” in R2. 
The following theorem is proved in [lo]. 

THEOREM 2. TP Cspan(%$JP). 

Fig. 2(a) shows the function cp%=’ from the family siL:5 associated with a node x, at the origin. Figs. 
2(b) and 2(c) show the functions ycpk=’ and xyq~~=~ from the families $$Z~~“’ and $~~!$‘“2, 
respectively. A uniform 5 X 5 node arrangement is used to build the partition of unity. 

2.2.1. Beyond polynomials 
In the definition of the family S:P given in (2.8) and (2.9), the elements from the partition of unity 

Lf,, are multiplied by polynomials. Nonetheless, in cases where there is some knowledge of the function 
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(a) 2-D function J&=” from the family Fk2;:. (b) 2-D function y&O from the family Fi:&“‘. 

(c) 2-D function zycp, l=” from the family Fi2;;‘“. 

Fig. 2. Examples of 2-D h-p cloud basis functions. 

being approximated, the dimension of the space T~$J” can be made smaller without deteriorating its 
approximating properties. Melenk [16] has shown that harmonic polynomials can be used to locally 
approximate the solution of the Laplace’s equation and generalized harmonic polynomials can be used 
in the case of the two-dimensional elasticity equations. Note that the dimension of the set of harmonic 
polynomials grows linearly with p in two dimensions while for the full set of polynomials the dimension 
grows quadratically. 

Another important class of problems where the use of special functions can be advantageous is in the 
analysis of crack problems. It is well known that (in 2D) near the crack tip the singular part of the 
solution u can be expressed as [20] 

where (r, 0) is a polar coordinate system at the crack tip, F,, i = 1,2, are smooth functions of 8 and K,, 
K,, are stress intensity factors. 

Functions with this same kind of singularity can easily be incorporated in the construction of the h-p 
cloud spaces. 
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2.3. Handling the boundaries 

The use of a covering like 5. = {w,},“=, may lead to implementation difficulties when the domain R 
is not strictly convex; that is, when the segment connecting two points x, y E 0 intersects the boundary 
an. The covering 5, is also used in other meshless methods, like the element free Galerkin method [4] 
and the reproducing kernel method [13,14]. Given an arbitrary point x E 0, one needs an effective 
algorithm to find the set of functions ‘p, that are non-zero at x. Let us denote this set by Connex(x) (for 
‘connectivity’ of clouds relative to x). 

To find if a function cp, belongs to Connec(x) it is not sufficient to check if ]]x -x, ]IIwn <h, if II > 1, 
because the domain 0 may not be strictly convex. Fig. 3(a) illustrates the situation when a domain 
fi C Rz has a re-entrant corner and a cloud is a circle. Let ‘p, denote the partition of unity function 
associated with node x, shown in Fig. 3(a). We would like, for obvious reasons, that ‘p, E Connec(x) but 

cp, $ Con=(y). 
In the element-free Galerkin method, a function cp, belongs to Connec(x) if [3,4]: 
l Ilx-x,llw,,<h, and 
l The segment connecting the points x and x, does not intersect the boundary S!. 
Although in the situation illustrated in Fig. 3(a) the above algorithm works well, there are situations 

where the use of this algorithm has the effect of using functions that are discontinuous. The situation is 
illustrated in Fig. 3(b). According to the above algorithm, the function cp, belongs to Connec(x) but 
does not belong to Connec(y), which is equivalent to impose that cp,(y) = 0. Consequently, the function 
cp, will be discontinuous along the dotted line showed in Fig. 3(b). 

(a) Algorithm used in the EFGM. (b) Line of discontinuity introduced by the 
use of the algorithm in (a). 

b 

(c) Algorithm used in the h-p cloud method. 

Fig. 3. Algorithms used to find the connectivities of a point. 
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In the h-p cloud method, this problem is circumvented by using the following algorithm to check if a 
function cp, belongs to Connec(x) (in two dimensions and when a cloud is a circle): 

l check if ]]x -x, ]] a” <h, and if true, 
0 let a and b be the intersections of the line defined by the points x and x, with the circumference 

8w, of radius h, centered at x, (see Fig. 3(c)). Let ab and ab’ be the two arcs defined by the points 
a and b on the circumference 8~~. If both ab and ab’ intersect the boundary aa, then 
cp, JZ Connec(x). 

