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Abstract

This monograph presents a summary account of the subject of a posteriori error estimation for finite element approximations
of problems in mechanics. The study primarily focuses on methods for linear elliptic boundary value problems. However. error
estimation for unsymmetrical systems, nonlinear problems. including the Navier-Stokes equations. and indefinite problems, such
as represented by the Stokes problem are included. The main thrust is to obtain error estimators for the error measured in the
energy norm, but techniques for other norms arc also discussed.
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1. Introduction
1.1. A posteriori error estimation: the setting

Since the beginning of computer simulations of physical events. the presence of numerical error in
calculations has been a principal source of concern. Numerical error is intrinsic in such simulations: the
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discretization process of transforming a continuum model of mechanical behavior into one manageable
by digital computers cannot capture all of the information embodied in models characterized by partial
differential equations or integral cquations. What is the approximation error in such simulations? How
can the error be mceasured. controlled and effectively minimized? These questions have confronted
computational mechanicians, practitioners and theorists alike. since the earliest applications of numerical
methods to problems in engincering and science.

Recent years have seen concrete advances toward the resolution of these questions made in the form
of theories and methods of a posteriori error estimation, whereby the computed solution itself is used to
somehow asscss the accuracy. The remarkable success of some a posteriori error estimators has opened
a new chapter in computational mathematics and mechanics that could revolutionize the subject. By
effectively estimating crror. the possibility of controlling the entire computational process through new
adaptive algorithms cmerges. Fresh criteria for judging the performance of algorithms become apparent.
Most importantly. the analyst can usc a posteriori error estimates as an independent measure of the
quality of the simulation under study.

The present work is intended to provide an introduction to the subject of a posteriori error estimation
for finite element approximations of boundary value problems in mechanics and physics. The treat-
ment is by no means exhaustive. focusing primarily on elliptic partial differential equations and on the
chief methods currently available. However, extensions to unsymmetrical systems of partial differential
equations. nonlinear problems and indefinite problems are included. Our aim is to present a coherent
summary of a posteriori error estimation methods.

1.2. Status and scope

The a priori estimation of errors in numerical methods has long been an enterprise of numerical
analysts. Such estimates give information on the convergence and stability of various solvers and can
give rough information on the asymptotic behaviour of errors in calculations as mesh parameters are
appropriately varicd. Traditionally, the practitioner using numerical simulations. while aware that errors
exist, is rarcly concerned with quantifying them. The quality of a simulation is generally assessed by
physical or heuristic arguments based on the expericnce and judgment of the analyst. Frequently such
arguments arc later proved to be flawed.

Some of the carliest a posteriori error estimates used in computational mechanics were in the solution
of ordinary differential equations. These are typified by predictor corrector algorithms in which the
difference in solutions obtaincd by schemes with different orders of truncation error is used as rough
estimates of the error. This estimate can in turn be used to adjust the time step. It is notable that the
original a posteriori error estimation schemes for elliptic problems had many features that resemble
those for ordinary differential equations.

Interest in a posteriori error estimation for finite element methods for two point elliptic boundary
valuc problems really began with the pioneering work of Babuska and Rheinboldt [13]. A posteriori
error estimation techniques were developed that delivered numbers 7y approximating the error in
energy or an energy norm on each finite element K. These formed the basis of adaptive meshing
procedures designed to control and minimize the error. During the period 1978-1983. a number of
results for explicit crror estimation techniques were obtained: we mention as representatives the work
of Babuska and Rheinboldt [11.12].

The use of complementary energy formulations for obtaining a posteriori error estimates was put
forward by de Veubcke [27]). However, the method failed to gain popularity being bascd on a global
computation. The idea of solving element by element complementary problems together with the im-
portant concept of constructing equilibrated boundary daia to obtain error estimates was advanced by
Ladeveze and Leguillon [43]. Related ideas are found in the work of Kelly [39] and Stcin and Ahmad
[53].

In 1984. an important conference on adaptive refinement and error estimation was held in Lisbon
(see [20]). At that meeting, several new developments in a posteriori error estimation were presented.
including the element residual method. The method was described by Demkowicz ¢t al. [29.30] and
applied to a variety of problems in mechanics and physics. Essentially the same process was advanced
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simultaneously by Bank and Weiser [23.22) who focused on the applications to scalar clliptic problems in
two dimensions and provided a mathematical analysis of the method. The paper of Bank and Weiser [23]
also involved a number of basic ideas that proved to be fundamental to certain theories of a posteriori
crror estimation including the saturation assumption and the equilibration of boundary data in the
context of piecewise linear approximation on triangles.

During the early 1980s the search for cffective adaptive methods led to a wide variety of ad hoc
crror estimators. Many of these were based on a priori or interpolation estimates. that provided crude
but effective indications of features of error sufficient to drive adaptive processes. In this context. we
mention the interpolation error estimates of Demkowicz et al. [28]. In computational fluid dynamics
calculations these crude interpolation estimates proved to be uscful for certain problems in inviscid flow
(see [50]). where solutions featured surfaces of discontinuity, shocks. and rarefaction waves. Relatively
crude error estimates arc sufficient to locate regions in the domain in which discontinuities appear and
these are satisfactory for use as a basis for certain adaptive schemes. However, when more complex
features of the solution are present. such as boundary layers or shock-boundary layer interactions. thesc
cruder methods are often disastrously inaccurate.

Zienkiewicz and Zhu [60] developed a simple error estimation technique that is effective for some
classes of problem and types of finite element approximations. Their method falls into the category of
recovery based methods: gradients of solutions obtained on a given mesh are smoothed and the smoothed
solution is compared with the original solution to assess error. More recently. Zienkicwicz and Zhu [61.62]
maodified their approach leading to the superconvergent patch recovery method.

Extrapolation methods have been uscd effectively to obtain global error estimates tor both h and
p version of the finite element method. For example. by using sequences of hicrarchical p version
approximations. Szabo [55] obtained efficient a posteriori estimators for two dimensional linear elasticity
problems.

By the early 1990s the basic techniques of a posteriori error estimation were established. Attention
then shifted to the application to general classes of problem. Verfurth [56] obtained two-sided bounds and
derived error estimaltes for the Stokes problem and the Navier-Stokes An important paper on explicit
error residual methods for broad classes of boundary value problems. including nonlinear problems, was
presented by Baranger and El-Amri [24]. Erikson et al. [32-34.38] derived a postcriori error estimates
for both parabolic and hyperbolic problems.

Most studies have dealt with a posteriori error estimation for the A version of the finite element
method. The element residual method is applicable to both p version finite elements and A-p versions
linite element approximations. An extensive study of error residual methods is reported in the paper
by Oden et al. [47). These techniques were applied to non-uniform /s-p meshes. Later. in a series of
papers Ainsworth and Oden [6] produced extensions of the element residual method in conjunction with
cquilibrated boundary data. This was extended to elliptic boundary value problems. elliptic systems.
variational inequalitics and indefinite problems such as the Stokes problem and stecady Navier-Stokes
cquations with small data.

The subject of a posteriori error estimation for finite element approximation has now reached maturity.
The emphasis has now shifted from the development of new techniques to the study of robustness of
existing estimators and identifying limits on their performance. Particularly noteworthy in this respect
is the work of Babuska et al. [15.16] who conduct an extensive study of the performance and robustness
of the main error estimation techniques applied to first order finite element approximation.

The literature on a posteriori error cstimation for finite element approximation is vast. We have
strongly resisted the temptation to produce an exhaustive survey. The availability of computer databases
means that anyone can generate an up to date survey with minimal effort. Instcad. the bibliography
consists solely of key references and work having a direct influence on our exposition. Surveys of the
carlier literature will be found in [45.46] and more recently in [35].

1.3. Notations
1.3.1. Sobolev spuces

Throughout. standard notations and conventions for function spaces are followed [1]. Let {2 be an
open bounded domain in R"”, where n = 1. 2 or 3. with boundary I.
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Integer order spaces

The integer order Sobolev spaces W”P({2). m € Z'. 1 € p < oo are equipped with the norm [I-lywmogay
defined by

l/p
by = 3 [ IDuPart 1< p <o (L1)
Jalsm L
and
Ul oy = max || D%u||; « if p=
el 1) Mgmll iy, (1) p=x (1.2)
where
il gy = esssup Ju(x)). (13)
xeN

The space WP (£2) itself is the completion of C>(£) in this norm and is therefore a Banach space. The
space Wi'P(0) is the closure of Cj¥(£2) in the norm on W™7({2) where C3*({2) consists of all functions
which. together with their derivatives of all orders. are continuous and compactly supported on (2. In
the case p = 2. the notations W”(2) = H™(£2) and W)'*(2) = H'({2) are used.

1.3.2. Fartitions

The basic procedure in the finite element method is the partitioning of the computational domain {2
into a collection P = {K} of open subdomains or elements. Various sets of assumptions are made on the
construction of the partition sufficient to ensure the convergence of the method. More generally, families
F = {P} of partitions are considered so that statements may be made concerning the convergence of
the sequence of finite element approximations obtained on the partitions. In the present work, various
versions of the finite clement will be considered including adaptive methods. The partitions used for
adaptive meshes are generally disallowed by the classical finite element theory but. nonetheless, must
obey strict conditions. For convenience we formulate the particular assumptions on each notion of
partition to be considered.

