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Abstract

In this paper. a methodology is introduced for the development of adaptive methods for hierarchical modcling of elastic
heterogeneous bodies. The approach is based on the idea of computing an estimate of the modeling error introduced by replacing
the actual fine-scale material tensor with that of a homogenized material. and to adaptively refine the material description until a
prespecilied error tolerance is met. This process generates a family of coarse-scale solutions in which the solution corresponding
to the fine-scale model of the body, which embudies the exact microstructure. loading and boundary conditions, represents the
highest level of sophistication in a family of continuum models. The adaptive strategy developed can lead 1o a new non-uniform
description of material properties which reflects the loading and boundary conditions. A post-processing technigue is also
introduced which endows the coarse-scale solutions with fine-scale information. through a local solution process. Convergence of
the adaptive algorithm is proven and modeling error estimates as a function of scale of material description are presented.
Preliminary results of several numerical experiments are given to conlirm estimates and to illustrate the promise of the approach
in practical applications.

1. Introduction

In structural materials. the presence of fine-scale features, whether introduced by design or occurring
naturally, can greatly affect properties of the material. such as stiffness. yield strength. ultimate strength
and fracture toughness. In particulate and fiber-reinforced composites, macroscopic features of failure
are commonly thought to be linked to microscopic damage features which preferentially nucleate at
particle/matrix and fiber/matrix interfaces. Unfortunately. if all of the detailed microscale interactions
are taken into account in an analysis of the responsc of a structure, a problem of enormous size and
complexity is typically encountered which far excecds the capacity of the largest supcrcomputers
available or expected to be available for many generations.

Because of this fact the use of homogenized material propertics are commonplace in classical
cngineering analysis and design. Mcthods of homogenization are, of course, the foundation of the
thcory of composite materials and they have been the object of much study and discussion for many
years. An account of the cssentials of the theory. and its variants, can be found in (8]. Although
homogenization techniques have been proven cffective in the determination of overall properties, it is
obvious that fine-scale features are completely missed when using homogenized material properties in
stress analyses. Consequently, it is unrcasonable to expect that the use of uniform material propertics
can accurately capture local behavior necessary for realistic estimates of a structure’s uscful life. For
very sensitive applications. numerical simulation, incorporating fine-scale features have been used to
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resolve stress and strain fields throughout a body. There have been early attempts to incorporate
fine-scale features in a global analysis. Noteworthy are the representative works of Fish and Belsky
[1.2], based on multigrid methods, and Ghosh and Moorthy [3,4] whose techniques are based on
Voronoi-cell finite elements.
In the present work, a method for obtaining solutions to problems in elastostatics involving bodies
_.composed of heterogeneous materials is developed. The approach.is based on the idea of computing an
- -estimate 'of the rodeling-error:introduced by replacing the actual fine-scale material tensor with that of
:-a homogenized material,.and, to successively refine the material properties until a preset error tolerance
has been met. The method is a technique of hierarchical modeling, in which the fine-scale model of a
structural component, which embodies the exact microstructure, loading and boundary conditions
represents the highest level of sophistication in a family of methods.

Specifically, the approach consists of three steps, which are presented in the following order:

(1) We first derive an explicit expression for an upper bound on the difference in a solution
generated by solving a linear elastostatics problem with a homogeneous elasticity tensor (the
coarse-scale solution) and solution generated by solving the same boundary value problem with
the actual elasticity tensor (the fine-scale solution). It is shown that this modeling error estimate
provides a global upper bound. Also. preliminary numerical experiments suggest that the
estimate gives an adequate resolution of the local error. This bound is shown to hold,
independently of the loading and boundary conditions, for any choice of an approximate
elasticity tensor (not necessarily constant), provided that it satisfies standard ellipticity con-
ditions.

(2) A technique is then developed to generate intermediate scales of the material description, a
hierarchical family. which produces a sequence of boundary value problems whose solutions
convergence to the fine-scale solution. in an energy norm. Scale-dependent modeling error
estimates arc presented.

(3) Finally, a relatively inexpensive post-processing technique is developed, which is designed to take
advantage of the wide availability of parallel processing platforms. The method supplies the
coarse-scale solutions produced by the hierarchical process with fine-scale information through a
local solution process. where the exacr material properties are used. This process can be thought
of as either a local perturbation method. or. as a non-overlapping domain decomposition
technique [9].

The results of several preliminary numerical experiments are given to confirm estimates and to
illustrate the possible effectiveness of the presented approaches in practical applications. A fundamental
point of the presented work is that the error in solutions praduced by classical homogenization methods
can be estimated and that the quality of the response can be improved by systematically accounting for
effects of fine-scale features of the material.

2. Preliminaries
2.1. Notations and conventions

Throughout this work we use the L(£2)-based Sobolev spaces H™ () consisting of functions with
generalized partial derivatives of order less than or equal to m in L*({2) defined on an open domain
NER", N=1, 2 or 3. These spaces are equipped with the usual norms and seminorms

eellmeay = L | IZ IDul*dx and |u|}mgq, zL > |Du|?dx. 1)
alsm la]=mn
We also use the spaces H*({2) for non-integer s €R.
As is standard, Cy'(£2) is the subspace of C™(£2) consisting of functions with compact support in £2.
The closure of Cy'(£2) with respect to the H"(£2) norm in H™(£2) is denoted H' () and the duals of
the spaces Hg({2) are the negative Sobolev spaces H~"(2). All spaces appearing in boldface are
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vector-valued extensions of the preceding ideas. For example, H™"(2) = [H"(2)]" is the space of

vcctor valued functions whose components have partial derivatives of order less than or equal to m in
L3 Q) =[L*))". Accordingly,

N

X
"”“ f;"'m) = zl "U;"i""(m and |U|f¢mm) = zl I”ili"un . (2)
i= i=

For the inner product of tensors: Vi, Yo € [L*(02)]V**, u, v € H'(12), we use the following notation,

Vo : Vi = trf (Vo) "Vu] = Z ———EL Q). (3)
i el
where du;/dx;, dv;/dx; are generalized partial derivatives of u; and v,, 1 <i, j <N, and where u;. v, are
Cartesian components of u and v. Throughout this paper we shall use the symbol ‘v|,,,” for boundary
values of v € H™({2), where boundary values are interpreted in the sense of traces.

2.2. Linear elasticity

We consider a material body composed of a lincarly-elastic material and in static equilibrium under
the dCllOI'l of body forces f and surface tractions ¢. The body occupies an open bounded domain in
0 € R" and its boundary is denoted 802. For present purposes. it suffices to consider cases of which 2 is
regular: a simply-connected domain with Lipschitz boundary. The boundarv 842 consists of a portion [,
where the displacements are prescribed and a part I where tractions are prescribed.

an=rul, T,ul=9. (4)

The data are assumed to be such that f € L*(2), t€L*(I}).
The space of admissible displacements, V({2). consists of those displacement ficlds in the space H'(£2)
which satisfy homogencous (displacement) boundary conditions on I},

V(Q)={vEH'(2):v], =0}. (5)
The displacements on I, are prescribed as follows: 3u € H'(42),
"l".. =ul. =U. (6)

where U is specified displacement data on [,. Thus. the actual displacements of the body are in the
translation {u} + V({2).

