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Abstract

In this paper. a methodology is introduced for the development of adaptive methods for hierarehical modeling of elastil:
heterogeneous hodies. The approach is based on the idea of computing an estimate of the modeling error introduccd by replacing
the actual line-scale material tensor with that of a homogenized material. and to adaptively reline the material description until a
prespecilicd error tolerance is mel. This process generates a family of coarse,scale solutions in which the solution corresponding
to the fine-scale model of the body. which emhudies the exact microstructure. loading allli boundary conditions. represents the
highest level of sophistication in :l family of continuum models. The adaptive strategy developed can lead to a new non-uniform
description of material properties which reflects the loading ;lIld houndary conditions. A pOst·processing technique is also
introducc:u whieh endows the coarse-scale solutions with fine-scale information, through a local solution process. Convergence of
the adaptive algorithm is proven and modeling error estimates as a function of scale of nHIlc:rial description arc: presented.
Preliminary results of several numerical experiments arc: given to cClnlirmestimates and to illustrate the promise of the approach
ill practical applications.

I. Introduction

In structural materials. the presence of fine-scale features, whether introduced by design or occurring
naturally. can greatly affect properties of the material. such as stiffness, yield strength. ultimate strength
and fracture toughness. In particulate and fiber-reinforced composi1es, macroscopic features of failure
are commonly thought to be linked to microscopic damage features which preferentially nucleate at
particle/matrix and liber/matrix interfaces. Unfortunately. if all of the detailed microscale interactions
are taken into account in an analysis of the response of a structure. a problem of enormous size and
complexity is typically cncountered which far exceeds the capacity of the largest supercomputers
available or expected to be available for many generations.

Because of this fact the use of homogenized material properties are commonplace in classical
engineering analysis and design. Methods of homogenization are, of course, the foundation of the
th~ory of composite materials and they have been the object of much study and discussion for many
years. An account of the essentials of the theory, and its variants. can be found in [8]. Although
homogenization techniques have been proven effective in the determination of overall properties. it is
obvious that fine-scale features are completely missed when using homogenized material properties in
stress analyses. Consequently. it is unreasonable to expect that the usc of uniform material properties
can accurately capture local behavior necessary for realistic estimates of a structure's useful life. For
very sensitive applications, numerical simulation, incorporating fine-scale features have been used to
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resolve stress and strain fields throughout a body, There have been early attempts to incorporate
fine-scale features in a global analysis. Noteworthy are the representative works of Fish and Belsky
[1,2], based on multigrid methods, and Ghosh and Moorthy [3,4] whose techniques are based on
Voronoi-cell finite elements.

In the present work, a method for obtaining solutions to problems in elastostatics involving bodies
"composed of heterogeneous materials is developed. The appr~ach,is based on the idea of computing an

" . ~estimate'df the:mode/ing,£;ror:introduced by replacing theactualfine':scale material tensor with that of
", '.;. ~. a homo'genized material;,and,.tqsu~cessively refiqe the materiarproperties until a preset error tolerance

has been met. The method is a: "technique of hierarchical modeling, in which the fine-scale model of a
structural component, which embodies the exact microstructure, loading and boundary conditions
represents the highest level of sophistication in a family of methods.

Specifically, the approach consists of three steps, which are presented in the following order:
(1) We first derive an explicit expression for an upper bound on the difference in a solution

generated by solving a linear elastostatics problem with a homogeneous elasticity tensor (the
coarse-scale solution) and solution generated by solving the same boundary value problem with
the actual elasticity tensor (the fine-scale solution). It is shown that this modeling error estimate
provides a global upper bound. Also. preliminary numerical experiments suggest that the
estimate gives an adequate resolution of the local error. This bound is shown to hold,
independently of the loading and boundary conditions, for any choice of an approximate
elasticity tensor (not necessarily constant), provided that it satisfies standard ellipticity con-
ditions.

(2) A technique is then developed to generate intermediate scales of the material description, a
hierarchical family. which produces a sequence of boundary value problems whose solutions
convergence to the fine-scale solution. in an energy norm. Scale-dependent modeling error
estimates arc presented.

(3) Finally. a relatively inexpensive post-processing techniquc is developed, which is designed to take
advantage of the wide availability ot' parallel processing platforms. The method supplies the
coarse-scale solutions produced by the hierarchical process with fine-scalc information through a
local solution process. where the exact material properties are used. This process can be thought
of as either a local perturbation I1lclhod. or. as a non-overlapping domain decomposition
technique [9].

The results of several preliminary numerical experiments are given to confirm estimates and to
illustrate the possible effectiveness of the presented approaches in practical applications. A fundamental
point of the presented work is that the error in solutions produced by classical homogenization methods
can be estimated and that the quality of the response can be improved by systematically accounting for
effects of fine-scale features of the material.

2. Preliminaries

2,], Notations and conventions

Throughout this work we use the L 2(n )-based Sobolev spaces fl"'(n) consisting of functions with
generalized partial derivatives of order less than or equal to m in L ~(n) defined on an open domain
n E IRN; N = I, 2 or 3. These spaces are equipped with the usual norms and seminorms

f "

~"~~

....:;. ;';.;:..... ,' ... :.: ••'~.:'>. '\. ' •• :"; ".',',' \ '.

(1)

We also lise the spaces flS(n) for non-integer s E IR.
As is standard, C~n(n) is the subspace of Cm(n) consisting of functions with compact support in n.

The closure of C~'(n) with respect to the H"'(n) norm in H"'(n) is denoted H~J(n) and the duals of
the spaces H'(;(il) are the negative Sobolev spaces H-m(n). All spaces appearing in boldface are
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vector-valued extensions of the preceding ideas, For example, H1n(fl) = [H"'(fl)]N is the space of
vector-valued functions whose components have partial derivatives of order less than or equal to m in
L 2(fl) = [L 2(fl)]N. Accordingly.

N

IIvll;fmcn) = L IIv;lI~m(n) and
;= 1

N

Ivl~m(fl) = L Iv;l~m(fl) .
;=1

(2)

Fo/,' the- iI;lner pn;>duct of tensors'\7w, Vv E [L 2(fl )txN
, U,_V E H 1(fl), we use the following notation.

.. T ~ iJu; iJvi 1
Vv : 'Vu = tr[(Vv) 'Vu] = i.7:.1 aX

j
aX

j
E L (fl) . (3)

where auJ axj, avJ aXj are generalized partial derivatives of Ui and Vi' 1 ~ i. j ~ N. and where ui' V; are
Cartesian components of u and v. Throughout this paper we shall use the symbol 'vlan' for boundary
values of v E HflI(n), where boundary values are interpreted in the sense of traces.

2,2, Linear elasticity

We consider a material body composed of a linearly-elastic material and in static equilibrium under
the action of body forces f and surface tractions t. The body occupies an open bounded domain in
n E IRN and its boundary is denoted an, For present purposes. it suffices to consider cases of which fl is
regular: a simply-connected domain with Lipschitz boundary, The boundary an consists of a portion I:
where the displacements are prescribed and a part r, where tractions are prescribed.

r"ur,=o. (4)

The data are assullled to be such that f E L 2(n), tEL "(r;).
The space of admissible displacements, V(n). consists of those displacemcnt fields in the space III (fl)

which satisfy homogeneous (displacement) boundary conditions on r".