Partition

A pariition P of (2 is a collection of elements K satisfying
(P)) 2 =Ugep K
(P2) each element K is a non-empty. open subset of £2
(P;) the intersection of each distinct pair K. J € P is empty
(P;) each element K is a triangle or convex quadrilateral

Proper partition
A proper partition P of {2 is a partition of {2 that satisfies the additional condition
(Ps) each side of an element K is either a subset of the boundary 842 or a side of another element J in

the partition.
The collection of element sides is denoted by aP.

Non-degeneracy condition
Let K be any triangular element from a partition P. Define the diameter sig of the element by
hg = diam (K) (14)
and let h(P) be

h(P) = max hy. (1.5)
KeP
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Define pg by
px = sup{diam(S) : S is a ball contained in K}. (1.6)

The partition is called non-degenerate or shape regular if there exists a constant y, that is independent
of h(P) such that

hg
max — < Yo- (1.7)
KeP pg
The non-degeneracy condition does not require that the clements be of comparable size and permits
highly refined meshes. Similar concepts may be defined for quadrilateral elements.

Regular family of partitions

A regular family F of partitions is a collection of proper. non-degencrate partitions {P} with the
non-degeneracy constant vy, independent of P: and. such that h(P) approaches zero. This condition
essentially rules out the use of many adaptive algorithms.

Quasi-uniform family
A family F of partitions is quasi-uniform if cach partition P in F is regular and therc exists a constant
¥, such that for all partitions P

h(P)
max
KeP Hhg

<. (18)

Locally quasi-uniform family

A family F of partitions is locally quasi-uniform if each partition P in F is proper and is composed
of elements satisfying a non-degeneracy assumption with a constant vy, independent of P.

Typically. we shall assume that the partitions arc locally quasi-uniform. Such partitions can be highly
refined and yet satisfy a local quasi-uniformity condition. For instancc. let K be a element belonging to
a locally quasi-uniform partition P. The patch of elements surrounding K is defined by

K= im{UI;FnE is non—emply}. (1.9)
The non-degeneracy condition implies that there is a constant C depending only on vy, such that for any

element J contained in the subdomain K a local quasi-uniformity condition holds on the subdomain
1 hy
L &

<

E-\E\. (1.10)

Moreaover. notice that the number of elements contained in the subdomain K must be uniformly bounded
by a constant depending only on 7y,
max card{J :J c K} < C. 111
KeP { b< felt)

Equally well. the number subdomains containing a particular element is uniformly bounded by a constant
depending on vy

: zd}“: J <£C. .
max card{/ : K CJ} < € (1.12)

1.4. Approximation spaces

Reference elements
In both the mathematical analysis of finite element methods and in their application to specific prob-
lems. it is natural to consider each element in a partitioning of the domain (or finite element mesh) to
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be the image of a standard reference element K. The reference element defines the element type while
providing the templatc on which element computations are performed. For instance. in the case of a
triangular element the reference element may be taken as

K={GE.9):0<3<l: 0<7<1-7) (1.13)
or. in the case of quadrilateral elements
K={(xy):-1<¥<1l: -1<¥g1} (1.14)

Polynomial spaces of degree p € N are defined on the triangular and quadrilateral reference elements.
respectively. by

P(p) = span{¥7* :0< j+k < p} (1.15)
and
O(p) = span{¥5* : 0< j.k < p}. (1.16)

In three dimensions. hexahedral. tetrahedral or prismatic reference clements are used with analogous
polynomial spaces.

Finite element spaces

Let P be a locally quasi-uniform partitioning of a connected, bounded. polygonal domain {2 into
triangular and quadrilateral elements. For simplicity. assume that (here exists an invertible mapping
Fg - K ~— K that is affine for triangular clements and bilinear for quadrilateral elements. Each element
is assigned a parameter px € N controlling the degref of approximation on the element. A polynomial
space Py is thereby selected to be cither Q(py) or P(px) as appropriate. The finite element space X
consists of continuous piecewise polynomials

X ={ve C():v|x =v0F forsome b€ Py for all K € P}. (1.17)

If the polynomial degree pg is non-uniform over the partition P then the continuity requirements
may impose constraints on the approximation in the particular element which mean that the effective
polynomial degree within the element is. in essence. reduced. When we speak of the polynomial degree
pk. it will be understood to mean the effective polynomial degree. Further. the subscript K will be often
be omitted.

Approximation theory

Approximation theoretic results concerning approximation using piecewise polynomials on partitions
will be required. A number of results concerning approximation of continuous functions on regular
partitions are known and well documented in the literature [25]. On occasion. it will be necessary to
approximate functions that may be discontinuous on partitions that are only supposed to be locally
quasi-uniform. Such approximations have been considered by Clément [26] and Scott and Zhang [52]:

THEOREM 1.1. Suppose P be a locally quasi-uniform partitioning of the domain £2 C IR>. Let K be anv
element in the partition and denote

K =int {U? INKis nun—mnprlr} 3 (1.18)
Suppose that 0 < I < p + 1 and m are integers and r, s € |1. o<| are chosen so that the embedding W' (K) —
W (K holds. Then, for any v € W' (K) there exists Tlyv € X such that

l=m+2(1j5—
llo = Hxvllymgy < €l P10 o) (1.19)

W (R
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1.5. Model problem

Let £2 ¢ IR? be a bounded domain with Lipschitz boundary @£2. Consider the model elliptic boundary
value problem of finding the solution u of

~Au+cu=f(x) inf2 (1.20)

subject to the boundary conditions

it .
— =g I3 (1.21)
on g onin
and
u=10 onlp. (1.22)

The data are assumed 1o be smooth. i.e. f € Ly(£2). g € La(IN). ¢ is a non- negative constant and the
boundary segments I'n. I'p are assumed to be disjoint with I'x U!D = 2. The unit outward normal
vector to 90 is denoted by n and belongs 10 the space [L™(42))".

The variational form of this problem is to find « € V such that

B(u.v)=L(v) VYveV (1.23)
where V is the space

V={veH (2):v=0 onlp} (1.24)
and where

B(u.v) = f (Vu- Vv +cuv) dx (1.25)

n

and

L(v) = / fv d.t‘+f guds. (1.26)

Ja I

Suppose that X C V is a finite clement subspace. The finite element approximation of this problem is
to find ny € X such that

Bluy.vy) = L(vy) Vuvy € X. (1.27)
The error e = u — 1y belongs to the space V and satisfics

B(e.v) = B(u.v) — B(uy.v) = L(v) - Bluy.v) VveV. (1.28)
Moreover. the standard orthogonality condition for the crror in the Galerkin projection holds

B(e.vy) =0 Vuvy€eX. (1.29)

1.6. Properties of a posteriori error estimators

There are many techniques for error estimation. One can extrapolate approximate solutions obtained
on sequences of progressively fincr meshes or on sequences of meshes with shape functions of increasing
order and then compare solutions to obtain an indication of the crror. Such methods can be quite
effective when data structures admit such multilevel computations. One popular method amongst the
engineering community is to postprocess the approximation iy to obtain more accurate representations
of the gradient G(uy). One can then usc the difference G(uy) — Viey as an estimate for the error. This
type of approach can lcad to surprisingly good error estimators and is discussed in Section 2. One of
the weaknesses of the method and at the same time. one of its advantages. is that no use is made of the
information from the original problem.

Other error estimators make use of the data for the problem and properties of the error in various
ways. For instance. the approximation error satisfies the residual equation (1.28) and the orthogonality
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condition (1.29). A residual equation similar to (1.28) may be obtained by integrating by parts over cach
clement leading to

/ (Ve -Vuv+ceev)de= | rode+ % vi(ng - Vu—ng -Vuy) ds (1.30)
IS JK JiK

where r is the residual
r=f+Auy —cuy (1.31)

and ng is a unit exterior normal to the clement boundary K. Under suitable conditions. the solution
to (1.30) may be bounded by

llelllx < Cilirll k) + Caling - Vell, ok (1.32)

where €, and C; may depend upon the clement size fig and other mesh parameters. Replacing the flux
on the element boundary by a suitable approximation leads to a bound on the error on the element K
(apart from the constants C; and C,). This type of estimator is referred to as an explicit estimator and
is discusscd in Section 3.

The presence of the constants C; and G, in the explicit a posteriori error estimators leads one to
consider trying to solve an approximate local boundary value problem for the error of the form

/(Vdn\- -Vu+cdgv)de = / rv d.r+f vigg —ng - Viy) ds (1.33)
K K Ok
where gg is an approximation to the boundary flux. The solution ¢x may be used as follows:
bkl = [ (9ol +cof)ax (134
K

to provide a measure of the error content in the approximation associated with element K. The approach
raises a number of issues:
¢ the infinite dimensional space containing the error must be approximated by an appropriate finite
dimensional subspace
o the boundary flux ng - Vie must be approximated in some cffective way
o if ¢ = 0 the error residual problem may have no solution unless the condition

f rde+ (gx —ng -Vuy)ds =0 (1.35)
K Jak
is satisfied.