We consider the classical principle of virtual work characterized by the following variational
boundary-value problem of elastostatics:

Find u € {a} + V(£2) such that
(7)
Bu.v)=F@v) VveV(H]).

Here, 8B : H'(2) x H'(2)~ R is the bilinear form characterizing the virtual work and &(*) is a linear
functional characterizing the work done by the external forces.

Qﬂ(u.v)=J;JVu:EVudx @(U)ZLf-de+J’nt-vd.s‘. (8)

where the mechanical (stress—strain) properties of the material are characterized by the elasticity tensor
NixN
E which is assumed to be a given function in [L"(£2))

AR L g
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If the data in (7) are smooth and if (7) possesses a solution u that is sufficiently regular, then u is the
solution of the classical linear elastostatics problem.

=V (E(x)Vu(x)) =fx) x€
u(x)=U(x) x€Ir, (9)
:_n (EVu(x))=tx) x€I,.

2.2.1. The elasticity tensor

The elasticity tensor in (8) characterizes the mechanical properties of the material and, for materials
with highly heterogeneous microstructures, can be highly oscillatory. We require that the elasticities be
subject to the following ellipticity and symmetry conditions: Ja,, a, >0 such that VA € RVN A=A"

(a.e. xEN).

a,AAZA Ex)AzZaAd A,
(10)
E;j(x) = Ejjpy(x) = Ej(x) = Ekﬁ;'(x) 1<t j k. I<N.

E;y (x) being the Cartesian components of E at point x.

2.2.2. Homogenization

The problem described by (7) is usually far too complex to be solved by conventional computational
methods due to the complex internal geometry of the body. characterized by a highly variable E. To
perform an analysis of the response of the structure it is customary to replace E by a uniform "effective’
clasticity tensor, denotes E”. This leads to a new more tractable problem.

Find «" € {a} + V() such that
(11)
B’ v)=F@wv) YvEV{).

Here. B" : H'(2) x H'(2)— R is the bilincar form characterizing the virtual work and #(-) is defined
as before.

@"(u".v)=fﬂ Vo E"Vi® dx @(u)=jnf-vdx+L_r-vds. (12)

In usual engineering calculations, E" is a constant function in [L*(02)]" ™", and E" satisfies conditions

of symmetry and ellipticity: 3a¥, a’>0 such that VAERY Y. A=A" (a.e. x€ ).

@A A=A E'()A=alA A

u (13)
0 0 0 ..

E(x) = Ejin(x) = Ejy(x) = Egy(x) 1<i, j k. IsN,

where Ej,, are Cartesian components of E°. The boundary conditions are identical to those of the
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hcterogeneous problem. Under the adopted conditions both (7) and (11) possess unique solutions u.
Y€ (4} + V(). respectively.
The fine-scale energy norm of functions v € H'(f2) is defined by

||uf|§m,=@(v.u)=fﬂw:EVudx, (14)
where the:actual elasticity tensor E is used.
2.3. Components of the error

In this paper, we shall make the natural choice, |[u — u’|| E@) @ the measure of the error between
the finest and coarsest scales. In general. even the exact solution u” cannot be obtained analytically and
a finite dimensional approximation to it must be used: for example, a finite element approximation «""
Directly by the triangle inequality,

[l - ||r<m "" u "s(m"’ ||“ M”Eﬂ}- (15)

Modeling error  Numerical error

Therefore. two sources of error occur in approximation of the heterogeneous problem. a modeling
error. due to the selection of homogenized properties and a discretization erroi inherent in the finite
dimensional approximation of the homogenized problem. Discussion of the numerical error characteri-
zation, which is not the subject of this paper, can be found in standard texts (see [10]). The remainder
of the paper is concerned with the modeling error and its usc in characterizing the material response.

3. Modelling error: The relationship between scales
3.1. Explicit a posteriori bounds on the modeling error

Key to the ability to assess the quality of the homogenized solution gencrated by using E".is the
development of an accurate error estimate which is independent of the loading and boundary
conditions. In this section we develop an explicit cxprcasion for the difference of the fine-scale and
coarse-scale solutions in the fine-scale energy norm. |ju — 1"}l 5 n,- We first record some propertics of
the elasticity operator E € [L*(02)]"" >N viewed as un L° “(£2)-map. Let

Lin(?) = (A€ [L7 (D))" AT =4} . (16)
and denote the L -inner product and norm on L“m(ﬂ) by
@.B)=] a:Bac P-4, (17)
The operator E : LSYm(Q)v—)me(ﬂ) is a sclf-adjoint, positive definite operator:
((EA.A)>0 VAEL;W(.Q). A#0, (18)
((EA.B))=((A.EB)) VA.BEL. (). (19)

It is well known that for such operators. the ‘square-root” is well defined. generally in terms of the
cigenvalue of E, and

(BA.B) = ((E""A.E'?B)) and |l|A[l[gq, = (E'"A.E'"4)). (20)

Using this notation, it is readily verified that

B(u.v) = IV& EVvdx=((E'""Vu.E'°W)) VYu veEV(). (21)

N R
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so that

ol = B, v) = (E'*W0. E'*W)) . (22)
With the previous definitions in place. we establish the following error bound.
THEOREM 3.1.1. Let E be a tensor- valued function in, [L- (7)) N satisfying (10) and let E® be a

tensor sausfymg (13): Le: w and u® be the correspondmg solutions to boundary value problems (7) and
(11), respecnve!y Then

““ = "u“ Em 'S |||anu"|||.sm, F=1- E"'E°, (23)
where explicitly

[TRA [P L (I-E'E°Wu® :E( —E'E°)Vu’dx . (24)
PROOF. Denote by A%(-, -), the difference, for arbitrary v € V(2).