Thc displacements on I: are prescribed as follows: 3/1 E 1II([l).

ul/~ = Il\r. = '1., .

(5)

(6)

where UU is specified displacement data on r;,. Thus. the actual displacements of the body arc in the
translation {II} -j- V(fl).

We consider the c.:lassical principle of virtual work characterized by thc following variational
boundary-value problem of elastostatics:

Find u E {u} + V(n) such that
(7)

Here. g(J : H I(fl) X Ill(n) ~ IR is the bilinear form characterizing the virtual work and [ji(,) is a linear
functional characterizing the work done by the cxternal forces.

9ll(u.v) = (Vv:E'VudxJa .'j;(v) = If' v dx + It. v d~.
n 1',

(8)

where the mechanical (stress-strain) properties of the material are characterized by the elasticity tensor
E which is assumcd to be a given function in [L "'(fl)t2xN2

.
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If the data in (7) are smooth and if (7) possesses a solution II that is sufficiently regular, then u is the
solution of the classical linear elastostatics problem,

-V, (E(x)Vu(x)) = f(x) x E n
u(x) = ~?1.(x) x E r"

In . (EVll(X)) = t(x) x E r, ,
I

(9)

2.2.1, The elasticity tensor
The elasticity tensor in (8) characterizes the mechanical properties of the material and, for materials

with highly heterogeneous microstructures, can be highly oscillatory. We require that the elasticities be
subject to the following ellipticity and symmetry conditions: 3af• au> 0 such that V A E IRNXN

, A = AT
(a.e. xE.Q),

(10)

Ei;k/(x) being the Cartesian components of E at point x.

2.2.2. Homogenization
The problem described by (7) is usually far too complex to be solved by conventional computatinnal

methods due to the complex internal geometry of the body. characterized by a highly variable E. To
perform an analysis of the response of the structure it is customary to replace E by a uniform 'effective'
elasticity t\:nsor. denotes E". This leads to a new more tractable problem.

Find ull E {II} + Yen) such that
(J I)

Here,;?}J": H1(n) XH'(fl)~1R is the bilinear form characterizing the virtual work and 3'(-) is defined
as before.

@U(llll.V)= r Vv:EIlVu°dx E1'(v)= r f'vdx+ { t·vds. (12)In In J/~
In usual engineering calculations, Ell is a constant function in [L X(fl)]N!XN', and EO satisfies conditions
of symmetry and ellipticity: 3a~. a~>O such that VAEIRNXN

, A =AT (a.e. xEfl),

(13)

where E:~kl are Cartesian components of Ell. The boundary conditions are identical to those of the
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heterogeneous problem. Under the adopted conditions both (7) and (11) possess unique solutions u.
1/ E {Ii} + V(fl), respectively,

The fine-scale energy norm of functions v E HI (ll) is defined by

IIvll~(!1) = @(v, v) = ( Vv: EVv dx. (14)Ju
where the:actual elasticity tensor E is used,

2.3. Componenls of the error

In this paper, we shall make the natural choice. 1111 -1I°llF.(!})' as the measure of the error between
the finest and coarsest scales, In general. even the exact solution ull cannot be obtained analytically and
a finite dimensional approximation to it must be used; for example. a finite element approximation UO.

h
.

Directly by the triangle inequality.

1111-uo.hllF.(u) ~ Ilu -1/1I£(!1) + Ilull
-lI

o.hIlE(n) . (15)
Modeling error Numerical error

Therefore. two sources of error occur in approximation of the heterogeneous problem. a modeling
error. due to the selection of homogenized properties and a discretization error inherent in the finite
dimensional approximation of the homogenized problem. Discussion of the numerical error characteri-
zation. which is not the subject of this paper. can be found in standard texts (see [10]). The remainder
of the paper is concerned with the modeling error and its use in characterizing the material response.

3. Modelling error: The relationship hetween scales

3, J. Explicit (/ posteriori hOI/lids 011 tfte modelillg error

Key to Ihe ability to assess the quality of the homogenized solution generated by using EO, is the
development of an accurate error estima1e which is independent of the loading and boundary
conditions. In this section we develop an explicit expression for the difference of the fine·scale and
coarse-scale solutions in the fine-scal,e e!lergy norm. lIu - ,/lIf:(fl)' We first record some properties of
the elasticity operator E E ILX(ll)IN

'
XN

' viewed as an L 2(ll).map. LeI

L:~m(fn= {,4E[L\fl)]NXN:/\T =A}.

and denote the L 2·inner product and norm on L:ym(fl) by

( 16)

«/L B» = fA: B dx
u

IIIAIW = «A, A» . ( 17)

The operator E: L;ym(ll)~L;y,"(fl) is a self-adjoint. positive definite operator:

«EA. ~\»> 0 V A E L~y,"(n). A,.6 0 .
,

«EA. B» = «A, EB» VA. B EL~y,"(n).

(18)

( 19)

it is well known that for such operators. the 'square-root' is well defined. generally in terms of the
eigenvalue of E, and

Using this notation, it is readily verified that

@(U'V)=f Vu:EVvdx=«EI/~Vu.E"2VV» VU,vEV(n).
/1

(20)

(21 )
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so that

Ilvll~(n) = ~(v, v) = «EII2%,EI12%)).

With the previous definitions in place. we establish the following error bound.

(22)

THEOREM 3.1.1. Le,t E be a ~~nsor-vabiedfl4nctiQn. (1l.[L"'(!.l)]~;!x~2 satisfying (10) and let EO be a
• ... J l ' '. 0 ~.... \
t~nsP! .$ptisfyingil3»L,et u and u. be the corresponding soluti~ns to boundary value problems (7) and
(11). respectively, The" ..

lIu-uO\\E(n)~III.foVuoIIlE(fl) .fo=I-E-1Eo, (23)

where explicitly

111.10 Vuolll~(fl) = In (I - E-1Eo)Vuo : E{l- £-IEo)%o dx.

PROOF. Denote by Il~(', '). the difference, for arbitrary vEV(il),

Il~ o(u", v) = ~(uo, v) - ~ o(uo. v) = In % : (E - EO)Vllo dx .

Substituting (25) into (11) gives

OO(ull, v) - ~9lJo(uo, v) = g?;(v) = 9lJ(u, v) ,

which directly leads to

@J(II - uo. v) = -Il@o(,,o. v) = -«'Yv. (E - EO)V/lo)) V v E V(il) .