The general process just described is an example of an implicit error residual method. 1t is said to be
implicit because the error residual problem must be solved over each element to determine the error
estimator |||¢k|||. Implicit estimators are the subject of Section 4. Section 5 deals with implicit error
estimators in which the boundary fluxes are specially constructed so that the local problem is well posed.
The resulting estimators may be shown to possess several very powerful properties.

If ng is a local crror estimator on element K then the global crror estimate i is usually taken to be

1/2
n={Z ni-} : (1.36)

KeP
A major property demanded of all successful error estimators is that positive constants Cy. C» exist such
that

Cilllefll < n < Gyfle]|} (1.37)
where [|le||| is the global error in the energy norm. Then n tends to zero at the same rate as the true
crror. The quality of an estimator is often judged by global effectivity indices

0
T (3.35)

or local effectivity indices
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K _ (1.39)
el
These indices can be used to measure the quality of an estimator when the exact error or a good approx-
imation of it arc known. Naturally. one hopes that effectivity indices close to unity can be obtained. but
global effectivity indices of 2.0-3.0 or even higher are often regarded as acceptable in many engineering
applications.

Throughout. the ideas arc presented for the simple model problem in the plane. For the most part. the
analysis may be easily extended to three dimensions. Therefore, we shall comment on higher dimensions
only in cases where the extension is not immediately apparent. The cxtension of the results to more
general problems may be less straightforward. Therefore. in Section 6 applications to more complicated
problems are given including problems with side constraints (such as the Stokes’ problem): unsymmet-
ric operators {(Oscen’s equations). non-linearities (the incompressible Navier-Stokes’ equations): and
unilateral constraints (the obstacle problem).

Essentially. all of the results are alrcady known in the literature. However. it is hoped that by presenting
the results in a single notation the interrelation between different techniques will be more apparent.
Furthermore. in many cases the presentation is much simpler than the original references. Sections 2. 3
and 4 may be read independently. Section 5 is also largely independent of the earlier sections. although
the reader might find it helpful to first read Scction 4.

2. Estimators based on gradient recovery

A particularly simple approach to crror cstimation consists of obtaining a continuous approximation to
the gradient by postprocessing the gradient of the finite element approximation. These often rather crude
methods can result in surprisingly good approximations to the true gradient. The difference between
the postprocesses approximation and the direct approximation is then used as an estimate of the error.
often quite successfully. The current section follows [4] and attempts to provide a simple framework for
analyzing such recovery based estimators.

2.1. A priori and a posteriori error estimaltes

Consider the model problem in Section 1.5. Typically. the error in the finite element approximation
may be bounded a priori by an estimate of the form

llelll < C? 1l go-ve &)

where C is a constant independent of / and w: and ||-{|| is the energy norm for the problem. The a priori
estimate revceals the rate of convergence but is of limited use if one requires a numerical estimate of the
accuracy. The difficulty is that either the constant C is unknown or if bounds are found on C. then the
estimate will generally be extremely pessimistic. Equally well. the higher derivatives of the true solution
1 are unknown.

One way to improve the prospects of finding a reasonable estimate of the discretization error is to
use the finite element approximation itself. Error estimators can be easily developed using heuristic
arguments as follows. Suppose the coefficient ¢ = (: then the expression for the true error is

el = [ 191 = Vgl ax 22)
Iy

If the truc gradient were known then it would be a relatively casy matter to substitute it into this
expression and to calculate the true error exactly. Intuitively. a reasonable error estimator should be
obtained using an approximation to the gradient in place of Vu.

A technique that is popular with the enginecring community is the averaging method. The gradient
of the finite clement approximation provides a (discontinuous) approximation to the true gradient. This
may be used to construct an approximation at cach node by averaging contributions from each of the
elements surrounding the node. These values may be interpolated to obtain a continuous approximation
over the whole domain. While the method is apparently rather crudc. it can be astonishingly effective.
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The case ¢ £ 0 is dealt with by arguing that the dominant term in the error is the component containing
the derivatives, and so it should be enough to estimate this dominant part only. In effect. the absolute
term is simply ignored.

The intuitive argument is appealing but does little to provide confidence in the resulting estimator.
Several estimators actually used in practice are based on replacing Ve by a quantity which is believed
to be a good approximation. Part of the reason for the pppularity of such methods is that frequently. a
suitable gradient (or stress) recovery module is already implemented in the finite element code.

Conversely, it is found that some rigorously analyzed estimators obtained in quite different ways fall
within the framework of corresponding to a particular choice of recovered gradicnt. The next section is
devoted to developing a general result for analyzing estimators falling within this framework.

2.2. Complementary variational principles
The error in the finite clement approximation is the solution of a boundary value problem is analogous
to (1.23). In fact. replacing u = e + uy in (1.23) and rearranging gives

e€V:B(ev)=L(v)- B(uy.v) YveV. (2.3)

The function wuy is regarded as being known explicitly since we envisage using wy itself in obtaining
estimates of the error. Equally well. ¢ is the solution to a varnational problem

eecV.: J)<J(w) YweV (24)

where J is the quadratic functional

J(w) = % B(w,w) — L(w) + B(uy.w). (2.5)
There is a unique solution to (2.4) since B(-,-) and L(-) are bounded on V. Notice that using (1.23) gives

J(e)= = B(e.¢) - L.(e) + B(uy.e)

I—'Mli—-

B(c ¢) — B(u,e) + B(uy.e)
= —5 B(e.e) = —4llle|II*. (2.6)

This result in conjunction with (2.4) gives
lllell|F = =2J(¢) = =2/ (w) VYweV. (2.7)

An interesting consequence of (2.7) is that for any w € V we can calculate a lower bound on the error
Illell]. In general. the lower bound will be poor. or even trivial. unless w is chosen suitably. The best
choice is w =e.

In practice, we are interested in finding an upper bound on the error. An alternative variational
principle is associated with the primal variational problem (2.4). This complementary variational principle
may be used in a similar manner to the primal principle with the important difference that an upper
bound is obtained. For instance. consider Poisson’s equation in R”:

—Viu=f infk =0 on (2.8)
The primal problem for the error is

ecV:Jee)gJ(w) YweV (2.9)
where

J(w) = % /” [Vw? dx - /”fu-clﬂ ; Vuy- Viwdy. (2.10)

The complementary problem is to find p such that
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pEW:G(p)2Glg) VgqeW (2.11)
where G is the quadratic functional

0@ == [ la-Vux ax 2.12)
and W is the set

W={qeH(div.2):V-g+f=0in {2} (2.13)
with

H(div. 2) = {g € L,(£2) x L,(£2) : divg € L,(N)}. (2.14)
[t may be shown that the unique solution of the complementary problem is p = Vu and

~26(Vu) = |[le]|*. (2.15)

Combining these results gives

lllell| < /-2G(g) Vge W. (2.16)

Therefore. to obtain a computable upper bound on [||¢|||. we need only make a suitable choice of ¢
to substitute into the functional G(g). The best choice is ¢ = Vu. However, the constraint condition
(2.13) on the choice of functions is the main drawback, making the construction of feasible functions ¢
awkward.

One possibility is to obtain a suitable ¢ by means of a finite element discretization of the complemen-
tary problem as suggested by Aubin and Burchard [9] and deVeubeke [27]. The method requires the
solution of a global problem. essentially to satisfy continuity requirements. Unfortunately. the compu-
tational effort required in the solution of any global problem is comparable with that of obtaining the
finite element approximation itself. in which case it would be simpler to resolve the original problem
using a finer discretization. It ought to be unnecessary to carry out any further global computation since
there is already global information in the finite element approximation itsclf to enable a sensible choice
of g to be made giving a realistic bound on the error.

Another difficulty is that the equality constraint on ¢

V-g+f=0 in 12 (2.17)

must be satistied exactly. This rules out any possibility of using a simple function g. unless f is itself
simple. One would expect it to be sufficient to satisfy the condition approximately.

The constraint may be relaxed by making use of a device used by Babuska and Rheinboldt [12). Firstly.
we define a new bilinear form B(-.-) by

;‘;(u. v)= [ Vu-Vvdy+ / Auv dx (2.18)
where A >0 is a!t{:onslanl spccilli:fd later. The (ollowing problem is a perturbed version of (2.3):

VEV :B(y.w)=L(w)- Blux.w) VweV. (2.19)
The solution may be characterized as the solution of the primal variational problem

yeV:Iy)<J(w) YveV (2.20)
where

T(w) = % B(w,w) — L(w) + B(uy,w). (221)

The following theorem gives the complementary principle associated with the perturbed primal problem.
THEOREM 2.1. Let G(p) be the quadratic functional on H(div, £2) given by

3\ B ) 1 N2 e
g(p)_/”[p Vity| dx+/ﬂ/\(f+Vp city) dy. (2.22)
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Then the following bound holds:

B(y.y) =G[V(ux +v)] <G(p) Vp € H(div, Q). (2.23)
PROOF. At a stationary point of the variational problem (2.23)

V- [V(ux + )] + f — cuy = Ay. (2.24)
Let p = V(y + ux). Since both uy and y belong to V

V.p=cuy - f+Ay € L}(2). (2.25)
Consequently. p € H(div, (2). A direct calculation using (2.24) shows that

G(p) = [ [Vy|> dx+ A f v dy = B(y,v). (2.26)

Ja 0

Now, let n € [0.1] and g.r € H(div, £2). It is casily shown that

Gl(1 = m)r +ng] < (1 = G(r) + nG(q) (2.27)

SO (_3 i1s convex. Furthermore
d -~
3 (G = mp+ nallmo= [ @=p) Vyas+ [ vV (g -pax
7 n It}
= [ Vg -p) s
Jn

- / v(g-p) nds =0 (2.28)
a1

B2 =

where we have used (2.24) and recalled that y € V. Thus. G is stationary at p and the result follows. O

The result in Theorem 2.1 shows that the functional Ij[p) delivers an upper bound on y measured

in the perturbed energy norm ||ly[|]. = \/B(y,¥). In essence the result is similar to (2.16). However,
there is an important difference. If (2.23) is used to find an upper bound on |||v]||. then there is no
cquality constraint to satisfy. This makes (2.23) a more amenable result. However. the bounds are on
[lIyll[. instead of |[|e]||. The fact that y is the solution of a perturbed version of (2.3) characterizing e
means there is a relationship between the functional éip) and [||e][|. The following result quantifics this
statement.