This algorithm is illustrated in Fig. 3(c). Note that the function ‘p, E Connec(x) but (p,e Connec(y). 
Belytschko and colleagues have recently proposed modifications to their original approach that 

overcome the discontinuity problem mentioned above [2]. 

2.4. Imposition of essential boundary conditions 

One major difficulty with all meshless methods is the imposition of essential boundary conditions. 
This is because, in general, the approximating functions do not satisfy the Kronecker-delta condition 
(2.6). In addition, approximating functions associated with nodes not at the boundary may be non-zero 
at the boundary. Nonetheless, there are many ways to overcome this problem. Most meshless methods 
use Lagrange multipliers or penalty methods to impose essential boundary conditions [3,4]. In the h-p 
cloud method, the following approach can also be used: 

Suppose that weighting functions of the type given by (2.5) are used to build the partition of unity 
functions rp,. If P = (1) (this corresponds to the case k = 0 in the definitions (2.8) and (2.9)) then 

From the above and the definition of wh, it is immediately shown that 

(2.12) 

Suppose Jhat the functions i,,(e) used to build the family of cloud functions 5:” are polynomials 
given by (L,, are defined in (2.11)) 

iijm(6)=5i77'5m Osi, j,m<p k=O<i+j+m<p 

Then 

i,,(O) = 0 (2.13) 

In the general case the functions iij, can always be translated such that they are zero at 5 = 0. 
From the definition of the mappings F, and (2.13) we have that 

&j,oF,‘(xo)=O if xP =x,. 

Therefore, the h-p cloud functions yh.Lij,(x) satisfies 

qaLi,m(Xp) = qa(Xp)(‘,,OF,‘(Xp)) =O a, P = 1, . . ’ > N 

Consequently, the only non-zero cloud function at a node x, is the partition of unity function cp, ; 
moreover, am = 1. 

Let 4aj denote an h-p cloud function from the space S:P with +a,1 = A. From the above we have that 

~~j(x,)=Sj,8+ a,@=1 ,..., N j=l,..., M(a) (2.14) 

where N is the number of nodes in the discretization and M(a) is the number of cloud functions 
associated with node x,. 

Let the function 
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N M(a) 

‘hpCx) = C C uaj4aj(x> 
ol=l j=l 

be an h-p cloud approximation to a function u defined on 0. Eq. (2.14) implies that 

N M(u) N M(a) 

%,&3) = c c u,j+aj(xp) = C C uaj’jl8p = ~61 ‘~0 E QN 
a=1 j=l a=1 j=l 

where up1 is the coefficient associated with the h-p cloud function 4pP. An h-p finite element 
approximation has a similar property: all high-order shape functions are zero at any finite element 
vertex node and the only non-zero shape function at a vertex node is equal to one there. 

If we set up, = u(x,) VxP E QN, then 

(2.15) 

Now suppose that we want to impose the following boundary condition 

UhP = u - on& (2.16) 

If (2.15) is true for at least one node xP E r,, the boundary condition (2.16) can be imposed following 
the approach used in the p and h-p version of the finite element method or in the spectral method. In 
the p version of the FEM, for example, the coefficients of the non-zero shape functions at r, are 
evaluated by computing the H1(TD) semi-norm projection of U over the space spanned by these shape 
functions [20]. These coefficients are then imposed on the global system of equations. A more detailed 
account of this approach is the subject of a forthcoming paper. 

3. An explicit a posteriori error estimator for h-p clouds 

In this section, an explicit a posteriori error estimator for the h-p cloud method is derived. We follow 
the proofs of Ainsworth and Oden [l] in the context of the finite element method. We make use of the 
high regularity of the h-p cloud approximations to avoid the calculation of flux jumps in the domain, as 
is done in the error estimate of Ainsworth and Oden [l]. The error estimator is restricted to the case 
where the families 9;’ are used in a Galerkin method, as is the case of the numerical examples of 
Section 4. 

3.1. Model problem 

Let fi c 53' be a bounded domain with Lipschitz boundary 80. Consider the model elliptic boundary 
value problem of finding the solution u of 

-Au+cu=f ino (3.1) 

subject to the boundary conditions 

g=g onr, 

u=o on r, 

where aR =r, u r,, r, n r, = 0. 
The variational form of this problem is to find u E V, such that 

B(u, u) = L(u) vu E v, 

where V, is the space 

V, = (71 EH’(L?) : u = 0 on r,) 
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and where 

with dx = du, dx,. 
Suppose that XhP C V,, is a subspace built using the h-p cloud family S;“, that is, XhP = ~pan{~~~}. 