AB (1. v) = B", v) - B’ v) = jﬂ Y (E—-E°)Wu'dx . (25)
Substituting (25) into (11) gives

Bu", v) - AB W°. v) = F(v) = B(u, v) , (26)
which directly leads to

B —u’.v)=-AB" W’ v)=-((W.(E-E"Wu") YveEV). (27

Setting v =u —u°, gives
llu = "l z0y = =((Vu = u®). (E = E*)Wu"))
= —((Yu - u"). EE""(E - E°)Vu"))
—(E""*V(u —u°). E'"E"V(E - E")Wu"))
=~(E""Yu-u"),E'"’2,%"))
<[((E"*V(u = u®). E"*V(u — u*)N))' [(E " F, V" E"* 5,9 )"
= ||u - “u"E{mlllﬁnvu‘]”llﬂm . (28)
from which the assertion follows. O
3.1.1. Observations
In Theorem 3.1, the proof makes use of the fact that the coarsc-scale solution satisfies a global
vdrmhon(ll statement, with the same boundary condmons as the fine-scale formulation. If we replace E"

by E™ and, correspondingly. u" by u, where EY is not necessarily constant, then we immediately
obtain the following:

fa = "M“.E{ﬂ) = mﬁ,uv"'“m.s(m Sy=1—-E" 'EY . (29)

This result t proves to be useful in later analyses. An algorithm for construction of sequences of material
tensors E™ is given in Section 5.

3.2. Connection with classical bounds

Now we establish a connection between the presented error bound and classical bounds for the
overall elasticity tensor (see [6] for details). This tensor is defined by the relation

(o0)=E*(e) o=Ee e€={Vu+(Vu)'}/2, (30)

VIS OB St
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where (-) =1/|2| [, - dx. In general, E* is not a material property, i.e. it depends on the data. If (o)
and (€) are such that
(o-€)=(a)(€) (31)

and f= 0, then there exist universal bounds for the eigenvalues of E*. This restriction, often referred to
in the literature as Hill's condition,, can be realized in several ways [5,7]. The bounds for E* are given
by
(E™)"'<E*<(E). (32)
This inequality means that the eigenvalues of the tensors E* — (E ') "' and (E) — E* are non-negative.
A special class of fields that fall under Hill’s condition (31) are those produced in bodies with
specified boundary data of the following form: (1) pure displacements in the form u = & - x or (2) pure
tractions in the form =9 - n; where the tensors & and & are constant strain and stress tensors,
respectively. It can be easily shown that under uniform conditions with no body forces, that for case
(1): (€)=, and for case (2): {o) =7. These boundary conditions are referred to as uniform for
obvious reasons. If we restrict our attention to uniform boundary conditions. the general error bounds
take on special forms. We have the following (with E° constant),

= u®|| 3y < L (-ETE"Wu" E(I —EE")Vu® dx
=| (V' -ET'E'W"): (EVi" — E"Vu") dx
n

= j (Vu":EVe® =" E°Vu® — ET'E°W"  EVW" + ET'E W’ E°Vu") dx
I
=V (EYO|02| = V" E°V°|02] = E°Vu® : V|02 + (E ™) E Vu® : EPV°10)] .
(33)

OBSERVATION 1. For those cases having either type of uniform boundary conditions. with no body
forces, it is straightforward to show that if the classical upper bound is chosen. E’ = (E). then

Vi’ (EYNC|0| -V’ E'Nd’ || - E°Va® V' |0) + (ETDYE"VY  EOV| 0|
=0-E"Vu": V|| + (E-"YE"Vu" : E°Vu’|(2]
=E"W": {=1+ (E"")Y(E)\V"|02|
=(EYW": {—(E) "+ (E""YNE)Vu"|02]

=o' {(—(E)"'+(E ") }a"|0]. (34)
where o”(=E"€") is the state of stress that exists in the uniform body. Therefore
llu = u ey < {—(E) " +(E7")}o " 0®l02]. (35)

If the lower bound is chosen: E®= (E~')"", then for either type of uniform boundary condition
Vil : (EYVi°|02] = Vu® : E°Vu°| 02| — E°Vu® : || + (E V) E°VU® : EY| 02|
=V’ : (E)V°|02) -V’ : (E™") '] + 0

={(E) —(E"") "}V’ V"|02| . (36)
Therefore,
Nl = w20, < (CE) = (E7") "}e’: €°102] . (37)

where €°(=E"'o°) is the state of strain that exists in the homogenized body. We observe that in both
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of these cases the difference in the classical bounds in (32) appear in the expressions for the modeling
error estimates.

OBSERVATION 2. 1t is straightforward to show that for the uniform displacement case. n =% x,
where & is arbitrary, that

.
M= dl ey = L’ Ju SEVu dx + i’ E"V|0] -2 L Vu': EVu dx

=(e) : ()| + V" : E°V°|Q| - 2€": (o)| 2]

={((E) -E*}¥  Z|0|<{(E) - (E"") )¢ : 7|0, (38)

where E*"'(o) = () = €"=%. The last term on the right in (38) is a universal bound, i.e. it is
independent of the microstructure. Also. it is easy to show that for the uniform traction case, t=9 - n,
where 7 is arbitrary that

e = “““i“(m = J' Vu : EVu dx + Vu" : E'Vu°|02] - 2J;1 Vi’ : EVu dx
1
=(e): ()| + V" E"V"|02| - 2¢" : ()]0
=E* o) : (a)|02|+ V" E'V|0| - 2" : (o))
=E*'T . T10|+ V" E"V|02| - 2" : T|0). (39)
It is easy to show with E*=(E). that E*7'T : T|0Q|+ V" E'W"|02| - 2¢" : T|02] is a minimum.
Therefore
llw = 4’|y = E* ' T - T|0Q| + V" EV"[02] = 2" 7|02
=E*"'T . T|0|+ W' E'V"|0| - 2€: T|0|
={(EYE* Y (E) - (E)}e": €"|0]
<{(EYET'"WE) - (E)}e": €"|02]. (40)

where E*(e) = (o) = 0" =T = E"€". The last term on the right in (40) is a minimum universal upper
bound. The two universal bounding materials in the previous cases have the following ordering:

(E) -E*y<{(E) ~(E™") ) < ((E)ET')(E) - (E)} . (41)

In the next section we conduct numerical experiments on the global and local estimation of the
modeling error with body forces and non-uniform boundary conditions in placc.