THEOREM 2.2. Suppose that there exist positive constants C. u such that
llell.coy < Ch (ilell] (2.29)

where C and p do not depend on h or u. Let A=Mh™* where M > 0 is a constant. Then for any
p € H(div, {2) and h sufficienily small

lllell® < {1 +O(h*)}G(p) (2.30)
where the constant in the Q(h*) term is independent of u and .
REMARK. If 2 is a convex domain then the Aubin-Nitsche Trick shows that the assumption (2.29)

holds with u = 1. If the domain {2 is not convex, then the assumption holds with p > 0 depending on
the maximum interior angle.

PROOF., From (2.3) and (2.19) we havc
Ble.w)=B(y.w) YweV. (2.31)
SincceeVandyeV
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Nlell? = B(e,y) = Ble.y) + (A - c)e.y) = B(y.y) + (A = c)e.y). (2.32)
For A sufficiently small. 0 € ¢ € A and so
[((A = c)e,v)| <24 """.f_:lu) "J’";,_‘u;)
<202 llelly.con XN
<2CA2RE el 11l (233)

where (2.29) was uscd. Replacing A with Mh=* and using the elementary inequality 2ab < a* + b%, we
obtain

[((A = c)e.y)| < CMPRe(||e]| P + 111y 1]13).- (2.34)
Rearranging (2.33) gives for sufficicntly small h
lllelll* < {1+ Ot*) Myl (2.35)

and the result follows on applying Theorem 2.1. O

Theorem 2.2 shows that the functional associated with the perturbed primal problem can be used to
obtain approximate upper bounds on |||e|||. The introduction of the perturbed variational formulation
has resulted in the equality constraint being removed at the expense of introducing a second term into
G(p).

Theorem 2.2 is a tool that may be used in the analysis of the various heuristically proposed error
estimators. If such an estimator can be shown to be related to a particular choice of p in (2.30), then
Theorem 2.2 immediately shows that the resulting estimator will be an asymptotic upper bound on the
error. There arc many heuristically proposed estimators to be found in the literature, yet it is found that
many of them may be profitably viewed as corresponding to a particular choice of p in Theorem 2.2. In
addition to the heuristically based estimators, some rigorously analyzed estimators are also found to fit
in this scheme.

2.3. Recovery operalors

In this section we define and analyze a class of schemes that make use of the finite element approx-
imation uy to find a suitable approximation to Vu. Later. we analyze the properties of the resulting a
posteriori error estimators.

In particular. we shall identify a set of conditions sufficient for the operators Gy guaranteeing that
Gx(Il,u) is a good approximation to the true gradient.

Consistency condition
Naturally. if the error estimator is to be asymptotically exact. the recovery scheme must give an
approximation consistent with the true gradient in certain circumstances.
(R1) If « belongs to the finite element subspace of order p + | then

Gx(ll,u) = Vu (2.36)
where 11, is the interpolation operator of degree p.

The consistency condition does not determine Gy uniquely and provides a convenient and simple crite-
rion to work with.

Localization condition

An important practical requirement is that Gy should be inexpensive to compute. Specilically, it must
be possible to compute Gy without recourse to global computations: otherwise it would be simpler to
resolve the original finite element problem on a finer mesh. Particularly convenient schemes are those
where the recovered gradient at a point x* is a linear combination of values of the gradient of the finite

element approximation sampled in a neighbourhood of the point x*. Let K denote the patch consisting
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of the element K and its neighbouring elements
”:im{U.;JnE;ew}. (2.37)
The localization condition is:

(R2) If x* € K then the value of the recovered gradient Gy[v](x') depends only on values of Vv
sampled on the patch K.

Boundedness and linearity conditions

Ideally. Gy should be a simple function that may be evaluated and integrated casily. If Gy is similar
to functions belonging to the space used to construct the finite element subspace then existing routines
from the finite element code may be used to manipulate Gy. These considerations lead to
(R3) Gy : X — X x X is a linear operator and there exists a constant C (independent of A) such that

IGxll k) S Clolyinz, YVKEP YveX (2.38)

where X consists of finite elements of order p.
2.3.1. Approximation properties of Gy
The conditions (R1)-(R3) imply the operator Gy possesses various approximation properties. In
particular. when w is smooth. Gy (I1,u) is a good approximation to Vu.

LEMMA 2.3. Suppose that Gy satisfies (R1)-(R3) and that u € HP"Z(ﬁ), Then

V1 = Gx (Il k) < < Ch™*1 || P (2.39)
where C > 0 is independent of h and u.
PROOE Let _

Flul(x) = [Vu = Gy (1, 10)] (x) x€K. (2.40)
Supposc u € Hf’*z(k’). By (R1) and the linearity of Gy

IF [l oy = (|1 Flue = My, x(K)

< | = Hyppyu wix@ |Gx (1T, (e ~ P’*'“))“L-;(K) . (2.41)

With the aid of (R3)

|G x 11, (1 - ”P*'")]"L,lx} < C'Hp(u — den)[w‘_“;‘-] ) (2.42)
The mesh is quasi-uniform on the patch K so

ot =y 7y < Ch™" o (= T, & (2.43)
and

|17 (e - ”’“‘“)”L..lf) <Cu- deu"h[;(-). (2.44)
Hence.

IF [l iy € |t = Tprtt] gy + €A™' | = 1, aull, & (2.45)
Theorem 1.1 then shows that

[|F [ed]l . K S < ChP ]”fffﬂ'z{f)' (2.46)

Finally. noting that
IF Rl y) < CRIF [l ) < CHP* ]z, (2.47)

gives the desired result. O
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This local result can be used to obtain a global estimate:

LEMMA 2.4. Suppose that Gy satisfies (R1)-(R3) and that u € HP**(0). Then
IV = Gy ()l 0y € Ch**! Jetlp0-200n) (2.48)

where C > () is independent of h and u.
PROOE Sum over the elements using Lemma 2.3. O
2.4. The superconvergence property

It has been shown that if a recovery operator Gy is found satisfying the conditions (R1)-(R3). then
applying the operator to Il,u furnishes us with good approximations to the derivatives ol «. Consider now
the effect of applying Gy to the finite element approximation itself. In some circumstances. for instance
if the superconvergence phenomenon is present. then applying Gy to the finite element approximation
itself gives equally good approximations to the derivatives.

The superconvergence property can be appreciated by recalling the standard a priori error ¢stimate

e = wx|l] < CHP |u|pypur gy - (2.49)
The estimate (2.49) is optimal in the sense that the exponent of A is the largest possible. In fact. for the
h-version finite element method one has that

llelll > CQuh? (2:50)

for some positive constant C(u) depending only on w. The constant C(u) vanishes only in trivial cases.
Superconvergence is present if, under appropriate regularity conditions on the partition and the true
solution. an estimate of the form

tx — Ihut| 0 € Cl2)hPH! (2.51)
Pl

holds. Comparing (2.50) and (2.51) shows that Vuy is a better approximation to VI, than it is to V.
This will be referred to as the superconvergence property.
(SC) There exists a constant C independent of & such that

liex = Tptel 1 < ClOAP. (2.52)

The precise assumptions used to obtain such estimates differ according to the type of finite element
approximation scheme being used. It should be stressed that superconvergence will only occur in very
special circumstances. A survey of superconvergence results is contained in [42].

LEMMA 2.5. Suppose u € HP**({)), Gy satisfies (R1)-(R3) and (SC) holds. Then
IV = Gx(ux)ll; 0y < CQRP! (2.53)

holds where C > 0 is independent of h and u.

PROOF. By the Triangle Inequality and the linearity of Gy

1V = Gx ()i < V0t = Gy (Tt} + 1Gx (Tt = 13 iy - (2.54)
The boundedness property (R3) of Gy implies

NG x (ot = 1ux)l, k) S C Hpue

_"Xlu'(ff} (2.55)

where the Inverse Property (25, p. 142] has been applied separately on each of the elements in K.

Summing over the clements and using Lemma 2.3 and (SC) gives the result as claimed. O

2.4.1. A posteriori error estimators
Consider the class of crror estimators obtained by using Gy (uy) instead of Vi in the expression for
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the error. That is, the estimator on element K is ng where
nNng = “(;X(”.\') = VH_\’"L?(“’ . (256)
The global estimator is obtained by summing contributions from the elements.