Then, the h-p cloud approximation of this problem is to find uhP E Xhp such that 

+,, 7 vhp) = L(v,,) v vhp E XhP 

The error e = u - uhp belongs to the space V,, and satisfies, V v E V,, 

B(e, v) = B(u, v) - B(u,,, v) = L(v) - B(u,,, v) (3.2) 

Moreover, the standard orthogonality condition for the error in the Galerkin projection holds: 

B(e, vhp) = 0 V vhp E XhP (3.3) 

3.2. The error estimate 

Suppose that Xhp C (C’(0) n V,,). Then, integration by parts of (3.2) gives 

or 

where r is the interior residual 

r=f i-Au,,-cu,, in 0 

and R is the boundary residual 

auhp 
R=g-an on r, 

Each of these quantities is well defined thanks to the smoothness of the data and the regularity of the 
approximation uhp on the whole domain. If the approximation is less regular, the integration by parts 
may introduce additional terms related to the jumps of derivatives. 

The orthogonality property (3.3) may now be used as follows. For a given v E V,, , let vhp be an 
approximation to v from the space Xhp. Eqs. (3.3) and (3.4) imply that 

0 = B(e, vhp) = rvhpdr+ Rvhp dX 

Combining (3.4) and (3.5) gives 

B(e, v) = r(u - vhp) dx + 
I rN 

R(u-v,,)dx VvEV,, 

(3.5) 

(3.6) 

Using the fact that C, 40, = 1 on 0, we can write V v E V, 
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B(e, 21) = i, c cp,G - UhJ dx + I, c ‘p,wJ - UhJ dx 
n a 

= ci wanf2 
%4-J - UhJ dx + c 

a a I a(w nn)nr ‘p,w - Uhp) h * N 

Using the assumption that 11 rp, 11 L=cflj =G C, and the Cauchy Schwarz inequality, we get 

we, 4s cx; #IL’(w,n& - ~hpllL’(wJM) + llRllL’caco,nrr,nr,,ll~ - U,,~llL~(ii(m,nll)T,)~ (3.7) 

We shall restrict ourselves to the case of families Sk==04P. Having this in mind and the fact that 

VhP E XhP, we have [lo] 

‘b =&$yupXy 
a 

where Xi is the restriction to (0 fT w,) of the elements from the space 

where the mapping li, is defined in (2.10) and the polynomials iii, are those in (2.11). 
Also, since C, ‘p, = 1 on an, the following can be written: 

(3.8) 

Duarte and Oden [lO,ll] have shown that if the partition of unity cp, is built using only the unity 
constant (k = 0), then 3 u? E X$’ such that 

lb - d%(uenR) G &)kI4+~“f~, (3.9) 

For generality, lets assume that we can also prove that 3 u? f Xr such that 

lb - u?ll L2ta(w,nf2)) GC--- ha:: 14 
PCt 

H’(wmfm) 

where C is independent of p. 

Inserting (3.10) and (3.11) in inequality (3.7), we get 

Applying the Cauchy Schwarz inequality for the two terms in the sum gives 

(3.10) 

(3.11) 

Applying the Cauchy Schwarz inequality for each of the sums on [Y, 
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Using the overlapping condition of the covering YN = {w,}~=~, that is, 3 p E N such that 

card{a :xEo,} 6p VxE.n 

we can write C,juj~~~,,,, in terms of \u\2,1~,): 

F l4&+,“f2) ~ (I = c j-- “n IW2 dx 

For each x E 0 the integrand will be computed no more than p times since each x E 0 belongs to no 
more than p clouds CO,. Thus, we can write 

Therefore, 

or 

B(e,u)~p”*C,Cl(u((,.~(C112,)l” VuEVD 
a 

where 

(3.12) 

(3.13) 

and we used the fact that IuI~~(~) c IIuII~,~. 
Since the fact (3.12) is valid for all u E V,,, it is valid in particular for e. Thus, we get the following a 

posteriori error estimate 

We, 4 = l1412E.n c d’zCXl141E,,,(C G)l’* a 
or 

(3.14) 

The contributions 7, from the balls W, are denoted error indicators and they are used in Section 4 as a 
basis for guiding local node refinements/enrichments. 
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4. Numerical examples 