4. Numerical experiments on error estimation
4.1. Example 1: A heterogeneous bar

To eliminate any effect of numerical error on the study of the error bound. we first consider an
example with an analytical solution. To this end. we consider a linear elastic rod, of unit length, fixed
on both ends, and subject to a constant body force (sce the top three diagrams in Fig. 7). The fine-scale
and homogenized problems are

du(x)) -1,

% (L(x) ac u(0)=0. w(1)=0 (42)

and

ad? (EO du_dl(xl) =-1, u’(0)=0, u'(1)=0. (43)

vl TG
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Her_e. our interest is to determine performance of the error bound (23) in predicting global and local
mo_dellng error throughout the body. To this end. for local resolution of the error we let 2 denote an
arbitrary partition of 2 with a total number of subdomains, N = N(2), such that

_oMa@)
0= on@“ 0. 0,€E2 0,N0O, =0 ifK#L 1<K L<NQ2). (44)

We define local error indicators, local measures of the error, for @, C 2 by
bk =186V lltgo,)  1<SK<N@). (45)
For the global error estimator we simply take the global error bound ¢ = [[[.#,Vu’||| ;). Clearly

N(2)

llu =l < 2 (2% (46)

The quality of the global and local error indicators is measured by effectivity indices n and 7.
respectively:

¢ N2)

K 2 2

M=k = Y g2 (47)
. ”“_“OHE(HN) k=1

In our example, the unit interval is divided into 10000 cqual intervals, and for each interval the
material property is chosen at random to be either £ =1 or £ =7, where 7 is the mismatch ratio. Equal
amounts of hard and soft material are used. A coarser partition is overlaid representing the subdomain
partition. The following tests are entirely representative of many realizations of the interval and
subdomain partitioning for this simple onc-dimensional case. All of the following calculations are done
analytically. For convenience. and to illustrate the sensitivity of the results to the choice of E°. we
choose the classical upper and lower bounds in (32). Our objective is to illustrate the dependence of the
effectivity indices on the domain partitioning and the choice of E°.

4.1.1. Results

From Tables 1 and 2. it is seen that an increase in the number of subdomains in the partition reduces
the quality of the local effectivity indices. This stems from the fact that the local cstimates are derived
from a global calculation that, due to its integral nature. is insensitive to local pointwise information.
The local effectivity indices are closely clustered around unity for the harmonic average. independent of
the mismatch. while this is not the casc for the arithmetic average. Locally. the error indicators are not
guaranteed to be upper bounds on the error. and. as Tables 1 and 2 show. they undcrestimate the error
in some parts of the domain. The choice of homogenization affects the quality of the local estimates,

Table 1
The effectivity indices for £ = {E) for 100 subdomains and 10 subdomains, versus mismatch ratio

7 e = u®l] ooy el gy n maxn, N=100.10 ming, N=100,10
10 (1.804457 1.000186 1.38345 1.06Y48 0.529439 .93348
50 0.956960 1.000205 1.66329 1.09153 0.494427 0.91889

100 0.978203 1.000208 L.71799  1.09488 0.489773 0.91681

Table 2

The cffectivity indices for ' = (E ') "' for 100 subdomains and 10 subdomains, versus mismatch ratio

) fu - “‘,"l‘:un!“""ﬂm n maxn, N=100,10 minmn, N=100,10
10 1.347399 1.000066 1.006312  1.000608 (.858558 0.996870
50 3.276713 1.000018 1.001734  1.000158 0.955632 0.999186

100 4.680409 1000009 1.000906 1.000082 0.976185 0.999578

B o 12 T
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although this effect is barely perceivable globally. Interestingly, the error prediction for the harmonic
average case becomes better with increasing mismatch ratio—this is strictly an anomaly associated with
this specific one-dimensional problem, and, in general. is not necessarily the case. Note that even for this
simple one-dimensional problem, the error for the arithmetic average ranges from 80-90% of the actual
solution, and for the harmonic average, 134-468%. It easy to show that, with respect to the energy
norm. the arithmetic average is within a fraction of one percent of being the optimal homogenized
material choice to minimize.the: modeling error'in energy for this specific problem.

4.2. Example 2: A three-dimensional analysis of a cube in shear

We consider a unit cube of material, with a heterogeneous two phase isotropic random ‘checker-
board’ microstructure (Fig. 1). We choose E’ to be isotropic, where the specific values of the
homogenized Lamé parameters are simply the volumetric average of the Lamé parameters of the
internal constituents. The unit volume is divided into 64 sub-cubes of equal volume, each with
dimensions 1/4 X 1/4 X 1/4. Each sub-cube is randomly assigned, either a set of soft or hard material
parameters (Fig. 1)

A=AT p=pu'r (48)

where 7= | is a constant parameter which represents the mismatch ratio and where A* and u’ are the
set of soft Lamé material parameters whose relative ratio, for convenicence, is taken to be that of
standard grade stecl. Equal amounts of hard and soft material are used.

The loading scenario for the heterogeneous cube is shown in Fig. 1. The virtual work formulation for
this problem is

Find «" € V() such that

L w:.r-;"v::"m=L tvds YveEV) (49)

Fig. 1. A test problem for three-dimensional dispersed cuboid microstructure.

T L T —
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where
V)= {veEH'(2): 0|, =0}, (50)
where
® 2 corresponds to the interior of the 1X 1 X I cube depicted in Fig. 1: 0<x,<1. 0<x,<1,
0<x, <1, '
® [, corresponds to the plane x, =0,
. j},' c(;)rresponds-to the plane x, = 1, where we specify = {0.0, 1} (uniform shear loading).
[ ] ]
® all other faces of the cube are frec surfaces.

For the purposes of nu[r'nerical experiment, the finite element method is employed to generate
approximations to u# and # denoted by u" and u®", respectively. For a measure of the quality of the
crror prediction locally, we use instead of (47). the local discrete effectivity indices.

b g:’
K ""ﬁ _ “ﬂ,h" -

where ¢y = [1%Vu4"" ||| e, 1S K<NQ2). (51)

In all of the following numerical experiments, the finite element approximation consists of hexahedral
elements, with trilinear polynomial interpolation. To illustrate the use of local error indicators, we
adopt a simple unidirectional partitioning of the cube into four ‘slabs™: @, : 0<x, <1/4, @, :1/4<x, <
112, @y : 1/2<x,<3/4 and 0, :3/4<x, <1. It is clear that the quality of the discrete error indicators
is mesh dependent and. consequeitly, a series of tests are performed to illustrate mesh dependency for
fixed mismatch ratios. These tests are conducted in the following manner: keeping the microstructure of
the cube fixed, for each sub-cube in the cube, we steadily increase the number of finite elements per
sub-cube. In this manner, we isolate the effects of the finencss of the finite element mesh and the
mismatch ratio on the discrete effectivity indices.

4.2.1. Resulis

Tables 3 and 4 contain results which illustrate the behavior of the global and local cffectivity indices
with increasing finite element mesh refinement for fixed. successively larger mismatches of material
properties of 10, 50 and 100. The actual modeling error varied between a few hundred percent to over
1000% . depending on the mismatch ratio and the finite element mesh. The cffectivity indices. however.