S ' 0 .cttlllg V = u - /I • gives

1111 - //'II~ln) = -«V(u - 11°), (E - EO)Vuo))
= - «V(II - /10), EE -I (E - EO)Vllo))

= _(£112V(1I _ uo), EI/2E-1(£ - £t1)'Y,,o))

= -(EI12V(u - uo). EI12$OVUO))

~ [«E 1I2V(1I - ,/'), E 1I2V(U - ,,0))) J"2[ «£ 1/2.111V/I 0 , E 1/2$0 v,,o))] 112

= Ilu - ,,011 F.(mll l..9IoV,/11 I EUJ) •

from which the assertion follows. 0

(24)

(25)

(26)

(27)

(28)

3.1.1, Observations
In Theorem 3,1, the proof makes use of the fact that the coarse-scale solution satisfies a global

variational statement, with the ,>ame boundary conditions as the fine-scale formulation. If we replace EO
b EM d d' lOb !of h EM. '1 h' d' IY an. correspon mg y. u y u , were' IS not necessan y constant, t en we Imine late y
obtain the following:

lIu-'/'IIEtm~III.f!ofVuMIIIE(/l) $M=I-E-1EM
, (29)

This result proves to be useful in later analyses. An algorithm for construction of sequences of material
tensors EM is given in Section 5,

3.2. Connection with classical bOl/nds

Now we establish a connection between the presented error bound and classical bounds for the
overall elasticity tensor (see [61 for details). This tensor is defined by the relation

(u) =E*(E) (T = EE (30)
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where (-) = lIlal In 'dx. In general, E* is not a material property, i.e. it depends on the data, If (u)
and (E) are such that

(31 )

and/= 0, then there exist universal bounds for the eigenvalues of E*, This restriction, often referred to
i,n,the literature as Hill's conditiqn"can be realized in several way-s [5,7]. The bounds for E* are given
by

(32)

(34)

This inequality means that the eigenvalues of the tensors E* - (E -I) -t and (E) - E* are non-negative.
A special class of fields that fall under Hill's condition (31) are those produced in bodies with

specified boundary data of the following form: (1) pure displacements in the form II = g.x or (2) pure
tractions in the form t = fl· n; where the tensors g and ff are constant strain and stress tensors,
respectively, It can be easily shown that under uniform conditions with no body forces. that for case
(1): (E) = g, and for case (2): (u) = fl. These boundary conditions are referred to as uniform for
obvious reasons. If we restrict our attention to uniform boundary conditions. the general error bounds
take on special forms, We have the following (with EO constant).

1111 - uOIl ~(/l) ~ In (I - E -I EOWI/' : E(I - E -IEu)vuo dx

f (""II E-IEuM 0) (E" U EOo o)dx= vII -. • vII : ~vII - ~ ,"
II

f ('" II Et"IO ,...,II EO" ° J.-IJ'Oo ° 1'0 o+E-IJ'oo °.1•00 0) (Ix= v'II:' vII - vII : J v II - ~ ~ VII : ~ vII ~ vII . l~ V II
{J

=Vllu: (/:,')vIIUlnl-VI/I: EUYllolnl-Eovllo: v//lnl + (E-1)EOyuo: Eovl/llal·
(33)

OBSERVA nON 1. For those cases having either type of uniform boundary conditions, wilh no boLly
forces, it is straightforward to show that if the classical upper bound is chosen, EO= (E). then

YUu: (E) v,,u\a\- Vllu : EIIVuU\al- EUvllo: vuulal + (E -I )EIlVIIO: Eovullial

= 0 - EOVllll: vlIlJlnl + (E-I )EIlVuu: EovI/lul

=EuVllu: {-I+ (E-I)(E)}Vllulnl

= (E)vl,o: {-(E)-I + (E-I)}(E)VuUla\

= uO: {-(E)-I + (E-1)}uolfll.

where UO(=EuEu) is the statc of strcss that exists in the uniform body. Therefore

lIu - uOlli(/l) ~ {- (E) -I + (E-I
) }uo : uOlal . (35)

If the lower bound is chosen: EO = (E -1) -1, then for either type of uniform boundary condition

Vull: (E)VIIOlal- VuO:EOv,,ulal- EOVuo : vlIOlnl + (£-1 )£OVIIO: E °V,/' In I
= Vuo: (E)VllOla\- VUO:(E-I

) -IVIIO\al + 0

= {(E) - (E-I)-I}VIIO: vl/'ini. (36)

Therefore.

1111 - uOIl~(Il) ~ {(E) - (E-I
) -I}f/': EOlnl . (37)

where EO(=En-1uo) is thc state of strain that exists in the homogenized body. We observe that in both
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(38)

(40)

of these cases the difference in the classical bounds in (32) appear in the expressions for the modeling
error estimates.

OBSERVA TlON 2. It is straightforward to show that for the uniform displacement case, u = Y, x.
where Y is arbitrary, that

II" . °11'" f r ~ ° II °1 I f IlU - Ii £(n) = VI.i :,EVudx+ Vu : E Vu £l - 2 . Vu : EVu dx
n .I'.' II

=(e): (u)I£lI+Vull:EoVuol£lI-2eo: (u)lnl
= {(E) - E*}Y : Ylnl:s;; {(E) - (E-I) -I}y: Ylnl .

where E* -I (u) = (e) = ell = Y. The last term on the right in (38) is a universal bound, i.e, it is
independent of the microstructure, Also, it is easy to show 1hat for the uniform traction case, t = fJ' n,
where fJ is arbitrary that

1\ Il - 1/'11~({l) = f Vu: EVu dx + Vull : EOvuolnI - 2 f Vllo: EVil dxJ11 In
= (e) : (cT)lnl + VI/': Eovi/'Inl- Zell: (cT)lnl
= E*-I (u) : (u) Inl + Vuo: Eovulllnl- 2eo: (u)lnl
= E*-l.~: fJlnl + VIIll: EOVI/'Inl- 2Eo: .1"lnl. (39)

It is easy to show with EO = (E). that E* -I fJ : fJln I + VIIIl: EllVI,uln I - 2e Il : fJln I IS a 11111111llUI11.

Therefore

Ilu - 1/'II~(fl) = E*-Ig : glnl + Vllo: Eovulllal- 2eo: glnl
= £*-1 g :glnl + VI/': EOvulllnl- 2eo: .0/" InI
= {(E)E*-I(E) - (E)}eo: elllni
:s;;{(£)(E-1

) (E) - (E) }e" : EIlIDI.

where E* (E) = (u) = ull = g = E" E U The last term on the right in (40) is a minimum universal upper
bound, The two universal bounding materials in the previous cases have the following ordering:

(41 )

In the next section we conduct numerical experiments on the global and local estimation of the
modeling error with body forces and non-uniform boundary conditions in place.

4. Numerical experiments on error estimation

4. 1. Example 1: A heterogeneous bar

To eliminate any effect of numerical error on the study of the error bound, we first consider an
example with an analytical solution. To this end. we consider a linear elastic rod, of unit length, nxed
on both ends, and subject to a constant body force (see the top three diagrams in Fig, 7). The nne-scale
and homogenized problems are

and

d ( dU(X»)dx E(x) C'i:r = -1 .

~ (EO dl/O(x») = -I,
dx dl"

11(0) = 0 ,

1/'(0) = 0,

1/( I) = 0 (42)

(43)
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(44)

Here. our interest is to determine performance of the error bound (23) in predicting global and local
modeling error throughout the body. To this end. for local resolution of the error we let 22 denote an
arbitrary partition of n with a total number of subdomains, N = N(22), such that

N(3)

ii = U e" e", eL E 22 e" n eL = 0 if K =1= L 1:S;; K. L:s;; N(21.) .
"=0

We define local error indicators. loc,al meas!Jres of the error, for eK C n by

(,,=III.1ovllOlltE(eK) I:s;;K:S;;N(22), (45)

For the global error estimator we simply take the global error bound (= III.1ovuoIlIE(n)' Clearly
N(!1.)

lIu - uOIl~(n):S;; 2: «(K)2. (46)
"=1

The quality of the global and local error indicators is measured by effectivity indices 11 and 11K'
respectively:

N(:!J.)
, ~ 2

7f= ~ 11K'
K=t

(47)

In our example, the unit interval is divided into 10 000 equal intervals, and for each interval the
material property is chosen at random to be either E = I or E = T. where T is the mismatch ratio. Equal
amounts of hard and soft material are used. A coarser partition is overlaid representing the subdomain
partition. The following tests arc entirely representative of many realizations of the interval and
subdomain partitioning for this simple one-dimensional case. All of the following calculations arc done
analytically. For convenience. and to illustrate the sensitivity of the results to the choice of EO. we
choose the classical upper and lower bounds in (32). Our objective is 10 illustrall' the dependence of the
effectivity indices on the domain partitioning and the choice of Ell.