In this section three boundary-value problems are solved using the h-p cloud method. The first and 
the third are Poisson’s problems in the plane and the second is a three-dimensional elasticity problem 
with axisymmetry. Each of the problems focus on different aspects of the h-p cloud method. The first 
problem demonstrates the use of h, p and h-p adaptivity. The second problem investigates the 
sensitivity of the method to Poisson locking and compares the performance of the method to the h and 
p versions of the finite element method. Finally, the third problem focuses on the use of p-orthotropic 
approximations in the h-p cloud method. In all three problems, the following is adopted: 

The Galerkin method is used to generate the set of equations governmg the discrete model. 
The essential boundary conditions are imposed using the method of Lagrange multipliers. 
The domain integrations are performed using a background cell structure that exactly covers the 
domains, i.e. there is no integration point outside of the domain. Nonetheless, there is no 
relationship between the background cell structures and the nodes x, used in the discretizations 
with the exception that denser node arrangements generally require finer background cell 
structures to guarantee the precise integration of the functions. 
The discrete approximations are built using only the family of functions 9k,=“,p. That is, the 
partition of unity is composed of Shepard functions as defined in (2.4). Mathematical and 
numerical analysis performed by Duarte and Oden [lO,ll] have shown that the family of 
functions 9k=“.p are the best choice for the h-p cloud method. 
In all problems analyzed, the size of the supports of the h-p cloud functions are set by first 
imposing the condition that every quadrature point belongs to the support of at least one cloud. 
Then the radius h, of the clouds are multiplied by a factor p = 1.5. the algorithm used is 
described in detail in [lO,ll]. The use of clouds with larger supports (larger @s) increases 
considerably the computation costs since it increases the bandwidth of the global matrices. This 
causes the global matrices to be more expensive to generate and to factor. For this reason, and 
because the optimal value of /3 is problem dependent (and therefore not known a priori), the 
use of small cloud sizes is preferred. 
The weighting functions used to build the partition of unity YN are implemented using ‘Ridge’ 
functions. More specifically, the weighting functions Wa are implemented through the com- 
position 

‘Ilru (1) : = g(r) 

where g(r) is a quartic C”(0) B-spline with compact support [-1, l] and r is the functional 

Details on the construction of the B-splines can be found in [6]. 

4.1. Solution of a Poisson problem using h, p and h-p adaptivity 

In this section, the use of the h, p and h-p versions of the h-p cloud method to solve boundary-value 
problems is discussed. The three approaches are described along with the analysis of the following 
problem: 

-Au=f in 0 = (0,l) X (0, 1) 

-$=h;(x. y) on r, 
u=o on r, 

where f and d(x, y) are chosen to correspond to the exact solution 

u = arctan[a( 5 - to)](x - x2)( y - y’) 

(4.1) 
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r, 
Fig. 4. 

and 

t=x$. to = 0.8, CY = 20 

The domain 0 and the boundary segments r, and r, are shown in Fig. 4. 

4.1.1. h Adaptivity 
The h adaptive version of the FEM can be implemented in several ways. One of the most successful 

approaches is based on the use of constrained nodes [7]. This technique guarantees that the h 
refinement at some region of the domain will not propagate throughout the entire domain while 
guaranting the continuity of the solution [7]. In the h-p cloud method, the use of constrained nodes is 
completely unnecessary. The implementation of the h refinement is achieved simply by inserting nodes 
in the regions of interest. There is no need to add extra nodes or to constraint some of them only to 
make the solution continuous. Fig. 5 shows the h-p cloud discretization used in the first step of the h 
adapted solution of problem (4.1). The discretization consists of 2.5 nodes uniformly distributed and the 
polynomial order associated with each node is equal to p = 1 (k = 0). The error in the L2 norm for this 
discretization is equal to 

and the total number of degrees of freedom is equal to 84, including the 9 degrees of freedom 
corresponding to the Lagrange multipliers used to impose the Dirichlet boundary conditions. 

The following algorithm implements h adaptivity in the h-p cloud method (two-dimensional version): 

>=7 

6 

5 

4 

3 

2 

I 

0 

Fig. .5. Discretization used in the step 0 of h, p and h-p adaptation. For h adaptation p = 1 and k = 0, as shown. For p and h-p 
adaptation p = k = 0 in the step 0. 
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Compute the error indicators given by (3.13) for each of the clouds W, E TN. If the estimated 
global error is smaller than a predefined value stop. 
Build a list, refine, of nodes to be refined in the x- and y-directions using the error indicators 
computed in step (i). 
For each node x, with coordinates (x, y) in the list refine do: 
(iii.;) C om u e t e p t h d t is ante d, from this node to the closest node in the previous discretization. 