Table 3
The global effectivity indices for mismatch = = 10, 50. 100 and for increasingly finer finite clement meshes
DOF Elem/sub-cube 7", 7=10. 50. 100

375 Ix1x1 1.21 1.4 1.52
2187 2x2x2 1.34 1.98 243
6591 Ix3Ix3 1.37 2.15 271

14739 4x4x4 1.37 215 272

27783 Sx5%3 1.37 2,14 271

46 875 HX6x6 1.37 214 272

Table 4

The local effectivity indices (for cach slab) for mismatch 7= 10, 50. 100 and for increasingly finer finite clement meshes
DOF Elem/sub-cube Slab 1: 7} Slab 2: 9% Slab 3: o’ Slab 4: "

375 Ix1x1 1.22 146 1.55 093 1.05 1.12 .44 1.67 1.74 1.32 1.66 1.80
2187 2x2x2 1.30 1.94 241 1.55 2.44 3.08 1.32 1.83 245 1.21 1.80 2.45
6591 3x3x3 1.57 2.67 3.48 1.29 194 2.40 1.29 196 2.59 1.35 2.18 2.78

14739 4x4x4 1.43 232 299 1.27 1.92 240 1.30 196 245 1.51 252 328
27783 S5x5x%5 1.31 2.03 2.58 1.39 220 2.79 141 217 2.79 1.38 2.18 2.76

46 875 6X6x6 1.36 2.09 2.63 1.37 217 277 1.35 2.06 2.77 1.40 2.25 291

At AR,
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Fig. 2. Behavior of the effectivity index with changes in the number of degrees of freedom. for the cube in shear with cubical
microstructure.

are remarkably accurate, which means that we may predict the error well, cven though it is quite large.
Our global measure of the cffectiveness of the error estimate, 0", is relatively constant after a certain
mesh fineness threshold (Fig. 2), which is approximately 27 trilinear hexahedra per sub-cube, and while
the local effectivity indices also stabilize. they stabilize at a much slower rate. However, the local
effectivity indices are clustered around the global v‘llucq suggesting that we may obtain accurate local
estimates of the error. We note that the choice of £” is not restricted to the classical relation of averaged
quantities of stress and strain, and that any elasticity that satisfies the ellipticity conditions is admissible.
While in practice the cxact solution is usually never obtainable, the experiments lend some confidence
to the reliability of the cstimator. Other loading cases. such as a cantilevered cube in uniaxial tension
and a cantilevered cube under the influence of constant body forces. were tested. with qualitatively
similar results (not reported here) to the presented shear case.

5. Hierarchical scale construction

In general, the quality of the solution «® may be poor. even with a good choice of a uniform
homogenized description. In order to improve solutions, it is clear that one must develop a method
which (efficiently) constructs solution scales between the coarsest-scale. corresponding to a perfectly
uniform material description, and the finest-scale. To obtain reasonable accuracy with numerical
methods based on discretization, the computational cell size must be less than. or equal to the
inhomogeneity sizes encountered in the body. This makes the full fine-scale problem inaccessible, for
two main reasons. First, if the full. coupled, fine-scale problem is discretized for an approximate
numerical method, it would not fit. due to memory limitations, on existing computers. Second, even if
the discrete problem were to [it into a hypothetical ‘super-memory’ machine, it would take on the order
of Cn’ operations to solve the resulting system, where n is the number of unknowns, and C is a
constant, greater than unity and is dependent on the condition number of the resulting discrete stiffness
matrix. The value of n is so large (e.g. n~ ©@(107)) that such computations are not feasible.

To address this difficulty, a series of relatively inexpensive coarse-scale problems are generated,
characterized by bodies comprised of subdomains. Each subdomain may contain different constant
material properties. The sizes of these subdomains are orders of magnitude larger than the in-
homogeneity sizes encountered on the fine-scale (see Fig. 4). These coarser material descriptions form a

s T
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Fig. 3. The nomenclature for the construction of a partition.
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Fig. 4. Hierarchical elasticitics produced by ALR for a single Cartesian subdomain.

hierarciiical family of scales of material description. The modeling crror throughout the body is
estimated at each scale, with the error estimator introduced previously, and the material description is
refined in those select regions where the modeling error is high. The global coarse-scale problem is then
resolved with the new material properties. and the error re-estimated. until a desired prespecified
tolerance is met. However, in general, these hicrarchical solutions do not capture much of the fine-scale
information, and, therefore, a post-processing method is applied which adds a local fine-scale
perturbation to the hierarchical solution. This process endows coarse-scale solutions with the necessary
information to be reasonably accurate for a local analysis. Therefore, the overall method is comprised
of two main stages: (1) generation of hierarchical scales and (2) local solution processes.
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5.1. Construction of a partition

Although in the preceding theory the partition for the model error estimation has been based on an
arbitrary partition of the domain, in practice, there must be some constraints. For definiteness, we
derive a systematic construction which is amenable to numerical computations. We consider a general
curvilinear, non-convex domain, and we introduce the idea of a bounding box (Fig. 3). In general,
neither- the subdomain divisions nor the partitions follow’ the material boundaries. We define the
bounding box, 0, as simply an open rectangular parallelpiped such that

dia0* = infdia{0: 2 cO} . (52)
Furthermore, O* is subjected to a fixed partition

N

UDB,=0* O,n0,=0 K#L 1<K, L<N@2%, (53)

k=1

where each O is of equal size. We define the subdomain OF CQ as

FE L -

NnO,=6% U e%=0 o0%nel=¢ K=L. (54)
K=l

We also define partitions within each subdomain @E. by first partitioning the corresponding *sub-boxes’
into equal pieces. In one dimension this corresponds to bisecting subdomains into equal line segments,
while in two dimensions this corresponds to quadrasecting sub-boxes into equal rectangles. and in three
dimensions it corresponds to octasecting sub-boxes into equal hexahedra with rectangular cross-section.
We denote these sub-sub-boxes by O , . where

Ny Ny
U8, =0, GO, U =0 (55)
where N is the number of sub-sub-boxes in sub-box K. Furthermore, we define
0oN0,, =06%, (56)
and cléarly
0F,cof lJ 6%, =6% (57)
oR.

where @',?‘L are denoted as ‘cells’ (Fig. 3). It should be clear that sub-box O, and (-)? are identical for
Cartesian domains. It is emphasized that the partitions for (1) the error indicators. (2) the hierarchical
scale generation and (3) the local post-processing are independent and in practice should be kept
independent to obtain maximum performance from the method. However. for clarity of exposition, we
use the same partition as for the local error indicators throughout the presentation.

5.2. Stage I: An algorithm for generating hierarchical scales

Overview: A hierarchical family is generated by first starting with a homogencous material,
estimating where the corresponding homogenized solution is in large error, and locally refining of the
material description where the error is high. This is an iterative procedure. For clarity of exposition, we
illustrate the procedure with isotropic materials and with volumetric averaging for the homogenization
process, but neither of these conditions is necessary.