01.J, J. Results
From Tables I and 2. it is seen that an increase in the number of subdomains in the partition reduces

the quality of the local effectivity indices. This stems from the fact that the local estimates arc derived
from a global calculation that. due to its integral nature, is insensitive to local pointwise information.
The local effectivity indices are closely clustered around unity for the harmonic average. independent of
the mismatch. while this is not the case for the arithmetic average, Locally. the error indicators arc not
guaranteed to be upper bounds on the error. and, as Tables 1 and 2 show. they underestimate the error
in some parts of the domain. The choice of homogenization affects the quali1y of the local estimates,

Table 1
The effectivity indices for E" = (E) for 100 subdomains alld to subdomains. versus mismatch ratio

T lIu - uOllc\ll/liullclOi '1'/ max TfK N= 100. 10 mlllTfK N = 100. 10

10 0.804457 1.000186 1.38345 1.06~4R 0.529439 O.~3348
50 0.~56960 1.000205 1.6632~ 109153 0.494427 O,9188~

100 0.978203 1.000208 1.71799 1.09488 0.489773 0.91681

Table 2
The effectivity indices for E" = (E -I) -, for 100 subdomains and 10 subdomains, versus mismatch ratio

T llu - uOllWl)/lIullcllll '1'/ maX'I'/K N= 100,10 minTfK N= 100.10

10 1.347399 1.000066 1.006312 1.000608 0.858558 0.996870
50 3,276713 1.0000]8 1.001734 1.000158 0.955632 0.999186

100 4.680409 1.000009 1.000906 1.000082 0,976185 0.999578
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although this effect is barely perceivable globally, Interestingly, the error prediction for the harmonic
average case becomes better with increasing mismatch ratio-tltis is strictly an anomaly associated with
tltis specific one-dimensional problem, and, in general, is not necessarily tlte case. Note that even for this
simple one-dimensional problem, the error for the arithmetic average ranges from 80-90% of the actual
solution, and for the harmonic average, 134-468%. It easy to show that, with respect to the energy
norm, the arithmetic average is within a fIaction of one perc~nt of being the optimal homogenized
material£hoicetominiTllizethe:mo~elii1g ~rror'in energy for this specific problem.

4.2, Example 2: A three-dimensional analysis of a cube in shear

We consider a unit cube of material, with a heterogeneous two phase isotropic random 'checker-
board' microstructure (Fig. 1). We choose EO to be isotropic, where the specific values of the
homogenized Lame parameters are simply the volumetric average of the Lame parameters of the
internal constituents, The unit volume is divided into 64 sub-cubes of equal volume, each with
dimensions 1/4 x 1/4 x 1/4, Each sub-cube is randomly assigned, either a set of soft or hard material
parameters (Fig. I)

A=A'7 (48)

where 7 ~ 1 is a constant parameter which represents the mismatch ratio and where AS and µ: are the
set of soft Lame material parameters whose relative ratio, for convenience, is taken to be that of
standard grade steel. Equal amounts of hard and soft material are used,

The loading scenario for the heterogeneous cube is shown in Fig. 1, The virtual work formulation for
this problem is

Find ,/'EV(fl) such that

','" ....

J vv: E "VII (l dx = ft. v ds
11 /'

"
VvEV(fl) (49)

~

'J

"-'
".1

Fig, 1. A test problem for three·dimensional dispersed cuboid microstructure.
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(50 )

where
• n corresponds to the interior of the 1 x I x I cube depicted in Fig. I: 0 < x I < 1, 0 < x2 < 1,

0<x3<1.
~ ru-'corresponds to the plane x I = O.
• r" corresponds to the plane x, = t'. where we specify t= {O. 0, l}T (uniform shear loading).
• /=0,
• all other faces of the cube are free surfaces.
For the purposes of numerical experiment. the finite element method is employed to generate

approximations to u and UO denoted by ,/' and u°.!'. respectively. For a measure of the quality of the
error prediction locally, we use instead of (47). the local discrete effectivity indices.

(51 )

In all of the following numerical experiments. the finite element approximation consists of hexahedral
elements, with trilinear polynomial interpolation. To illustrate the use of local error indicators, we
adopt a simple unidirectional partitioning of the cube into four 'slabs': fJ\ : 0 <x I < 1/4. ('12 : 1/4 < X I <
1/2, °3 : 1/2 < x I < 3/4 and 63 : 3/4 < x I < I. It is clear that the quality of the discrete error indicators
is mesh dependent and. consequently. a series of tests are performed to illustrate mesh dependency for
fixed mismatch ratios. These tests arc conducted in the following manner: keeping the microstructure of
the cube fixed. for each sub-cube in the cube, we steadily increase the number of finite clements per
sub-cube, In this manner. we isolate the effects of the fineness of the tlnite clement mesh and the
mismatch ratio on the discrete effectivity indices.

./.2.1. Results
l'ahlcs 3 and 4 contain resllllS which illllsirate the behavior of the global and local effectivity indices

with increasing tlnite clement mesh refinement for fixed, successively larger mismatches of material
properties of 10. 50 and 100. The aCf/lal modelillg error varied betweell a few hLllldred percent (0 over
JO()()%. depelldillg Oil the mismatch ratio alld ihe fillite element mesh. The effectivity indices. however,

Tahlc 3
The global effeclivily indiccs for mismatch 7' = 10, 50. 100 and for incrcasingly tincr finitc clcment meshes

DOF Elcm/sub-cube .,.,". T = 10, 50, 100

375 I x I x I 1.21 1.44 1.52
21R7 2x2x2 1.34 1.98 2.43
b591 3x3x3 1.37 2,(5 2.71

14739 4x4x4 1.37 2.15 2.72
27783 5x5x5 1.37 2.14 2.71
46X75 6x6x6 1.37 2.14 2.72

Tahlc 4
Thc local effectivity indices (for cach slab) for mismatch T = 10. 50, 100 and for increasingly finer finite clcmcnt meshes

DOF Elem/sub-cubc Slab I:.,.,~ Siah 2: .,.,~ Slab 3: 1)~ Siah 4: 1)~

375 1 x 1 x I 1.22 I Ali 1.55 0.93 1.05 1.12 1.44 1.67 1.74 \.32 I.IiIi 1.80
2187 2x2x2 1.311 1.94 2.41 1.55 2.44 3,OR 1.32 I.R3 2045 1.21 1.80 2045
6591 3x3x3 1.57 2.67 3.48 1.29 1.94 2.40 1.29 1.96 2,59 1.35 2.18 2.78