(iii.ii) Create new nodes at 

if d, I2 > MinNodeDist and nodes at ( 4, 4, 
x+2’y+- ) 

>( 4, 4, 
x--py+y ) >( d, 4, d, 4, 

2 

x+y>y-2 >( 3 

x-TTY-2 > 

if d, * 0.29 > MinNodeDist. MinNodeDist is the minimum allowed distance between two 
nodes in the discretization. 

In addition, a new node is created only if: 
l The segment connecting the node X, to the new node does not intersect the boundary aR. 
0 The new node is not too close to other new nodes created at this step of h adaptation. Note 

that it is not necessary to check if a new node is not too close to nodes in the previous 
discretization since the use of d, as described above takes care of that. 

Build the open covering YN using the new nodes added at this step. 
Compute another h-p cloud approximation and go to step (i). 
worthwhile to mention that: 

The algorithm can easily be modified to implement h refinements in directions other than the x and 
y directions. Also, the refinements can be anisotropic. 
It is straigthforward to modify the algorithm above in order to perform more than one level of 
refinement before a new solution is computed. 
The extension of the algorithm to the three-dimensional case is immediate. 
The algorithm guarantees that the resulting node distribution will not have two nodes too close to 
each other and that new nodes will not be created outside of the domain. 
Step (iii.i) is efficiently implemented using the searching algorithm described in [19]. . 

Fig. 7 illustrate the refinement of a node in two dimensions. 
Fig. 6 shows the covering obtained after four steps of h refinement of the initial covering shown in 

I_’ i 1 

Fig. 6. h adaptation using clouds. 
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Fig. 5. Note that the polynomial order associated with each cloud o, is kept fixed (k = 0, p = 1) and 
new nodes are added. The error in the L2 norm for this discretization is equal to 

0 
x x x 0 0 

0 
x l x 

0 

x x x 

0 0 0 0 

0 Node to be refined 

X New node 

Fig. 7. Isotropic h refinement of a node in two dimensions. 

and the total number of degrees of freedom is equal to 786. Fig. 8 shows a contour plot of the error. 

4.1.2. p Adaptivity 
As in the finite element method, the implementation of p adaptivity in the h-p cloud method is easier 

than the implementation of h or h-p adaptivity. The p version of the h-p cloud method can be 
implemented in at least two forms. One, for example, can fix the size h, of the balls and increase the 
parameter p keeping k fixed. Another possibility is to increase simultaneously k and p. Nonetheless, 
mathematical analysis and numerical experiments performed by Duarte and Oden [lO,ll] have shown 
that the first variant is preferable. 

Two open coverings are used to solve Problem (4.1) by the p version of the h-p cloud method. They 
are represented in Figs. 9 and 5 (but for the p version, k = p = 0 in the first step, instead of k = 0, p = 1 
as shown in the figure). The covering in Fig. 9 was generated using a random number generator to 
assign the coordinates of the nodes and then the radius h, of each cloud We was automatically set. At 
each step of the p adaptation, the error indicators (3.13) are computed for each cloud w, and then used 
to select which clouds should be enriched. For this problem, the clouds are enriched by simultaneously 

8.707E-3 

7.4S3E-3 

6.2ooE-3 

r.seE-3 
: 3.69269 

2.43lJE-3 

1.185&3 

-8.621 E-5 

-1.32353 

-2.S77E3 

-3.83lE.3 

-5.084E-3 

6.33SE-3 

-7SQ2E.3 

-8.84SE-3 

Fig. 8. Pointwise error after h adaptation. 
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P 

>=7 

6 

S 

4 

Fig. 9. Randomly generated clouds. 

increasing the polynomial orders in the x and y directions. The use of p-orthotropic enrichments, i.e. 
different polynomial order associated with each direction, is discussed in Section 4.3. 

Figs. 12 and 10 show the polynomial orders associated with each cloud after eight steps of p 

adaptation. The colors represent the polynomial orders of the clouds. It can be observed that each 
cloud o, can have a different polynomial order associated with it, independently of the polynomial 
orders associated with neighboring clouds. The errors associated with various disretizations used are 
listed in Table 1. 