5.2.1. An adaptive algorithm based on Adaptive Local Reaveraging (ALR)
® Step 0: Choosc an crror tolerance: ||u — u’|| <8 = error tolerance.
® Step 1: Solve the initial coarse scale problem, with uniform material properties. For example,
suppose E” is a constant isotropic tensor with material constants,

BN R i
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KO_LJ‘ dx 0_._1_J dx 5
2] Ja ¥ ST Pl (58)

where. as usual, k = A+ denotes the bulk modulus.
® Step 2: Distribute the error tolerance in the following fashion.

a
w8 =8 Ilﬂ’il VK=1.2,....N2°) £ ; (59)
® Step 3: Calculate the following in each subdomain %, VK=1.2,.... N(QU).
4= 1%Vl g0y  Ju=1-ET'E°, (60)
and check
k<8, VK=1,2,...,N2"). (61)

® Step 4: If {y > 8y, repartlnon the corresponding sub-box. Oy, into sub-sub-boxes. as given in
(55). and generate cells ©F , C OF. Calculate the following for each cell

1
k' : = dx 62
[th. lG LII?LK(L" :‘-“leg |6 I au' ( )

where |0% | = meas(©F ). and where
E'()|og, =Ex, x€OF,. _ (63)

The new material generated by performing one sequence of Steps 1-4 is denoted with superscript 1
as opposed to 0, which was used for the initial data and solution. I-or cx.lmplc after completing
the first pass of Steps 1-4, the material properties are denoted as «', ' and the corresponding
global solution as u'.

® Step 5: Repeat Steps 1-4 until the error tolerance has been met. After M stages (Steps 1-4), i.e.
after M steps in which at least one sub-box has be repartitioned during a stage. we arrive at a
material characterization defined by the tensor EY €L IO such that VAERY Y A=A"

EM(x)A = (x) % F (A + pY(x) dev(d) ae xEQ (64)

where dev(4) =A — {(trA)I. and where

1 7 1 J’
—5 K dx ) =—F dx . 65
|B?1 |OD LI ﬁ?' M |9E.L ](_:)!ilLl ”E!_L M ( )
5.3. Convergence of the ALR solutions

It can be easily shown [8] that the ellipticity constants appearing in (10) are related to « and u in the
following manner

0<a,=min{3x, 2u}
(66)
x>, =max{3x.2u}.

Furthermore. we observe that for any GE‘L c1.

%* ;Ij (@) dx = |o°,,lfu3"(x)d" ER LIJ? 2u(x) dr S, 7
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and
s, ) drs
a<S—F— w(x)dr<a, .
‘ |6‘F:(l,£.| 6%.L

Therefore, as one would expect.

a, < (3c™,2uM} < a, .

(68)

(69)

In other words, the material properties of the intermediate scales are bounded by the original ellipticity

constants.

THEOREM 5.3.1. Let u be the solution to (7) and let u™ be the solution to the boundary value problem,

Find u™ € {41} + V(£2) such that

BYuM, v)=Fv) VveEV),

(70)

where B : H'(2) x H'(2)~ R is the bilinear form characterizing the virtual work for the Mth-stage

material ,
B, v)= f Vo :EMVi™ dx
1

with EY given by (64). and (- ) is defined by (8). Then

1
"“ - "””E(m = va, "(E - E‘UW“M ";_-‘(m .

PROOF. Let

ABM WM v) =B . v) - BYWM. v) = L YW (E - EY)Vu* dx .

Substituting (73) into the equation associated with (70)
B, v) - ABY (W™, v) = F(v)

and subtracting the result from (7) yields
B(u —u™. v)=-ABY (™ v) .

Allowing v =u — u". and by Cauchy-Schwarz

Blu—u™ u—-u)y< (| ¥t ~ “M)"f.z(r}:”(E - EM)V“M”L’{ﬂ) .

Because of the assumed ellipticity of the elasticity tensor (recall (10)),

M2
et — "z(n) -

a,

L Y — ™) : Y —u™)dx.

Therefore

(1)

(72)

(73)

(74)

(75)

(76)

(77)

N R
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Fig. 5. A hicrarchy of scales. for the heterogeneous bar, illustrated for ten subdomains.

; 1 s il o
[lee = u . I E(52) ﬁﬁ l(E - E" }V“““L-'m; -0 (78)

In general, estimates such as this arc asymptotically exact in the scnse that as EY approaches E in
[L (Q)|’\r N as M—>m, we expect u™ — u in V(2) by virtuc of (72).

5.4. Stage II: Post-processing the coarse-scale solutions through local fine-scale perturbation

Overview: While the solutions produced by ALR converge to the fine-scale solution in the cnergy
norm, they may not adequately capture the line-scale features. Here. we illustrate how the hierarchical
solutions can be post-processed in an inexpensive local manner. which is proven to yield superior
solutions in an energy sense. The process is as follows: the 50[u(mn generated by the homogenized
material description is used to construct approximate local displacement boundary conditions for
interior subdomain boundaries produced by a partition of the problem domain. The exterior boundary
conditions are not altered (Fig. 6). The decoupled local problems are then solved. The motivation here
is that the detailed solution to several decoupled sub-problems posed on smaller subdomains. are more
tractable, and can be computed ecasily in parallel if desired. The final global solution is then ‘recon-
structed” by simply reassembling the local solutions, which are conforming. We refer to this procedure
as the Homogenized Dirichlet Projection Method. HDPM. The operation counts involved in this

e

EEN TR

Fig. 6. An cxample of "post-processing’ or “decomposition of the domain® or *local perturbation’ using the coarse-scale solution.
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procedure are significantly less than those required to solve the hypothetical, coupled, fine-scale
problem.

5.5. Construction of local subdomain problems

We define the boundary of an individual subdomain 0%, as 0% consisting of a portion I, where
' the  displacements are prescribed and a part I';, where tractions are prescribed:

h=30R,  I,=20%NT,. (79)
We define the following space
V(O%)={veV({2),v=00n .Q\@K,vHK (80)

Let €,. 1<K <N(2°), denote the operator from V(Bx) into V({2) that identifies each UKEV(Q )
with a function v in V(£2) such that

Ule'ﬂzvx U]n\e',?:o' (81)
We define
uy =u|og €H'(OF). (82)

We denote @} as the function that is zero outside of O and that is equal to the solution to the
following local variational boundary-value problem of elastostatics.

Find i) € (u}} + V(OF) such that
(83)
Bty . vg) = Flvy) Vo, €EV(OF),

where B, : H'(0F) x H'(©F) R is the bilinear form characterizing the local virtual work and %,(-)
is a local linear functional characterizing the work done by the external forces:

Bty . v) = I Vo, EVay dx @K(ux)=feqf-uxdx+fr t v, ds. (84)
X Kt
The displacements on [, are prescribed as follows:
iyl =u¥l. - (85)

On I, the given external tractions, ¢, are prescribed. The global solution is constructed in the following
manner:

aM =y %’,(ﬁ"l" —ul )+ &Gy — )+ -+ B (AN - un), (86)

where it IS nalural to think of the above parenthetical terms as local perturbations to the homogenized
solution u*. The question now becomes: if we were to solve the local problems and assemble the local
solutions together (according to (86)). will the overall solution be improved? Consider the fact that the
local problems are solved with inexact internal boundary conditions. which may be grossly in error.
Fortunately, as we now shall see, this local construction and solution process will guarantee a superior
solution in the energy norm.