THEOREM 2.6. Let n be the a posteriori error estimator defined above. Assume that (SC), (R1)-(R3)
and (2.50) hold. Then

. n
m —— = (2.57)
h=o |[le]ll
PROQOE By the Triangle Inequality. (2.29) and the foregoing results
In = lllelll| < NG x(ux) = Vux = Vell; o+ C el
= |Gy (ux) = Vul| L, + Ch*|lle]l]
< C(u)h?*' + Ch*||lelll (2.58)

since (e[|, < Ch*|[lef|| for some positive constant p depending on the smoothness of the solution
and the domain £2. The result follows from (2.50). O

Theorem 2.6 reduces the problem of linding a posteriori crror estimators to using the existing su-
perconvergence results to define an appropriate recovery operator Gy. Consequently. whenever we
have superconvergence results for a particular finite element scheme. it is then possible to define an a
posteriori error estimator that is asymptotically exact.

2.5. Examples of recovery bused estimators

The theory will be illustrated by deriving error estimators for some particular types of finite element
approximation scheme. This will show how an existing estimator fits into the framework; how another
popular estimator can be viewed as a simplificd recovery bascd estimator: and, how new estimators can
be easily derived.

2.5.1. The Babuska and Rheinboldt estimator

Consider piccewise linear approximation in one dimension. There are many types ol a posleriori error
estimator available for this case. The purpose here is not to obtain new results. but to show how an
existing estimator fits within the framework.

A superconvergence result is known for this situation (cf. [63]): if « € H3(£2) and the mesh is quasi-
uniform then

~p 3

Juex — ”p“h;:(m <Chr |“!n‘{m (2.59)
where [, interpolates at the endpoints of the elements. The recovery operator is constructed using the
process shown in Fig. |. The operator is linear and based on values of the direct approximation to the
gradient sampled on the set K as shown in Fig. 1. It is easily verified that for any piecewise quadratic
function v one has Gy (/T,v) = v'. Moreover.

1Gx @)l k) < 3l ey (2.60)
Therefore. (SC) and (R1)-(R3) are valid. The estimator on ¢lement X is

1k = |Gx(uy) = ”j’("L;(a\’J . (2.61)
The estimator is precisely the estimator originally proposed and analyzed by Babuska and Rheinboldt
[12](Definition 6.3). Previously. the estimator was obtained by an argument bascd on locally projecting
the error onto a quadratic function that vanishes at the nodes. For further details see [12] where numerical
examples illustrating the effectiveness of this estimator will also be found.
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o

K

~

- . K
(a) Finite element approximation u

(b) Gradient of u &f ...

(c) Recovered gradient G(u).

Fig. 1. Construction of recovery operator {7y = G from piecewise linear approximation in one dimension.

2.5.2. An estimator for quadratic approximation

Consider approximation using piecewisc quadratic functions in one dimension. The superconvergence
property holds in this situation (see [44]). A recovery operator Gy may be defined by exploiting the result:
if the true solution is cubic then the true gradient #’ and the gradient of the quadratic interpolant I1,u.
coincide at the nodes used in the 2-point Gauss-Legendre quadrature rule on the element. Therefore.
on the element [x;. x;,;] we sample the gradient at the points

1 1
o . : — S i . N
Xp = {1, +xig 7 (X741 ,x,)} : (2.62)

The next step is to define the recovery operator Gy. This is done by first recovering the gradient at
the nodes and the centroid of each element. There are many possible ways to carry out this process
(many of which fall within the framework). We shall use a cubic interpolation process to interpolate the
gradient sampled at the Gauss-Legendre points. A procedure based on quadratic interpolation would
meet the recovery criteria (R1)-(R3) but would give an unsymmetrical scheme.

The recovery operator Gy is as follows:

o the value of Gy[v] at the centroid of clement [x;. x;,,] is taken to be the value of the of the cubic

polynomial interpolating to v" at the points

A e ok B } (2.63)
o the value Gy[v] at a node x; is the value of the cubic interpolating to v” at the points
{x XXy ox'} (2.64)
e the function Gy[v] is taken to be the X-interpolant of the recovered values at the centroids and
nodes.

It is casily verified using clementary manipulations that conditions (R1)-(R3) are satisticd. Theorem
2.6 then shows the estimator is asymptotically exact. One could obtain an explicit expression for the
estimator in terms of the values of the finitc element approximation at the Gauss-Legendre points.
However. this is unnecessary since the recovery process combined with a quadrature rule provides a
simple method of implementation. Examples showing the performance of the estimator will be found in

(4]
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2.5.3. The Kelly. Gago. Zienkiewicz und Babuska estimator

Consider the finite element approximation of Poisson’s equations using piecewise bilinear approxima-
tion in two dimensions. For the sake of simplicity assume each of the elements K is a squarc with sides
of length /& parallcl to the axes.

Results from Zlamal [63.64] show that the superconvergence property (SC) holds for this situation

leex = Hpel iy < CH it sy (2.65)

where [, is the bilinear interpolant at the vertices of the mesh. The recovery operator Gy is piecewisc
bilinear in each component. The values at the vertex x are obtained by a simple averaging of the gradient
sampled at the centroids of the elements having a vertex at x (sec Fig. 2). If (x,y) is a boundary vertex.
then Gy[v](x.y) is the value at (x.y) of the bilinear function which interpolates to Vv at the centroids
of the elements that are nearest to the point (x,y). The operator Gy is linear and bounded since

and a straightforward manipulation reveals
Gx[Hv] = Vv (2.67)

whenever v is piecewise biquadratic. Consequently. the recovery operator satisfies conditions (R1)—(R3)
and (SC). The estimator ng on clement K is

nk = |Gx(ux) - V“X"L:{K] - (2.68)

This estimator will be asymptotically exact thanks to Theorem 2.6.

x 1/4 x 1/4
x 114 x 1/4
K

(a) Scheme for new estimator.

x 12

x 1/2

(b) Scheme for Kelly et al. estimator.

Fig. 2. Construction of recovered gradient at vertex of element K. The value at e is a linear combination of the values at o using
the weights indicated.
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It is interesting (o compare the new estimator with the estimator 7 proposed by Kelly et al. [40]):

.2 h ey :
g = — — | ds. 269
K =2 [ on ] s (2.69)

and where

Qux| _ duy du,y (2.70)
“on (}“ﬁ dn, s .

is the discontinuity in the finite element approximation to the gradient across the edge between neigh-
bouring elements K and J. Using the midpoint rule for integration along each side of the element. the
estimator (2.69) may be rewritten as

2 Ir duy ]’
Tk = Z [ an ] 271
COK
where the dlscontmunies are evaluated at the midpoints of the sides. Zienkiewicz et al. [59] state that
the derivation of (2.71) is complex and subject to many heuristic arguments.

Kelly et al. [40] note that the estimator bears out practical experience that the accuracy of the ap-
proximation is related to the discontinuity of the finite element approximation to the gradient on the
interelement boundaries. The recovery based estimator (2.68). like (2.71). is found after a lengthy but
otherwise straightforward manipulation. to depend on the discontinuities in the tinite element approxi-
mation to the gradient. The dependence is more intricate than in (2.71) involving. in addition, differences
in tangential componcents at the centroids. The estimator (2.69) uses gradients sampled from the ele-
ment K and elements sharing a common edge. while the estimator (2.71) also involves elements sharing
a common node as shown in Fig. 2.

The estimator (2.68) may be simplified by avoiding terms arising from elements sharing only a common

node. This may be achieved by taking the values of the recovered gradient at the vertices to be (see Fig.
2)

1
Gxlvl(x.y) = 2 [Vv|x—|,fzh__\-+l,'2h + VU|.:+1;21;_,-—|{2;|]- (2.72)

The new recovery operator satisfies (R1)-(R3) and gives rise to an estimator identical to 7. The
estimator derived by Kelly et al. therefore may be viewed using the above framework. This approach
makes the derivation of (2.71) straightforward.

It might seem that the estimator ng is too complicated to be of practical use. However, it is in many
ways much simpler than the Kelly estimator. For instance. with the Kelly estimator it is not obvious how
one should define the value of the jump along the exterior boundary df2. This difficulty does not arise
with the recovery based estimator. The recovery based approach even provides the answer: the value of
should be taken to be the jump on the opposite side of the element.

2.5.4. Zienkiewicz-Zhu patch recovery technique

An alternative type of recovery estimator was introduced by Zienkiewicz and Zhu [61,62]. Let ¥
denote the set of vertices in the finite element partition. The recovery operator Gy is defined by first
identifying the patch (2, of elements having a vertex at x,,, € ¥. That is

D, ={K€P:KC supp b} (2.73)

where 6, is the pyramid function associated with the node x,,,. An intermediate recovered gradient Gy,
is then constructed for each patch and the final recovered gradient is obtained by averaging

Guelux)®) = Zj Gx mlix) (). (2.74)

mey
The intermediate functions Gy, are constructed using values of the gradient of the finite element
approximation sampled on the patch £2,. Let Z(m) denote the set of points at which the gradient is
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to be sampled. For instance. working with quadrilateral clements one would use the Gauss-Legendre
quadrature points (see Fig. 3). For triangular elements, the set Z(m) consists of the points shown in
Fig. 3. Further examples will be found in [61.62].