Fig. 11 shows the three-dimensional plot of the solution obtained using the discretization shown in 

Fig. 10. p Adaptation using clouds. 

Table 1 

Errors associated with various p discretizations 

P 

>=7 

6 

s 

4 

3 

2 

1 

0 

Discretization 
IIU,, - ~JL, 

ll~.AlL, 
IIu,y - %Jll x 

llU.,II‘, 
lb - UpIlL 

//~/I,.~ 
k&l 

b/“l 
ndof 

Fig. 5 0.9745 0.9923 0.9930 0.8631 0.8509 34 

Fig. 12 0.00765 0.04133 0.04071 0.00282 0.02756 527 

Fig. 9 0.6924 0.8529 1.1299 0.6898 0.7669 89 

Fig. 10 0.00234 0.01878 0.01784 0.00069 0.01009 944 
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Fig. 11. Temperature distribution after p adaptation. 

Fig. 10. It can be observed in Fig. 10 that the clouds with higher-order approximation are those in the 
part of the domain where the solution has a strong gradient. 

4.1.3. h-p Adaptivity 
The implementation of h-p adaptivity is straightforward after h and p adaptivity have been 

implemented. The simplest approach is to perform a few h steps to resolve any singularity followed by a 
number of p steps until the discretization error is below a preset value. This approach is implemented in 
our h-p cloud code. Other more sophisticated algorithms that use information about the asymptotic 
behavior of the discretization error, in the same spirit of the Texas-Three-Step algorithm [17], are 
currently under investigation. 

The covering in Fig. 5 (but for the h-p version, k =p = 0 in the first step, instead of k = 0, p = 1 as 

P 

Fig. 12. p Adaptation using clouds 
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shown in the figure) is again used as a starting point to solve problem (4.1). The h-p adaptive algorithm 
consists of one step of h adaptation where 31 new clouds are added to the discretization followed by p 
adaptation steps. After the h step, the radii h, of all clouds are automatically reset and kept fixed 
during the p adaption steps. The final covering of the domain is represented in Fig. 13. The color of 
each circle represents the polynomial order associated with each cloud W, after the last p step. 

The errors in the first and in the last step of the h-p adaptation are listed in Table 2. 
Fig. 14 shows a three-dimensional plot of the x-derivative of the approximate solution obtained using 

the discretization shown in Fig. 13. 

4.2. Three-dimensional elasticity with axisymmetry 

In this section, the problem of a thick-walled cylinder under internal pressure and constrained at both 
ends is analyzed. This problem was proposed by MacNeal and Harder [15] as a standard problem to test 
finite element accuracy. The domain and the boundary conditions for the problem are represented in 
Fig. 15. 

The set of differential equations governing the solutions of this problem are those from three- 
dimensional elasticity specialized for the axisymmetric case [5,21]. The following parameters are used in 
the problem analyzed: 

l Young modulus E = 1000 MPa. 
l Poisson ratio I, = 0.4999. 
l Internal pressure P = 1 MPa. 
l Internal radius Ri = 3 mm. 
l External radius R: = 9 mm. 
The boundary conditions imposed at both ends of the cylinder along with the radial symmetry of the 

problem confines the material in all but the radial direction. This intensifies the numerical difficulty 

Fig. 13. h-p Adaptation using clouds. 

Table 2 
Errors before and after h-p adaptation 

Discretization 
lb,, - =p.yil L, 

lIu,yllL, 
b - Upl”l 

bl”l 

ndof 

Fig. 5 0.9745 0.9923 0.9930 0.8631 0.8509 34 
Fig. 13 0.00376 0.02289 0.02291 0.00109 0.01471 771 
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/y 

k 

Fig. 14. ~u,,l~x after h-p adaptation. 

- 

P- h=l 

Re=9 

Fig. 15. Domain and boundary conditions for MacNeal-Harder problem. 

caused by the near-incompressibility of the material [15]. The analytical solution of this problem is 
given by [5]: 

R’P 
u= 

’ R;-Rf 

2vPR; 
(+= 

’ R;-R; 

R;P(l+ v)r 

ZL= E(RE-Rf) 
(1-zu)+$ 1 

v = w = crre = CT,= = aez = 0 

(4.2) 

This problem is solved using the p version of the h-p cloud method. The h-p cloud functions used are 
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I 1 
t 

0 0 0 0 
t t 

Fig. 16. h-p Cloud discretization. 