14739 4x4x4 1.43 2.32 2.99 1.27 1.92 2.40 1.30 1.96 2.45 1.51 2.52 3.28
27783 5x5x5 1.31 2.03 2.58 1.39 2.20 2,79 1.41 2.17 2,79 1.38 2.18 2.76
46875 6x6x6 \.36 2.09 2.63 1.37 2.17 2.77 1.35 2.116 2,77 1.40 2.25 2.91
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Fig, 2. Behavior of the effectivity index with changes in the number of degrees of freedom, for the cube in shcar with cubical
microstructure.

are remarkably accuratc. which mcans that we may predict the error well, even though it is quite large.
Our global measure of the effectiveness of the error estimate, 1)". is relatively constant after a certain
mesh fineness threshold (Fig, 2), which is approximately 27 trilinear hexahedra per sub-cube, and while
the local effectivity indices also stabilize. they stabilize at a much slower rate. However, the local
effectivity indices arc clustered around the global values. "uggesting that we may obtain accurate local
estimates of the error, We note thaI the choice of EO is not restricted to the classical relation of averaged
quantities of stress and strain. and that any el:lsticity that slltisties the ellipticity conditions is admissible,
While in pn1ctice the exact solution is usually never obtainable, the experiments lend some confidence
to the reliability of the estimator. Other loading cases. such as a cantilevered cube in uniaxial tension
and a cantilevered cube under the influence of constant body forces. were tested. with qualitatively
similar results (not reported here) to the presented shear case,

5. Hierarchical scale construction

In general, the quality of the solution 11° may be poor. even with a good choice of a uniform
homogenized description. In order to improve solutions, it is clear that one must develop a method
which (efficiently) constructs solution scales between the coarsest-scale. corresponding to a perfectly
uniform material description, and the finest-scale, To obtain reasonable accuracy with numerical
methods based on discretization. the computational cell size must be less than. or equal to the
inhomogeneity sizes encountered in the body, This makes the full fine-scale problem inaccessible. for
two main reasons. First. if the full. coupled, fine-scale problem is discretized for an approximate
numerical method, it would not fit. due to memory limitations, on existing computers. Set:ond. even if
the discrete problem were to fit into a hypothetical 'super-memory' machine, it would take on the order
of C,,2 operations to solve the resulting system. where 11 is the number of unknowns. and C is a
constant, greater than unity and is dependent on the condition number of the resulting discrete stiffness
matrix, The value of 11 is so large (e.g. ,,- 0'(107» that such computations are not feasible,

To address this difficulty, a series of relatively inexpensive coarse-scale problems are generated.
characterized by bodies comprised of subdomains, Each subdomain may contain different constant
material properties. The sizes of these subdomains are orders of magnitude larger than the in-
homogeneity sizes encountered on the fine-scale (see Fig. 4). These coarser material descriptions form a
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Fig. 3, The nomenclature for the construction of a partition.
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Fig. 4. Hierarchical elasticities produced by ALR for a single Cartesian subdornain.

hierarcilical family of scales of material description. The modeling error throughout the body is
estimated at each scale. with the error estimator introduced previously. and the material description is
refined in those select regions where the modeling error is high. The global coarse-scale problem is then
resolved with the new material properties. and the error re-estimated. until a desired prespecified
tolerance is met. However, in general, these hierarchical solutions do not capture much of the fine-scale
information. and. therefore, a post-processing method is applied which adds a local fine-scale
perturbation to the hierarchical solution, This process endows coarse-scale solutions with the necessary
information to be reasonably accurate for a local analysis. Therefore, the overall method is comprised
of two main stages: (1) generation of hierarchical scales and (2) local solution processes.
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5. 1. Construction of (J par/ilion

Although in the preceding theory the partition for the model error estimation has been based on an
arbitrary partition of the domain. in practice. there must be some constraints, For definiteness, we
derive a systematic construction which is amenable to numerical computations, We consider a general
curvilinear, non-convex domain. and we introduce the idea of a bounding box (Fig. 3). In general,
neither· th~slibdomain divisions' nor the partitions follow' the' material boundaries, We define the
bounding box, 0, as simply an open rectangular parallelpiped such that

diaD· = inf dia{o : Ii CO} .

Furthermore, D· is subjected to a fixed partition
N - - 0U OK =0· OK n 01. = 0 K ~ L 1~ K. L ~ N(21 ).

kaJ

where each OK is of equal size, We define the subdumain e~en as

(52)

(53)

'. ". '.. " .~::',

N(~D)_

U e~=1i
"nl

e~n e~= 0 K ~ L , (54)

We also define partitions within each subdomain e~, by first partitioning the corresponding 'sub-boxes'
into equal pieces, In one dimension this corresponds to bisecting subdomains into equal line segments,
while in two dimensions this corresponds to quadrasecting sub-boxes into equal rectangles. and in three
dimensions it corresponds to octasecting sub-boxes into equal hexahedra with rectangular cross-scction,
We denote these sub-sub-boxes by 0".1.' where

(55)

where N" is the number of sub-sub-boxes in sub-box K. Furthermore. we define

n n 0".1. = t)~.L (56)

and clearly
o DO

f)".LCO"
-0 -0U (-)".1. = e"

,.}D
1;,/.

(57)

where e~.L arc denoted as 'cells' (Fig, 3). It should be clear that sub-box 0" and e~ arc identical for
Cartesian domains. It is emphasized that the partitions for (1) the error indicators. (2) the hierarchical
scale generation and (3) the local pos1-processing are independent and in practice should be kept
indt:pendent to obtain maximum performance from the method, However. for clarity of exposition, we
use the same partition as for the local error indicators throughout the presentation.

5.2, Stage I: An algorithm for generating hierarchical scales

Overview: A hierarchical family is generated by first starting with a homogeneous material.
estimating where the corresponding homogenized solution is in large error. and locally relining of the
material description where the error is high. This is an iterative procedure. For clarity of exposition, we
illustrate the procedure with isotropic materials and with volumetric averaging for the homogenization
process, but neither of these conditions is necessary,

5.2.1, An adaptive algorilhm based 011 Adaptive Local Reaveragillg (ALR)
• Step 0: Choose an error tolerance: 1111- u011 ~ 0 = error tolerance.
• Step 1: Solve the initial coarse scale problem, with uniform material properties, For example.

suppose EO is a constant isotropic tensor with material constants,
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KO _ 1 r
-1.01 In K dx (58)

(59)

(60)

where. as usual. K = A + t denotes the bulk modulus.
• S/ep 2: Distribute the error tolerance in the following fashion.

.' le~1 ( °... 5K = 5 lflf V K = 1.2, .. , . N 2l )

• Step 3: Calculate the following in each subdomain e~.V K = L 2, . , .. N(fl 0).

'K = III.9'oV'uoIIIE(B]l) .9'0 = 1- £-1£0 ,

and check

'K~{)K VK=I,2, .. "N(210
), (61)

• Step 4: If 'K > 5K, repartition the corresponding sub-box. OK' into sub-sub-boxes. as given in
(55), and generate cells e~,LC e~. Calculate the following for each cell

I 1 f II 1 iK [] = - K dx [] =- dx 62leK.L leO I 0 J.L RK.1• leO I 0 J.L ( )
K.L 8K.L K.L I/K.L

where le~.I,1 = meas(e~.L)' and where

EI(X)II'IX1.L=E~.1. XEe~.L· (63)

The new material generated by performing one scquence of Stcps 1-4 is dcnoted with superscript 1
as opposed to O. which was used for the initial data and solution. For example. after completing
the first pass of Steps 1-4. the material propcrties are denoted as K I. µ.I and the corresponding
global solution as /II.