The [unction Gy,, is obtained by calculating a least-squarcs fit to the gradient sampled at the points
Z(m). The function Gy, is assumed to be of the form X x X where X is the finite element subspace.
That is

(;X,m(x) = Z a, ‘;bn{_-r) (2?5)

where ¢,(x) form a basis for the finite element subspace X and a, are constant vectors chosen to
minimize the expression

3 {Gxm(2) - Vux(2)}’. (2.76)
zeZ
Of course. in the summation (2.75). only degrees of freedom associated with elements in the patch (2,
need be considered. This means that the actual va]uc_-of the final recovered gradient Gy on an element K
will depend only on values sampled from the patch K of elements neighbouring K. Therefore. condition
(R2) will be satisfied. Equally well. the recovery operator is linear and bounded so that condition (R3)
is also valid. The superconvergence condition (SC) and condition (R1) can be satisfied by selecting the
sampling points Z(m) to consist of the points at which superconvergence occurs. If this is the case. then
the estimator will be asymptotically exact according to Theorem 2.6. This is confirmed in numerical
examples [61.62]. However, it is often the case in practical computations that the superconvergence
property is not satisfied. or, the sampling points may be chosen differently. The estimator might be
expected to degrade in such circumstances. In fact. it is found that the estimator is astonishingly robust,
continuing to perform satisfactorily even in quite extreme situations [15.16]. While Theorem 2.2 suggests
that the estimators might tend to bound the error asymptotically, the reason behind the robustness of
the estimators remains an open question.

2.6. Summary

The error estimation techniques often used in the engineering community and sometimes referred
1o as averaging based error estimators have been considered. The development can be thought of as
consisting of two main parts. Firstly. the derivation of Theorem 2.2. As a special case, this shows that
(for A sufficiently small) the averaging based estimators should tend to overestimate the true error.

o
o o
o Q
o o
e} o
Q
(a) Degree p=1. (b) Degree p=1
o
o oo o
@€« g
o oo o
0 0
L= o
o o|lo o
D [ea]
o oo o
0
(c) Degree p=2. (d) Degree p=2.

Fig. 3. Sampling set Z{m) for patch recovery technique.
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It is only if one wishes to obtain two-sided estimates or asymptotic exactness that it then becomes
necessary 1o make the additional and rather stringent assumption concerning the superconvergence
property. Under this condition, it was shown that a class of cstimators based on the use of recovery
operators Gy will be asymptotically exact. The recovery operators are closely related to the averaging
based schemes and in some cases are identical. In this respect. the theory developed for the recovery
operators Gy and the associated error estimators can be regarded as providing some indication of the
behaviour of the averaging based schemes and how they might be modified to enhance their performance.

3. Explicit a posteriori estimators
3.1, Introduction

Consider the model problem in Section 1.5. Suppose that the finite element approximation uy has
been computed. The basic issue in a posteriori error estimation is embodied in the question: how can
the discretization error e be estimated? In order to provide an answer one may make use of

e the Galerkin approximation uy itself

e the data f and g

e cquation charactcrizing the true error:

B(e.v) = B(u.v) — B{uy.v) = L(v) — B(uy.v) YveV (3.1)
¢ the Galerkin orthogonality property:
Ble.vy) =0 VuvyeX. (3.2)

The following section illustrates how these may be used to derive a simple a posteriori crror estimate.
3.2. A simple a posteriori error estimate

The first step is to decompose Eq. (3.1) for the error into local contributions from each element:

B(e.v)=L(v) — B(uy.v)
= Z { / fody+ / gudx —/ (Vuy - Vv + cuyv) dx} (3.3)
Kep K Jakny K
for all v € V. Integrating by parts over cach element gives
Diiv
B(e.v) = Z{/rvdx-&-[ Rvds—f “i\—vd.\'} (34)
ten \JK IKDIN aK\Ix Ong
where r is the interior residual
r=f+Auy —cuy inK (3.5)
and R is the boundary residual
It ]
R=g- <X ondKnly (3.6)
Ong

where ng is the unit outward normal vector to K. Each of these quantities is well defined thanks to the
smoothness of the data and the regularity of the approximation uy on each element. The contribution
from the final term in (3.4) can be rewritten by observing that the (trace of the) function v is continuous

along an edge shared by two elements giving
(")Hx
> f [ o ] vds 3.7)

B(&v)zZ{/rvd,tw/ Ruds}—
K KNI yeoman” Y

KeP
where the final summation is over all the inter-element edges vy on the interior of the mesh. The quantity
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a
[%] =ng - (Vuy)g +n; - (Vuy), (3.8)

defined on the edge y separating elements K and J represents the jump discontinuity in the approxi-
mation to the flux. The identity (3.8) can be written more compactly by extending the definition of the
boundary residual to incorporate the jump discontinuity in the flux. Therefore. on interior edges the
definition (3.6) is augmented by
1 al{\'
R=—2|— 39
2 [im ] (3.9)

so that (3.8) then becomes

Ble.v) = Z/rudx+ ) /Rvds YoeV (.10)
kep”’K year Y
where the final summation is over all the edges in the partition P.
The orthogonality property (3.2) may now be used as follows. For given v € V. let llyv be the
interpolant to v from the subspace X as in Theorem 1.1. Thanks to (3.2) and the identity (3.10) there
holds

0= Z/rl!‘\-vdx+ ) /‘Rﬂ’xvds. G.11)
KeptK yeip“ ¥
Combining this with identity (3.10) gives

B(e.v) = Z[r(urnxvmm >
K

f R(v - llyv)ds VveV. (3.12)
KeP year“Y

The identity (3.12) plays an important role. indirectly or directly. throughout a posieriori error analysis.
It may be used to derive the a posteriori error cstimate as follows. Applying the Cauchy-Schwarz
Inequality gives

B(e.v) € Z Irll ooy llo = Tyl k) + Z RN i o = Tyl - (3.13)
KeP yeirp

Let K denote the subdomain consisting of clements sharing a common edge with clement K

f{’:int{UJ epzfnfﬂ} (3.14)
[t may then be shown [26] that there exist a constant C which is independent of v and hy such that

lv = Hyvll k) € Chx lU|”.l§, (3.15)
and

12

v = Myvll; o) < Cchy! Ivlm:E) (3.16)
where hg is the diameter of the element K. Inscrting these estimates in inequality (3.13) and applying
the Cauchy-Schwarz Inequality leads 1o

12
Ble.v)  Clolyny $ S Mk lrlly iy + D i RNy p - (3.17)

KeP yeip

Finally. noting that |v|; g, < [[lv]]] and substituting e in place of v gives the a posteriori error estimate

el € €Y milri oy + 2 h IR ) (3.18)

KeP ye&irp

where |||||| denotes the cnergy norm for the model problem |{|v]||* = B(v.v). Apart from the constant
C. all of the quantities on the right-hand can be computed explicitly from the data and the finite element
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approximation. Typically. the terms on the right-hand side are regrouped as follows:

4 " 2 I i
MellF < € 3= {5 i any 3 IR g - (3.19)
KeP -
The purpose in doing so is that defining the local error indicator by ng on element K by

- 2 1 2
Nk = hi‘ "r".f_:[m +5 hg “R“.!_:m.\'} (3:20)

allows one to identify contributions from each of the clements. It is then assumed that each of these
quantities is a measure of the local discretization error over each element. In this way onc can use ng
as a basis for guiding local mesh refincments.

Errar estimators of this form were originally derived by Babuska and Rheinboldt [14] in one dimension:
Babuska and Miller [10] for bilinear approximation in two dimensions; and Kelly ct al. [40]. Estimators
that may be computed explicitly from the solution and the data arc often referred to as explicit estimators.

3.3. A simple error estimaior in the Ly norm

The estimator derived above gives information about the error measured in the encrgy (or any equiva-
lent) norm. The duality argument due to Aubin and Nitsche [25] plays an important role in the derivation
ol a priori error estimates in norms other than the energy like norms. It may also be used in the context
of a posteriori error estimators.