1 

those from the family Shz:’ with p ranging from zero to four. The nodal arrangement and the 
supports of the h-p cloud functions are depicted in Fig. 16. 

The h-p cloud results are compared with those presented by MacNeal and Harder [15] for the h 
version of the finite element method and with those presented by Duarte and Barcellos [8] for the p 

version of the finite element method (FEM). The finite element mesh used by NacNeal and Harder and 
by Duarte and Barcellos is shown in Fig. 17. It should be noted that there is a correspondence between 
the node arrangements used in the h-p cloud discretization and the common boundary of two finite 
elements in the mesh of Fig. 17. 

The displacement of a point at the internal surface of the cylinder is shown in Table 3 for many 
formulations analyzed by MacNeal and Harder, for the p version of the FEM and for the h-p cloud 
method. Some of the finite elements used by MacNeal and Harder use reduced integration to 
ameliorate the locking effects (this is indicated by (R) in Table 3). The values in Table 3 are normalized 
with respect to the exact solution given by (4.2). The h-p cloud results are the most accurate. 

Fig. 18 shows the h-p cloud and the p FE convergence in the energy norm. The very poor results 
obtained by both methods when using low-order approximations (p s 1) is an indication of Poisson 
locking. Nonetheless, the increase in the polynomial orders of the approximations leads to very high 
rates of convergence for both methods. The performance of the h-p cloud method is almost identical to 
that of the FEM. However, the h-p cloud curve flatten out for p 24. The reason for this is that, for 
p = 4, the energy error, B(u -f+,, u - up), where B(.,.) is the bilinear form associated with this 
problem, is already of order 10 and integration and round-off errors dominate. Fig. 19 shows the 
error in the radial component of the displacement vector for the h-p cloud solution corresponding to 
p = 4. 

Fig. 20 shows the convergence of the radial and hoop stress at r = 3.0 for the h-p cloud method and 
for the p version of the FEM. The horizontal solid lines represent the analytical solution computed from 
(4.2). The figure shows that the stresses computed using the h-p cloud method are more accurate than 

z 

I- , 
r 3 3.!! 4.2 5.2 6.75 9.0 

Fig. 17. Finite element mesh [8,1.5]. 

Table 3 
Computed displacement at r = R, 

h FEM [15] U,IU 

QUAD2 0.018 
QUAD4( R) 0.053 
QUAD8( R) 0.967 
HEXA8( R) 0.986 
HEX20 0.879 
HEX20cR) 1.000 

P FEM PI 
p=l 
p=2 
p=3 
p=4 

p=s 

up/u h-p Clouds 

0.0530 p=l 
0.8789 p=2 
0.9991 p=3 
l.oOfnI p=4 

1.0000 p=s 

Up/U 

0.0841 
0.9944 
1.0000 
l.Oooo 
l.OC@O 
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hp cloud: k=O, p=O-4. p- FE: p= I-4 
I 

1 - ‘% .-._. _._.*._._.n hp Clouds -6. 

t p=o . . .._ ‘Si p version FEM -f3- 

nu = 0.4999 

a 
I 

IO 100 
N 

Fig. 18. Convergence in the energy norm. 

1 BE-6 -7.71E-7 -4 51 E-7 -1.32E-7 1 870E-7 

Fig. 19. Pointwise error in the radial component of the displacement vector for the h-p cloud solution corresponding to p = 4. 

the finite element counterparts and also that the convergence is monotonic in the case of the h-p cloud 
method, in contrast with the FEM. 

4.3. p-Orthotropic approximations using clouds 

There are many important practical situations where the solution of a boundary-value problem has a 
very strong gradient in one direction but is relatively flat in other directions. This is the case, for 
example, in problems where boundary layers occur or in the analysis of orthotropic materials. One very 
efficient approach to solve this class of problem is to use p-orthotropic approximations, that is, 
approximations that have different polynomial orders associated with each direction. This technique is 
well known in the finite element community, but is infrequently used, mainly for practical reasons. In 
the finite element method the analyst must know a priori the preferential directions of the solution and 
build the finite element mesh accordingly. Nonetheless, in most cases, such directions are not known a 
priori and, even when they are, the geometry of the domain may preclude the construction of a finite 
element mesh along these directions. This constraint is an inherent part of the FEM and forces the use 
of isotropic approximations to solve this class of problem. 