• Step 5: Repeat Steps 1-4 until the error tolerance has been mel. After M stages (Steps 1-4). i.e.
after ,\1 steps in which at least one sub-box has be repartiti~pe(,I, during a stage. we ,arrive at a
material characterization defined by the tensor £'11 E (L To (£1) 1'" x '\ •• such that V A E \R" . N, A = AT

1
E,I/(x)A = KM(X) '3 (tr A)l + µ.M(X) dev(/\) a.e. x E n

where dev(A) = A - H tr A)l. and where

(64)

,111 1 r
K 8fj!.L = le~ I )Hq K dx

K.1. K.1.

5,3. Convergence of the ALR so/lltions

(65)

It can be easily shown (8] that the ellipticity constants appearing in (10) arc related to K and µ. in the
following manner

0< af = min{3K, 2µ.}
(66)

x> au = max{3K. 2µ.} .

Furthermore. we observe that for any e~." C fl.

af~I~\~ 110 3K(X)dx=-I.~ 110 3A(X)dx+-I.~ 11 J 2µ.(x)dx~au·
0K.1. 8K.L f)K,L RK.L f)K.L H~.1.

(67)
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a, ~ I ~ 11 2J.L(x) dx ~ au·e K.L B~.L

Therefore. as one would expect.

(68)

(69)

In other words, the material properties of the intermediate scales are bounded by the original ellipticity
constants.

THEOREM 5.3,], LeI u be the solution to (7) and let 11M be the solution to the boundary value problem,

Find uM E {u} + V(fl) such that
(70)

where g) M : III([1) x If I(fl) >-+ IR is the bilinear form characterizing the virtual work for (he Mth-scage
material.

(71 )

with EM given by (64), and fI(') is defined by (8), Then

PROOF. Let

AOOM(u"', v) = OO(u.ll, v) - @'I!(UM• v) = In Vv: (£ - E,II)VuM dx,

Substituting (73) into the equation associated with (70)

OO(uM• v) - AOOM(u,ll. v) = fJ(v)

and subtracting the result from (7) yields

OO(u _UM. v) = -il!IJM(UM, v).

Allowing v = u - uM, and by Cauchy-Schwarz

OO(u -1/', u- UM) ~ IIV(u - uM)1I1.2(1l)II(E - £M)VuMII1.2({ll .

Because of the assumed ellipticity of the elasticity tensor (recall (10)),

lIu -IlMII~(n} L M II
;;;. V(u - u ): V(u - u' ) dx .

at n

Therefore

(72)

(73)

(74)

(75)

(76)

(77)
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Fig. 5. A hierarchy of scales. for the heterogeneous bar. illustrated for ten subdomains.
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(78)

In general. estimates such as this are asymptotically exact in the sense that as gl/ approaches E in
[L "(fl)IN~XN~. as M--H'J, we cxpect 11M-II in V(fl) by virtuc of (72),

5.4. Sfage II: Post-processing the coarse-scale soillfiol/S "/rollgh local fine-scale pertllrbtliion

Overview: While the solutions produced by ALR t:onverge to the fine-scale solution in the energy
norm. they may not adequ:llcly capture the line-scale features. Hcr..:. we illustraW how the hierarchical
solutions can be post-processed in an inexpensive local manner. which is proven to yield superior
solutions in an energy sense. The process is as follows: thc solutillfl generated by the homogenized
material description is used to wnstruct approximate local displaccment boundary conditions for
interior subdomain boundaries produced by a partition of the problem domain. The exterior boundary
wnditions are not altered (Fig. 6). The decoupled local problems are then solved. The motivation here
is that the detailed solution to several decoupled sub-problems posed on smaller subrtomains, arc more
tractable. and can be computed easily in parallel if desired, The final global solution is then 'recon-
structed' by simply reassembling the local slJlutions. which arc conforming. We refer to this procedure
as the Homogenized Dirichlet Projection Method. HDPM. The operation counts involved in this

/1\
~/, :W='\: ~\' :-r.::r=. w~:W" 'W' :w:-,", ., J S :J.:.iJ-: • • • • II -.- ~! . .... i -

JEt if :Q:iiIllfltB: it• , • ., • • • \. • II

• _ -- wi I' _ 'f: • It .'. • ~ "
I II. .. • II • ,'/ I' _ ,,.

Fig, 6. An example of ·post·processing· or 'decomposition of the domain' or 'local perturbation' using the coarse·scale solution.
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procedure are significantly less than those required to solve the hypothetical, coupled, tine-scale
problem.

5.5. Construction of local subdomain problems

We define the boundary of an individual subdomain e~, as i)e~ consisting of a portion l-;"u where~ ---
, the'displacell)ents are prescribed and a part rK1 where tractions are prescribed:

rKU = ae~\l'K' I~, = i)e~ n r, , (79)

We define the following space

V(e~) = {v EV(n), v = 0 on n\e~, vir". = O} , (80)

Let ~K' l~K~N(2lo), denote the operator from V(e~) into V(n) that identifies each vKEV(e~)
with a function v in V(n) such that

vle~=vK vIO\e~=O' (81)

We define

M '\/1 EH1(r.:\o)IIK = II eQ ,':'J' K .
i:.

(82)

We denote ii~ as the function that is zero outside of e~ and that is equal to the solution to the
following local variational boundary-value problem of elastostatics,

Find li~ E {II~} + V«(-)~) such that
(R3)

where @K : H I(e~) x H I«(-)~) t-) ~ is the bilinear form characterizing the local virtual work and g;K( , )
is a local linear functional characterizing the work dOile by the external forces:

@K(li~.VK)= r VVK:EVli:~dx ~K(VK)= !o!'VKdx+ r, t·vKds. (84)Je1! eJ( J/Kl

The displacements on I~u are prescribed as follows:

-.\11 '\/1
IIK~,=IIKr.·....u Ku

(85)

On rK1the given external tractions. t, are prescribed, The global solution is constructed in the following
manner:

(86)

where it is natural to think of the above parenthetical terms as local perturbations to the homogenized
solution u'\', The question now becomes: if we were to solve the local problems and assemble the local
solutions together (according to (86)). will the overall solution be improved? Consider the fact that the
local problems are solved with inexact internal boundary conditions. which may be grossly in error.
Fortunately. as we now shall see. this local construction and solution process will guarantee a superior
solution in the energy norm.

THEOREJ\;j 5,5.1. Let II be the exact solution to (7). Then with the previous definitions

1117,\1 - 1111 £(n) ~ 11,/' - u II "(ll) . (87)

PROOF. Let u· be an arbitrary element. such that u· E {Ii} + Veil). Then
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lIu* - ull~l!1) = oo(u -u*, u - u*)

= a3(u, u) + :1J(u*. u*) - 2:1J(u, u*)

= :1J(u*, u*) - oo(u, u) - 2:1J(u. u*) + 2B?J(1I.II)

= oo(u*, 11*) - @(u. u) - 2B?J(1I, 11* - u)

= OO(u*, u*) - :1J(u. u) - 2£¥(u* -u)

= @(u*. u*) - 2~(u*) - (@(u, u) - 2£¥(u»

= 2fJ'(u*) - 2.'1(u) .