To apply the technique consider the adjoint of the original model problem:

Dp eV :B.dp)=(F.v) YoeV (3.21)

where F € L»(§2) is given data. It is assumed that this problem is regular in the sense that the solution ®g
has the extra regularity @ € H?({) NV and the solution operator from L,(§2) to 11-(£2) is continuous

"(pf‘”n!(n) < C "F“L:(u)‘ (3.22)
The specific choice of data F equal to the error function ¢ then gives
lellF (o = Ble. ). (3.23)
The residual equation (3.12) plays the same role as in the derivation of the energy norm estimator
B(e.d,) = Z f r(d, — Hyd,)dx + Z R(<h — Iy ) ds (3.24)
kep K yeap Y

and. as before, the Cauchy-Schwarz Inequality gives
B(e.v) < Y lirllmy o = Mol ny + 3 IR o = Hxvlly gy, (3.25)
Kep YyEITP

Slightly different approximation theorctic results are required: there exists a constant € which is inde-
pendent of v and Ay such that [26]

llo ~ Hxoll; k) < Chi |v|u~‘[i") (3.26)
and
~p 3/2
llo = Hyvll k) € CHE 101,05, (3.27)
Substituting these estimates and applying the Cauchy-Schwarz Inequality leads to
12
lelliin < C 1Pl § 22 Mk llimr + 22 Ik IRl (328)

KeP yeaP

and so. with the aid of the regularity assumption (after bounding ||y (g in terms of |lefl, ) there
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follows

Nellfm S C Y M lirli,m + D hk IR ¢ - (3.29)

KeP YEIP

A rearrangement of the terms on the right-hand side gives an estimator similar to the one derived before.
apart from a higher-order scaling

2 l 2
lell7. <€ Y {hi— Iz k0 + 5 Pk uRlI.o.ﬂ.-m} : (3:30)

KeP

THEOREM 3.1. Suppose that the domain §2 is convex and that I'n = df). Let my k) denote the local
error indicator

5 5 1 .
MKy = hi Nrll7. k) + 51’3.\‘ 1RIZ,ox) (3.31)

where r und R are the interior and boundary residuals. Then there exists a constant C depending only on
the shape regularity of the elements such that

lelim < C Y iy (3.32)

KeP

PROOEF. Tt may be shown that the adjoint problem satisfies the regularity assumptions when the domain
{2 is convex. The proof then follows immediately from the above steps. O

3.4. Equivalence of estimator

The estimator implied by Eq. (3.19) provides an upper bound on the discretization error up to an
unknown constant. If the estimator is to be used as the basis of an adaptive relinement algorithm. then
it is desirable that it be an equivalent measure of the error. That is to say. there should be a constant C
which does not depend on the solution «. the data f and g or the mesh paramcter h. such that

>k < Clliell: (3.33)
Kep
Should such an estimate fail to be valid. one cannot expect that the resulting adaptive procedure will be
cftective.
The problem of obtaining two sided bounds for explicit estimators such as the one derived in Section 3.2
was addressed by Verfiirth [37] who devised the following technique.

3.4.1. Bubble functions
Let K denote a reference element. The interior bubble function ¥ Ko Ri is the lowest-order polyno-

mial which vanishes on the boundary 9K and is non-zcro on the interior of K. An edge bubble function
is the lowest order polynomial which vanishes on all but one edge and is non-zero on the interior.

Triangular elements
In the case of triangular elements
={(*.":0<X¥<<l: 0<¥y<I-7} (3.34)

"[hc functions A,. A, and A; denote the barycentric (arca) coordinates on K. The interior bubble function
yr is defined by

¥ =27A,A22; (33

N

)

and the first cdge bubble function is

X =4A:A;. (3.36)
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Quadrilateral elements
In the casc of quadnlateral elements

K={F9):-1<7<l: -1<v<1}). (3.37)
The interior bubble function ¢ is defined by
g=(1-)01-7) (3.38)

and the first edge bubble functions is

X %(1 - )1 -y). (3.39)

LEMMA 32, Let P C H'(K) be a finite dimensional space of functions defined on the reference element.
Then there exists a constant C such that for all 0 € P

Sl open? T = ~pen? ;

1B, < [ 90 &% < CHNE (3.40)
and

gl PN ] e

el 7y S ol %) < Clll (3.41)
where the constant C is independent of 0.

PROOE 1t is casily seen that the mappings
R 12
—~ Y e
- ([l
K

l:; — “djallul”‘:]

and

both define norms on the finite dimensional space P. The results then follow immediately [rom the fact
that all norms on a finite dimensional space arc equivalent. O

Let K € P be any element and Fy : K+ K be an invertible mapping. The associated bubble functions
on element K are then defined by

Wk =doFi't  xy=XxoF,'. (3.42)

It is assumed that the partition P is non-degenerate. Therefore. there exists a positive number /g and
constants Cy. Cy and C3 such that the following properties hold for cach of the local mappings Fy:

gl € Cihg: We'll € Ghg's €'y < |detJg| < Cahg (3.43)
where Jg is the Jacobian of the transformation Fg. The set P is defined by
P={0oF; :0eP} (3.44)

where P is a finite dimensional subspace consisting functions of defined on K.
THEOREM 3.3. There exists a constant C such that for all v € P

Tl < [ 0% dx < C ol (3.45)
and

-1
C "UHL)[K} < "'J’UHL:U() +hy I‘pvlulm‘) <C "U“Lﬂh‘) (3.46)

where the constant C is independent of v and hy.
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PROOE The result follows by mapping to the reference domain K. applying the previous lemma and
a standard scaling argument. 0O

LEMMA 34. Let y C OK be an edge and x the corresponding edge bubble function. Let P be a finite
dimensional space of functions defined on y. Then there exists a constant C such that

CT IO 5, < [ 77 dF < CIOIE . (3.47)

Suppose that v € P is extended to K according 1o the rule

EG(R.F) = X(E.DIER) (3.48)
there exists a constant C such that

IXE5 1,0 5, < C 151, (3.49)
In each case the constants C are independent of v.

PROOF. The proof is based on the equivalence of norms on a finite dimensional space similar to
before. O

A scaling argument can be used to translate these results to a general element K.

THEOREM 3.5. Let y C 9K be an edge and xy the corresponding edge bubble funwon Let P be the

finite dimensional space of functions defined on vy obtained by mapping PcH [K} Then there exists a
constant C such that

C ol ) < f xy02ds < C ol - (3.50)

Moreover, there exists an extension of v to K (again denored by v) such that

—| 2
"XTU”L,(M + "'.\ !valut{,\) C "U".f_:['y] (3.51)

In each case the constants C are independent of v.

3.4.2. Bounds on the residuals

The proof of equivalence makes use of the residual equation (3.10) in conjunction with special choices
of the function v.

The first task is to bound the term |||, 4, Let 7k be a polynomial approximation to the interior
residual r on element K. For instance. rg might be the L,(K) projection onto piecewise constants.
Applying Theorem 3.3 gives

Pk ll7 k) < f YTy d (3.52)

The function v = Fg i vanishes on the boundary of element K. It may thercfore be extended to the
whole of the domain {2 giving a function v belonging to the space V. The residual cquation (3.10) then
implies

B(t.‘, FK Q!q\) :‘/ f;"!;\-rFK dx (35‘)
K
where the first term contains contributions from element K only. Therefore

YTk dv = [ YTk (Fx —r)dx+ Ble, Fx k) (3.34)
K JK
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The first term on the right-hand side may be bounded as follows; by Cauchy-Schwarz

[ e = 1) < Wil P =l (3.55)
and then by Theorem 3.3 (Part 2)

lxTx |l.f_:{K| < Clirg ".f,;(.k') g (3.56)
The second term is dealt with similarly

Ble.Txi) < lllefllx 1x7& k) (3.57)
and by Theorem 3.3 (Part 2)

NekTxllimng) € Ch' Pkl k) - (3.58)
Therefore.

"FK"L:U\‘] < C“’};-‘m"“]x + |7k — ’”L:u\'p} (3.59)
and equally well. by the Triangle Inequality

Wil < ClagHlelilk + 1Pk = rlli b (3.60)

It remains to bound the terms "R"bm' The argument proceeds in an analogous fashion. Let R, be a
polynomial approximation to the boundary residual or jumps. Theorem 3.5 gives

IRy .y €C / xyR, ds . (3.61)
Y

Let y denote the subdomain of §2 consisting of the union of the side y and the pair of elements (K and
J say) sharing the common side y. The function v = ﬁ,,x,, vanishes on the boundary of the subdomain
¥ and is continuous. Extending to the whole of the domain {2 gives a function v from the space V. The
residual equation (3.10) with this choice of v yields

B(e.Ryxy) = [_ Xyr Ry drx + / xyRR, ds. (3.62)
Therefore. 7 -

/ Xy Ry ds = / XyRy(Ry = R)ds + B(e. xyR,) — /m XyrRy ds. (3.63)
Each 0; these lernu; :T’my be dealt with using Theorem 3.S?and the Cauchy-Schwarz Incquality as follows:

[Y XyRy(Ry = R) ds < Ity Ryl Ry = Rl < CIRy IRy = Rl (3.64)

B(e. xyRy) < Clllellxy Ryl < Chg el IR i) (3.65)
and

f}_xyrﬁy ds < el 3 X Ryl < NP5 IRy Ny (3.66)

This may be uscd 1o estimate [|R]|;,y) after using the Triangle Inequality and (3.60) giving

12 2 -
IRl < U Pl + M2k = Fllia + 1Ry = Rlliyn)- (3.67)

LEMMA 3.6. Let r and R denote the interior and boundary residuals_associated with the finite element
approximation constructed from the subspace X. Suppose that ¥y and Ry, are finite dimensional approxi-
mations 1o the residuals on an element K and an edge y C 9K. The approximations need not be globally
continuons. Then there exists a constant C depending only on the shape regularity of the elements such
that

||fl|;_:(x, < C{”Fl”‘—’”la\' +|[Fx — r”.[,:u()} (3.68)

and
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RNy < CL0EPlllellls + 1 1Pk = rll iy + IRy = Rll o }- (3.69)

PROOE Follows from the previous arguments. O

3.4.3. Proof of equivalence
Lemma 3.6 is used to analyze the error estimator as follows. Choose the approximation 7g to be
L;(K)-projection of the residual r onto the degree p polynomials which are restrictions of clements of
X to the element K. Similarly, the approximation R, is the L,(y)-projection of the boundary residual
R onto degree p polynomials (this time in one variable) which are the restrictions of elements of X to
the single edge y. Lemma 3.6 then applies giving
-1 -
”"Hf._.(x} < Clhg llelllx + s — ’”;,_.(m} (3.70)
and
Rll;.cy < CLE el + P17 Ry - R 3.7
I “:.,(y} < g |||¢|||;’+ 1 IIrx = f'"f,_,[.\') + IRy — ”f.)(‘}‘)}‘ (3.71)
For interior edges. the boundary residual R is simply the jump in the normal derivative which is
itself a polynomial of degree p in one variable. Thus. one has R, = R on interior edges. Conversely.
on the exterior boundaries. one has R, — R = g — Il,g. where [1,g is the polynomial approximation to

g on the edge y. Noting that the data ¢ for the original differential equation was constant leads to
rx —r = f = I1,f on each element K. Thercfore.