In the h-p cloud method, there is much more flexibility in dealing with these types of problems. As 
mentioned in Section 2.2, associated with each cloud o, there is a mapping F, : A--+ o, between the 
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Fig. 20. Convergence of Radical and Hoop Stresses. 

master cloud 6 and the cloud w,. The mappings F, may be arbitrarily chosen regardless of the 
mappings used in neighboring clouds. This flexibility may be exploited by the analyst or by an a 
posterior-i error estimator to align the local coordinate system associated with the clouds with the 
preferential directions of the solution. This approach can always be used, even if the geometry of the 
domain is complex. 

The technique described above is demonstrated in this section through the solution of the following 
boundary-value problem: 

-Au = -y eX in 0 

au --= 
dn 

-ex(ynx + ny) on 

where (IZ,, nY) is the unit normal 
is represented in Fig. 21. 

The solution of this problem, 

u(x, y) = y eX , 

an 

vector to a0 and the solution u is set to zero at (0,O). The domain L! 

has a strong gradient along the x direction but changes only linearly along the y direction. One might 
suspect that significant computational effort could be saved if a p-orthotropic approximation could be 
used to solve this problem. The geometry of the domain, although very simple, makes the use of 
p-orthotropic finite element approximations somewhat difficult. Triangular finite elements could be 
used and at least one finite element (near the corner A shown in Fig. 21) should be p-isotropic. For the 
h-p cloud method, the use of the mapping F, given by (2.10) for all clouds W, suffices. 

This problem is solved using the p version of the h-p cloud method with p-isotropic and p- 

orthotropic approximations. Fig. 22 shows the 15 nodes arrangement used in the discretization and the 
associated open covering. In the p-isotropic case, the families S$,Z;$', 0 s p s 4 are used and in the 
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Fig. 21. Domain R. 
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Fig. 22. h-p Cloud discretization. 

p-orthotropic case the families 9$,1~~+, 0 up x 6 4, 0 spy s 1 where p, and py denote the polynomial 
orders in the x and y directions, are used. Fig. 4.22 represents the case p, =py = 1. 

Fig. 23 shows the convergence in the energy norm for the p-isotropic and for the p-orthotropic cloud 
approximations. It can clearly be observed that the use of p-orthotropic approximations is advantageous 
and may lead to very high rates of convergence (up to 15 in the case of p-orthotropic clouds). 

Fig. 24 shows the three-dimensional plot of the h-p cloud solution corresponding to p, = 4 and pr = 1. 
The contour plot represents the h-p cloud flux in the x direction. The L, error of the solution and fluxes 
for this discretizations are 

and the total number of degrees of freedom is 136. 
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Fig. 23. Convergence of p-isotropic and p-orthotropic clouds. 
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Fig. 24. h-p Cloud solution and flux in the x direction using a p-orthotropic approximation 

5. Conclusions 

Several computational and mathematical features of the h-p cloud method are demonstrated in this 
paper. The fundamental idea behind the method is to use a partition of unity to construct the family 
sip of h-p cloud functions. We demonstrate how this three-parameter family of functions allows the 
efficient implementation of h, p and h-p adaptivity. The parameter N allows the efficient implementa- 
tion of h adaptivity by controlling the number of clouds in the discretization and consequently the size 
of the support of the approximating functions. The parameters k and p represent the polynomial 
degrees that the partition of unity and the functions S:p can represent (reproduce) through linear 
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combinations. These parameters are used to implement p and h-p adaptivity in the h-p cloud method 
leading in many situations to spectral convergence. 

Another contribution of this paper is the mathematical derivation of an a posteriori error estimate for 
the h-p cloud method. The high regularity of the functions S$” allows the derivation of an error 
estimate that involves only the computation of interior residuals and the residuals where Neumann 
boundary conditions are prescribed. Although simple, the error estimate is able to detect regions of 
rapid solution changes. This is demonstrated by numerical examples. 

The high flexibility and accuracy of the h-p cloud method also represents some challenging problems. 
One issue needing further study is the development of precise and computationally efficient numerical 
integration schemes of the h-p cloud functions. Two main factors contribute to this cost: the number of 
integration points used to compute the matrices and the number of non-zero entries in these matrices. 
The last factor can be controlled through the use of small clouds. The first factor can be controlled by 
optimizing the number and location of the integration points. This approach is currently under 
investigation. 
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