291

(88)

Since each ii~ is solution to the local boundary value problem governed by (83). then each il~
minimizes the local potential.

1 .II 0
fJ'K(W)=2'OOK(W,W)-£¥K(W) 'v'wE{uK}+V(BK) I~K~N(E2),

Clearly. from the construction of the global function in (86)

fl("') "'ar("') "'ar(-M) ar(-M)J U = L.J oJ K UK ~ L.J :::J K II K =.J U ,
K K

Therefore

fi(ll,lI) - fJ'(/l)::::; fi(u"') - fJ'(II) .

From (88) the desired result follows.

IlliM - 1I11£l!1l ~ 1111.11
- "11':.'(/1)' 0

(89)

(90)

(91)

(92)

5.5,1. Observmions
We make three important observations.
(1) For three-dimensional problems, the computational cell size is on the order of the inhomogeneity

siz{;, the cost of the HDPM procedure, in terms of operation counts. is N times ch{;aper than
solving a problem with a direct numerical discretization technique. where N is 1he number of
subdomains. Since the subdomain problems are completely decoupled. parallel processing
techniques can be employed. As a consequence. one may attempt to also reduce the time to
solution furt!ler by a factor of P, where P is the number of (equal speed) processors available.

(2) With the HDPM construction of the local problems. we can bound the difference in the
homogenized solution and its local perturbation. the 'sensitivity' beforehand. In other words. we
may determine locally where the local solution process will produce a significant change in the
solution. With the construction of the local problems in Theorem 5.5 we have, directly from
Theorem 3.1.

(93)

(94)

Note that the quantity on the right-hand side of (93) has been bounded beforehand, and is
identical to the local error indicator. and therefore incurs no extra work, if the same partitions
are used.

(3) Central to the success of the method is the choice of EM to minimize the final solution error,
lIu -11.\111£(11)' The final error can be characterized in a straightforward manner. For any
admissible virtual displacement v, we have

r V(II - tiM): EVv dx = r f' v dx + r t, v ds - r Vii''': EVv dxIn In Jr, In
=2': {f f'vdx+ r t'vds- r WiM

: EVVdx} .
R~ e~ J'j;" Jf)~
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Noting that V· (EVil' v) - V, (EVil)' V = EVil: 'ilv, and using the divergence theorem, we have

( I

J V(u - ;;.11) : EVv dx = L {J 0 (f + V, (EV;;M) , v dx
n R~ 8"

,+ irK' (t - EV;;ol: '11K)' V ds - irK" EV;; 'IIK' v dS}
= 0 ~ 0 - L {J. E'ili'iM

. 11K' v dS} ,
8~ /K,,\ru

(95) I

Therefore

lIu - iIMII~(fl) = L J EViiM '11K' (11
M

- u) ds . (96)
e~ rKu\/:,

The right-hand side can be interpreted as the work done by the jumps in traction moving through
the difference in the actual and homogenized displacement on interior subdomain boundaries.
Critical to the success of the method is, therefore. the choice of EM to minimize the work done
by the traction jumps on the subdomain boundaries. The choice for gil is certainly problem-
dependent.

5.5.2, Example I.' Applying H DPM direcrly ro rhe (zero-scale) homogenized SOllllioll
In this example, we illustrate the dependence of the HDPM solution on the choice of EM. To this

end, we return to one-dimensional example considered before. and first consider M = O. Ell. The
fine-scale and homogenized problems arc

d ( du(x»)dx E(x)~ = -I, 1/(0)=0 II( I ) = 0 (97)

and

~ ( ,I( , du·I/(x))_ 11.11(0) = 0 . uM(I)=O.d\.' E (,\) dt - - I . (98)

For each subdomain K = 1.... , N(f!l ). the local H D PM problem is

d
(

d-'I/()1I K x) -.II ,1/
dx E(x) dx =-1. xE(X .....XK+1) uK(X ....)=1I (X ....),

(99)

where XK, XK+I arc the endpoints of each subdomain (Figs, 7 and 8),
In our example. the unit interval is divided into 10 000 equal intervals, and for each interval the

property is chosen at random either E = 1 or E = T, where T is the mismatch ratio, Equal amounts of
hard and soft material are used. A coarser partition is overlaid representing the subdomain partition.
All of the following calculations are done unalyrica/ly. For convenience, and to illustrate the sensitivity
of the results to the choice of EM. we choose the classical uPEer and lower bounds in (32),

From Tables 5 and 6 it is clear that the harmonic average (E f = (E -1) -I) produces far superior final
solutions. This is due to the facI that the internal boundary conditions are of displacement type and that
the harmonic average produces the superior overall displacement compared to that of the arithmetic
average. In this one-dimensional case, the flux jumps play a minor role, and therefore the error is
essentially governed by the quality of the displacement data, Of course, in general, we seek an EM that
produces the exact displacement on the internal subdomain boundaries, Initially, the solution produced
by the harmonic average is in gross error, but after HDPM it has a far superior solution. with respect to
the energy norm compared to that of the arithmetic average. Increasing the number of subdomains

"
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Fig. 7. The heterogenous bar, with depictions of the exact solution. the homogenized solution, and local perturbations to the
homogenized solution,

..:...~ ", .'~'.- -' .......:

Displ.lC~,"I!'I't

Subdomain 1

Subdom.in
Bound.ry roint

-1 .. u--
Subdomain 2

Etc .._...

l!omosenized Solution

Subdom.in N

Fig, 8. The heterogeneous bar, and construction of the local problems.

Table 5
The homogenizcd solution error and HDPM error for 1-;" = (E) for 100 subdomains and 10 subdomains. versus mismatch ratio

T

10
50

100

11/111£(111

0.185284
0.173124
0.171544

11/1 - 11°11£cn ,111/111 £(11)

0.804457
0.956960
0.978203

11/1 - 11"'11£(11/111111£(11) N = 100, 10

0.649229 0,644998
0.916105 0.911536
0.957011 0.952321
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Table 6
The homogenized solution error and HDPM error for E'" = (E-1

) -, for 100 subdomains and 10 subdomains. versus mismateh
ratio

T

10
50

100

1I"IIElu,
0.185284
0173124
0.171544

11/1- /I"IIE(u/liuIiElu,
1.347399
3276713
4.680409

11,,- u"lIwl)/Ii/iIlE1u, N= 100.10

0.100066 0.032339
[),125849 0.040390
0.129001 0.041567

0.6

0.4 ...... n
111/111 Rill II H

0.2

c:.~ 0iii

·0.2

'0.4

Exact --
HDPM .---
Homo 0

.~,,"

-0.6 o 0.1 0.2 0.3 0.4 0.5 0.6
LenQlh 01 Iho Specimen

0.7 0.6 0.9

Fig. 9. A misl11a:dl of 20: 1 with 150 intervals. cach wilh randomly assigned material properties. HI'DM wilh :' subdomains.
using the harmonic average solution to construct local boundary cond:lions.