THEOREM 5.5.1. Let u be the exact solution to (7). Then with the previous definitions

" 7 "" Xt ""M - ”".rfm} . (87)

PROOF. Let u* be an arbitrary element, such that «* € {a} + V(2). Then

et
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fee* - u“zﬂ,” =Bu~-u* u—u*)
=B(u, u)+ B(u*. u*) = 2B(u, u*)
=B(u* u*)— Bu, u) = 2B(u, u*) + 2RB(u, u)
=B(u* u*)— B(u, u) = 2B(u, u* - u)
=RB(u* u*)— B(u, u) ~2%(u* - u)
=BW*. u*) = 2F(u*) - (B(u. u) — 2%(u))
=29 (u*)—29(u) . (88)

Since each a7y is solution to the local boundary value problem governed by (83), then each &}
minimizes the local potential,

Tr(w) = % Be(w. w) — Fp(w) VweE{uy}+V(OF) 1<SK<NQ). (89)
Clearly. from the construction of the global function in (86)

H) =2 Tului) = 2 Tiiiy) = I(@"). (90)
Therefore

@'y - Tw)y<ITwW") - I(u) . (91)

From (88) the desired result follows.

N = ull gy S o™ = 0]l g, . O (92)

5.5.1. Observations

We make three important observations.

(1) For three-dimensional problems, the computational cell size is on the order of the inhomogeneity
size, the cost of the HDPM procedure, in terms of operation counts, is N times cheaper than
solving a problem with a direct numerical discretization technique, where N is the number of
subdomains. Since the subdomain problems are completely decoupled. parallel processing
techniques can be employed. As a consequence. one may attempt to also reduce the time to
solution further by a factor of P, where P is the number of (equal speed) processors available.

(2) With the HDPM construction of the local problems. we can bound the difference in the
homogenized solution and its local perturbation, the “sensitivity” beforehand. In other words, we
may determine locally where the local solution process will produce a significant change in the
solution. With the construction of the local problems in Theorem 5.5 we have, directly from
Theorem 3.1,

" = u"| gog, < 12"l son, VORE2.K=1.2,... .NQ2). (93)

Note that the quantity on the right-hand side of (93) has been boundcd beforehand, and is
identical to the local error indicator, and therefore incurs no extra work. if the same partitions
are used.

(3) Central to the success of the method is the choice of E™ to minimize the final solution error,
llu — &*|| gy, The final error can be characterized in a straightforward manner. For any
admissible virtual displacement v, we have

I V(r:—:'f“'):EVvd.t:J f-vdx+j ."vds—J Vi EVv dx
n 1 r, 1

= A : — ~M
_ﬂz.a{jegf vd.t+J;_mt v ds J'H?Vu .EVvd.t}. (94)

e
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Noting that V- (EVu-v) —V-(EVu)-v = EVu : W, and using the divergence theorem, we have

—aMy: - V- (EViE™))-vdx
Lv(u i) : EVo dx H,S_‘,?{L?(ﬁ (EVi™))-v

+f (¢—EVa" -ng)-vds— EVE-nK-vds}
- F rl\'t 2 r!\'.u
=(}+0—2{I EVI‘;M'NK'UdS}. (95)
9? FxuMy
Therefore
e = &™) = ZI EVi" ng-(u™ —u)ds. (96)

l(ll [

The right-hand side can be interpreted as the work done by the jumps in traction moving through
the difference in the actual and homogenized displacement on interior subdomain boundaries.
Critical to the success of the method is, therefore. the choice of EY to minimize the work done
by the traction jumps on the subdomain boundaries. The choice for E* is certainly problem-

dependent.

5.5.2. Example 1: Applying HDPM directly to the (zero-scale) homogenized solution

In this example, we illustrate the dependence of the HDPM solution on the choice of EY To this
end, we return to one-dimensional example considered before. and first consider M =0, E”. The
fine-scale and homogenized problems are

( E(x) d“(")) -1.  w0)=0 u(1)=0 (97)

and

(fr (E”()d“ (‘)) —1. WMo)y=0. «M(1)=0. (98)

For each subdomain K=1....,N(2). the local HDPM problem is

d dii  (x) ~ M
I \E®) i =-1, x€Xi Xg.1) (X)) =u" (X)),

MU(XKH) "M(Xxn) . (99)

where X, X, are the endpoints of each subdomain (Figs. 7 and 8).

In our example. the unit interval is divided into 10000 equal intervals, and for each interval the
property is chosen at random either £=1 or E =7, where 7 is the mismatch ratio. Equal amounts of
hard and soft material are used. A coarser partition is overlaid representing the subdomain partition.
All of the following calculations are done analytically. For convenience, and to illustrate the sensitivity
of the results to the choice of E*. we choose the classical up| Per and lower bounds in (32).

From Tables 5 and 6 it is clear that the harmonic average (E"' = (E~') ") produces far superior final
solutions. This is due to the fact that the internal boundary conditions are of displacement type and that
the harmonic average produces the superior overall displacement compared to that of the arithmetic
average. In this one-dimensional case, the flux jumps play a minor role, and therefore the error is
essentially governed by the quality of the displacement data. Of course, in general, we seek an E* that
produces the exact displacement on the internal subdomain boundaries. Initially, the solution produced
by the harmonic average is in gross error, but after HDPM it has a far superior solution, with respect to
the cnergy norm compared to that of the arithmetic average. Increasing the number of subdomains

Al W Y
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U= Exact

°
U= Hoemog.

o
UsHDFM

Fig. 7. The heterogenous bar, with depictions of the exact solution, the homogenized solution. and local perturbations to the
homogenized solution.

Subdomain

Boundary Point Homogenized Solution

Displacement

pn B | I |

Subdomain 1 Subdomain 2 Subdomain N

Fig. 8. The heterogencous bar, and construction of the local problems.

Table 5
The homogenized solution error and HDPM error for E* = (E) for 100 subdomains and 10 subdomains, versus mismatch ratio

i il £y flu = 6’V gy el 40y fju - ";“‘"am-"“““ﬂm N=100. 10
10 0.185284 0.804457 0.649229 0.644998
50 0.173124 0.956960 0.916105 0.911536

100 0.171544 0.978203 0.957011 0.952321
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Table 6
The homogenized solution error and HDPM error for EY={(E™")"" for 100 subdomains and 10 subdomains, versus mismatch

ratio

T "“IIE(m [ = l‘“llﬁ(ﬂl’"“"E(ﬂ] [|es = 'In"elm!"““ﬂm N =100, 10
10 0.185284 1.347399 0.100066 0.032339
50 0.173124 3.276713 0.125849  0.040390
100 0.171544 4.680409 s 0.129001 0.041567
0.6 T T T T T T T T T

Exact —-

Slrain

06 i g L N N R ; " i
o 0.1 0.2 0.3 0.4 0.5 0.6 07
Length of the Specimen o8 et !