0.5

0.4

0.3

0.2

-0.1

-0.2

·0.3

-0.4

('"

Exact -
HDPM ----,
Homo 00

.. _-- .. ~- '":,-', ... ''';4: ...... -t.;,..:.::-•.:..:.-~_;..•-.~.

·0,5
o 0.1 0,2 0.3 0.4 0.5 0.6

Lenglh 01 Ihe Specimen
0.7 0,8 0.9

Fig. 10. A mismatch of 20: 1 with 150 intervals, each with randomly assigned materiai properties. HPDM with 5 subdomains,
using the arithmetic average solution to construct local boundary conditions.
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produces a solution which is increasingly worse, since more inexact information is introduced on more
subdomain boundaries.

Strain fields for cases with less material variations, which are easier to visualize on the printed page.
are included in Figs, 9 and 10, and it can be seen that for the harmonic averaging case the HDPM
solution seems to capture local fluctuations in the solution quite well.

In the one-dimensional example, among the two effective material choices of £'1( tested, the selcc1ion
is straightforward. the harmonic average delivers a superior final solution. As we have noted. in higher
dimensions this choice is unclear. '

5.5.3, Example 2: Applying HDPM to the ALR generated solutions
Returning to the heterogeneous bar. we now apply HDPM to the ALR solutions. The main points to

be observed in this example are that further error reduction. beyond applying HDPM directly to the
zero-scale solution. uo, can be made by using hierarchical structures generated by ALR. We present two
levels of uniform refinement of the material description, Level 0 corresponds to a solution generated by
a uniform elasticity throughout the body; level 1 corresponds to a solution generated by using an
elasticity corresponding to the average in each subdomain: level 2 corresponds to solution generated by
using material properties obtained by bisecting each subdomain and averaging the material property
over each subdornain half (Fig. 5). All calculations were done analytically. For convenience. and to
illustrate the dependence of the final solution on the choice of the local reaveraging technique, we
locally reaverage according to the classical bounds. (E) and (E-1) -1.

As before, even when ALR and HDPM are combined, Tables 7 and 8 illustrate that Ihe choice of the

Taole 7
The level O. I and 2 solution errors for E" '" (E). 10 000 IlHllCrial vari<itions. 10 suodomains with inereasing mismatch ratio

T

III

511
100

11"- Ij"IlEtll/lll1l1nlll

n.64499!i
n.91153fi
n.952321

1111 -lj'II1:""/IIIIII';(I"
0.643914
0.911260
0.952175

11"- ,j:II/:(/I/II"I1F.(11
O.fi43fi44
0.911179
0.952134

0.5

0.4

0.3

0.2

0.1

c: 0
.~

en ,0.1

-0.2

,0.3

-0.4

-0.5

,{),6
0 0.1 0.2 0.3 0.4 0.5 0.6

Length of Ihe Specimen
0.7 0.8

Exact -
HOPM .....

0.9

....

Fig, 11. Level I scale used for HDPM. A mismatch of 20 : 1 with 150intervals. each with randomly assigned material properties.
HDPM with 5 subdomains. using the harmonic average solution to construct local houndary conditions,
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Table 8
The Icvel 0, 1 and 2 solution crrors for E" = (E-1

) -I. 10 000 material variations. 10 subdomains with increasing mismatch ratio

T

10
50

IOU

III/ - ,;°11Eln/ III/II nil)

0.032339
0.040390
0.lM1567

III/ - ,; III £(n/ III/II f:(1l)
0.004203
0.005244
0.005392

III/ - ,;°IlE(n/III1I1£(1l)
0.002629
0.003283
0.003377

·..\jl....~_···_·~·····'~,..~·

0.5

0.4

0.3

0.2

0.1

<:
'§ 0in

·0.1

-0.2

-0.3

,0.4

,0.5
0 0.1 0.2 0.3 0.4 0.5 0.6

Length 01 Ihe Specimen
0.7 0.8

Exact -
HDPM ----

0.9

Fig. 12. Lcvel I scale used for IIDI'M, t\ mismatch of 20: I with 150 intcrvals. each with r,lIluol11ly assigncd material propertics.
liD!'1\.! with 5 subdomains, using the arithmctic average solution 10 construct lueal i)ounullry conuilions.

0.5

0.4

0.3

0.2

0.1

o

-0.1

-0.2

-0.3

-0.4

ExaCI -
HDPM .n,.

~
I

-0.5
o 0.1 0.2 0.3 0.4 0.5 0.6

Length 01 the Speelmen
0.7 0.8 0.9

Fig. 13, Level 2 scale used for HDPM. A mismatch of 2U ; 1 with 150 intervals. cach with randomly assigncd material properties.
HDPM with 5 subdomains. using the harmonic averagc solution to construct local boundary conditions.
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Exact -
HDPM -- ...

-~ : ~ ~ -..--- :'::;;;:;;-:.:,;.;'

0.5

0.4

0.3

0,2

0.1 H'I .......I

-0.1

-0.2

-0.3

-0.4

·0.5
o 0.1 0.2 0,3 0.4 0.5 0.6

Lenglh allhe Specimen
0.7 0.8 0.9

Fig. 14. Level 2 scale used for HDPM. A mismatch of 20: 1 with 150 intervals, each with randomly assigncd matcrial properties.
IlDPM with 5 suodomains. using the arithmetic avcrage solution \0 construct local boundary conditions.

(locC/l) homogenized properties is criticC/IIO the qllC/lit)' of the fil/al solwioll. It is possible. as illustrated in
Table g to achieve error that is on the order of a fraction of a percent. for this one-dimensional
problcm. Figs. 11-14 make a clear point that the methods produce cxtremely accurate resolution of the
strain field locally, As can be seen. for this example. in the harmonic averaging case. one may obtain
more than one order of magnitude reduction of the error after only two levels of refinement.

':X~~<':';":t~OC¥b:"":

OBSERVA nON. One can interpret the ALR solutions as pr,)viding better local boundary conditions
for subdomains in HDPM, and in this light, the method as a whole can be thought of as a non-
overlapping domain decomposition method [91.

6. Summary

In this paper a methodology that consists of the following three main ideas has been introduced:
(1) A global explicil estimate of the solution error introduced in using a homogenized (coarse)

elastici1y tensor and using the actual fine-scale elasticity tensor is derived. This estimate only
requires the calculation of the coarse-scale solution, Numerical experiments suggest that the
estimate gives reasonable estimation of the local error as well.

(2) A procedure for generating a hierarchical family of material descriptions and corresponding
solutions is developed, The solutions corresponding 10 the members of the hierarchy are shown
to converge to the solution of the fine-scale problem in an energy norm. In this mC1hod. the
line-scale model of a structural component. which embodies the exact material dc..;cription,
represents the highest level of sophistication in a family of continuum models,

(3) A post-processing procedure which endows the coarse-scale solutions with fine-scale information
is developed. The process requires the solution of local. decoup\cd subproblems posed on
subdomains inside the body. This process is trivially parallelizable _ due to the decoupled nature
of the method, It is proven that the solutions generated by this 'post-processing' procedure will
always yield superior solutions to the original coarse·scale solution. Error reductions of orders of
magnitude over the classical homogenized solution realized in simple one-dimensional examples
and may also be obtainable in higher dimensions.
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