Fig. 9. A mismarch of 20: 1 with 150 intervals. cach with randomly assigned material propertics. HPDM with 3 subdomains.
using the harmonic average solution to construct local boundary conditions.

Strain

05 . . . . . . . : R
0 0.1 0.2 0a 0.4 0.5 0.6

Lengih ol the Specimen 07 o8 09 i

Fi!;. 10. A mismatch of 20: 1 with 150 intervals, each with randomly assigned materiai propertics. HPDM with 5 subdomains,

using the arithmetic average solution to construct local boundary conditions.
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produces a solution which is increasingly worse, since more inexact information is introduced on more
subdomain boundaries.

Strain fields for cases with less material variations, which are easier to visualize on the printed page.
are included in Figs. 9 and 10, and it can be seen that for the harmonic averaging casec the HDPM
solution seems to capture local fluctuations in the solution quite well.

In the one-dimensional example, among the two effective material choices of E™ tested, the selection
is straightforward, the harmonic average delivers a superior final solution. As we have noted, in higher
dimensions this choice is unclear.

5.5.3. Example 2: Applying HDPM to the ALR generated solutions

Returning to the heterogeneous bar, we now apply HDPM to the ALR solutions. The main points to
be observed in this example are that further error reduction. beyond applying HDPM directly to the
zero-scale solution, «°, can be made by using hierarchical structures generated by ALR. We present two
levels of uniform refinement of the material description. Level 0 corresponds to a solution generated by
a uniform elasticity throughout the body; level 1 corresponds to a solution generated by using an
elasticity corresponding to the average in each subdomain: level 2 corresponds to solution generated by
using material properties obtained by bisecting each subdomain and averaging the material property
over cach subdomain half (Fig. 5). All calculations were done analytically. For convenience, and to
tllustrate the dependence of the final solution on the choice of the local reaveraging technique. we
locally reaverage according to the classical bounds, (E) and (E™') ™"

As before, even when ALR and HDPM are combined, Tables 7 and 8 illustrate that the choice of the

Table 7
The level 0. 1 and 2 solution errors for E" = (E), 10000 material variations, 10 subdomains with increasing mismatch ratio
T flue - ’;ullﬁml"‘"“llmrn flu ~ ";’”!.'[JH’I!"”L'(HI e = il g Nl ey

n 0.644998 0.643914 0.643644
S0 0.911536 0.911260 0.911179
100 0.952321 0.952175 0.952134

0.5 ¥ v v —r T T v T v
Exact ——
HOPM ----- |

03 | ‘l

0.2 -

Strain

0.4

0.4 0.s 0.6 0.7 0.8 0.9 1
Lenglh of the Specimen

0.6 1 " " L 1
[+] 0.1 0.2 03

Fig. 11. Level 1 scale used for HDPM. A mismatch of 20 : 1 with 150 intervals, each with randomly assigned material propertics.
HDPM with 5 subdomains, using the harmonic average solution to construct local boundary conditions.
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Table 8
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The level 0. 1 and 2 solution errors for £" = (E~')"", 10000 material variations, 10 subdomains with increasing mismatch ratio

flue - “;n"z(mf““"nm

[fer = I‘.""“ sqm"."“"um

f[u - E:Hnm"‘“““am

T
10 0.032339 0.004203 0.002629
50 0.040390 1.005244 0.003283
100 0.041567 0.005392 0.003377

Fig. 12. Level | scale used for HDPM. A mismatch of 20: | with 150 intervals. cach with randomly assigned material properties,

Strain

‘0.5 ' 'l
o 0.1 0.2

0.3

0.4 0.5 0.6
Lengih of the Specimen

0.7

0.8 0.9 1

HDPM with 5 subdomains. using the arithmetic average solution 1o construct local boundary conditions.

Fig. 13. Level 2 scale used for HDPM

Slrpm

-0.5 L A

0.1

0.2

- A mismatch of 20 : 1 with 150 intervals. cach with randomly assigned material properties.

0.3

0.5

0.4
Length of the Speciman

0.6

0.7

HDPM with 5 subdomains, using the harmonic average solution to construct local boundary conditions.
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Strain

0.5 L 4 L — — —_ A i L

4] 0.1 0.2 02 0.4 0.5 0.6 0.7 08 0.9 1
Lerngth ol the Specimen

Fig. 14. Level 2 scale used for HDPM. A mismatch of 20 : 1 with 150 intervals, each with randomly assigned material propertics.
HDPM with 5 subdomains. using the arithmetic average solution to construct local boundary conditions.

(local) homogenized properties is critical to the quality of the final solution. 1t is possible. as illustrated in
Table 8 to achieve error that is on the order of a fraction of a percent, for this one-dimensional
problem. Figs. 11-14 make a clear point that the methods produce extremely accurate resolution of the
strain field locally. As can be seen, for this example, in the harmonic averaging case, one may obtain
more than onc order of magnitude reduction of the error after only two levels of refinement.

OBSERVATION. One can interpret the ALR solutions as providing better local boundary conditions
for subdomains in HDPM. and in this light, the methad as a whole can be thought of as a non-
overlapping domain decomposition method [9].

6. Summary

In this paper a methodology that consists of the following three main ideas has been introduced:

(1)

(2)

(3)

A global explicit estimate of the solution error introduced in using a homogenized (coarse)
clasticity tensor and using the actual fine-scale elasticity tensor is derived. This estimate only
requires the calculation of the coarse-scale solution. Numerical experiments suggest that the
estimate gives reasonable estimation of the local error as well.

A procedure for generating a hierarchical family of material descriptions and corresponding
solutions is developed. The solutions corresponding to the members of the hierarchy are shown
to converge to the solution of the fine-scale problem in an energy norm. In this method, the
fine-scale model of a structural component. which embodies the exact material dcscription,
represents the highest level of sophistication in a family of continuum models.

A post-processing procedure which endows the coarse-scale solutions with fine-scale information
is developed. The process requires the solution of local. decoupled subproblems posed on
subdomains inside the body. This process is trivially parallelizable. due to the decoupled nature
of the method. It is proven that the solutions generated by this “post-processing’ procedure will
always yield superior solutions to the original coarse-scale solution. Error reductions of orders of
magnitude over the classical homogenized solution realized in simple one-dimensional examples
and may also be obtainable in higher dimensions.

-ra
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