17l ky < CLAR lelll +1F = Tpflox (3.72)
and
IR0 < CLaEPlllelllsy + B = Ul ik, + 118 = Hpgllyynro}- (3.73)

The local error indicator 7y in (3.20) associated with the element K can then be bounded by

Mk SCS el + 3 f = Mofll ey + D hwcllg = Mgl (3.74)
yCaKnin

where the constant C depends only on the shape regularity of the element. The estimate shows that
the error indicator is local in a certain sense. since the terms on the right-hand bound involve only
contributions from the actual element and its immediate ncighbours. Summarizing the results so far

THEOREM 3.7. Let ng denote the local error indicator

% 1 2 =
Mk = hi‘ ""'[i;u\') ¥ ih.\' WRII7 .ok (3.75)

where r and R are the interior and boundary residuals. Then there exists a constant C depending only on
the shape regularity of the elements such that

1 . 2 ) 5
el < 3 nk < C S Melll+ 32k I = Haf 1+ 3 i g = T8I 0 1 (376)

KeP KeP yClx

Moreover, the local bound

2 . 2 2
nh < Mellls + W S = Mol ey + 3 s g = Tl @3.17)

yCcaOKNIy

is valid.

PROOEF Follows from previous arguments. O
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Typically. the tcrms involving the differences f — I1,f and g — I1,g will be small compared to the other
terms. In this sense, the estimator obtained by summing the local indicators provides an equivalent
measure of the actual error in the energy norm. The local bound (3.77) is of importance for the design
of adaptive algorithms showing that the estimator gives some indication of the error distribution and
not simply a global bound.

3.5. The effect of numerical quadrature

In practice. the error indicator ng will not be computed exactly since the integrals of the residuals will
be performed using numerical quadrature. That is to say. the actual error indicator g will be given by

’ 2 =2 L, 0B
ik = hi [Pk 7, 0 * 5 M IR, 17 cox) (3.78)

where rg and E, are once again finite dimensional approximations of the actual data (but not necessarily
the same choices as previously). In fact. if the data is continuous then the numerical quadrature would
correspond to taking 7x to be the polynomial I,r which interpolates the residual r at the quadrature
points. Equally well. the approximation ﬁ, would be the polynomial /,R (this time in one variable)
which interpolates to R at the quadrature points on the boundary. This estimator can be analyzed as
follows. Firstly, applying the Triangle Inequality gives

ik <k + i If = Bflg+ Y. hxlie—Dgll ., - (3.79)
yCOKNIy

With the aid of Lemma 3.6 and proceeding much the same as before one obtains

ik <CK|

¢|

B+ I N = of iy + Y Dk lle = 1hgll7 ) ¢ (3.80)
yCOKNIN

Combining thesc results gives a result derived by Verfiirth [56] (but sec also [10] and Section 4.2.4):
THEOREM 3.8. Let 7 denote the local error indicator

. = 1 e .
ik = hi (Pl *+ 5 PR IR 11T ok (3.81)

where r and R are the interior and boundary residuals. Then there exists a constant C depending only on
the shape regularity of the elements such that

lllelll> < € ik + 2 BN = IRl o)+ D bk llg — Thogll? )y 3 - (3.82)
KeP KeP yciy

Moreover, the local bound

2 < C{|

el + W3 AIf =TI}k + hi llg = T8l (3.83)
K 2(K) 2y}

yCOKNINN
is valid.

If the data f and g is smooth then the extra terms appearing in the bounds can be neglected showing
that the estimator is in this sense cquivalent to the actual error.

3.6. Error estimators for W, (02) and Lp(£2)

3.6.1. Estimates in W,[(H), l<p<co
The basic argument used to derive the simple error estimator in the energy norm can be generalized
to obtain estimates in the norm on the space W,({2). Let g denote the conjugate exponent
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1 1

—+—=1 j

> + 7 (3.84)
The residual equation (3.12) gives (with Iy as in Theorem 1.1)

[B(e.v)| = Z[ r(v—1yv)de+ Y /R{v — I1yv)ds (3.85)

KeP ?er
and applying Holder’s Inequality gives
1Be.v) < 3 M7l i 10 = Hxolly, iy + S IRl 0 lo = Thxll, gy, - (3.86)
KeP YEHP

Slightly different approximation theoretic results are needed: there exists a constant C which is inde-
pendent of v and hg such that [26]

lo — Ixvll; k) € Chi IvJ“,J[R:' (3.87)
and
|
v = Hyoll, oxy < Chi iy (3.88)
Substituting these estimates and applying Holder's Inequality leads to
I/p
|Be, )] < Clolwyay § D ik Il gy + D2 Ak lIRIG iy 0 (3.89)
KeP yEIP
As usual. the terms may be rearranged to identify contributions from each element
. ; 1 ?
Ble.v) < C ||U||u,":|m Z {hi‘ |"||ip¢,\') 3 hx "R”J;P(a,&')} : (3.90)
KeP
THEOREM 3.9. Let MWLK) denote the local error indicator
: 1
sy = M I e+ 5 P IR, oy (391)

where r and R are the interior and boundary residuals. Then there exisis a constant C depending only on
the shape regularity of the elements such that

1/p
lellwy < {Z nu.w } : (3.92)

KeP
PROOF. The result follows on observing that

B(e.v)
el S € sup 2t)

(3.93)
vewl() "U“w,;(m

and then using the above arguments. O

The effects of using numerical quadrature to approximate the integrals in the cstimator can casily be
incorporated.

3.6.2. Estimates in Lp({2). | <p < o0

One might suspect that the same basic argument used to obtain estimates for the error in the L; norm
can be extended to the 1., case. Once again. the Aubin-Nitsche Trick [25] is the essential idea. Consider
the adjoint of the original model problem:

P eV B .dp)=(F,v) YveV (3.94)

where F € L,(12) is given data. It is assumed that this problem is regular in the sense that the solution @
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has the cxtra regularity &y € W,:;’(!)) NV and the solution operator from L,({2) to qu,(ﬂ) is continuous

Il "’F“w;{m S ClIFl - (3.95)
The specific choice of v equal to the error function e then gives

(e. F) = B(e. dp). (3.96)
The residual equation (3.12) is used as before,

B(e.dp) = Z /r(fb,.» — lydp)dy + Z /R(d{; — Iy dp)ds 3.97)

Kep yeop

and applying Holder's Inequality gives

Ble-F) < Y Il 0 = Mxvlli gy + D IRI i o = Hxvllp iy - (3.98)

KeP yEIP

The appropriate approximation theoretic results are that there exists a constant C which is independent
of v and hyg such that [26]

llo = Ixvll;, k) < < Ch |”|w?[f€) (3.99)
and
2-1/
o = Mxvlly oy < Chic ™ ol iy (3.100)
With the aid of Holder’s Inequality
I/p
2 +
(e.F)<C |¢F|u’§(u) z th “r"l;.,(K) + Z hl P "anr A7) (3.101)
KeP yE{TP
and. thanks to the elliptic regularity assumption there follows:
(€. F) S CIFll Ly § D HY me e ot ST oHe? IR 0y ¢ - (3.102)
KeP yeoP
A rearrangement gives an estimator in the familiar form apart from a different scaling
: 2 1,
(€ FY < Py 3 {7 W 0+ 3 1 IRIE g (3.103)

KeP
THEOREM 3.10. Suppose that the domain (1 is convex. Ler my (k) denote the local error indicator

2 1+
’1{’(“ h & |I’|l; (K} 3 h F "R"; AOK) (3.104)

where r and R are the interior and boundary residuals. Then there exists u constant C depending only on
the shape regularity of the elements such that

I/p
“‘""L‘.(ﬂ) < C { Z ’ﬂf_’“{)} R (3}05)

KeP

PROOF. The adjoint problem satisfies the regularity assumptions when the domain {2 is convex. The
proof follows using the identity

(e. F)

i (3.106)
!-E,L,,{ﬂ) "Fnt_,(u)

llell,, =

and the previous arguments. O
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4, lmplicit a posteriori estimators
4.1. Introduction

Sections 2 and 3 deal with cstimators that can be computed directly from the finite element approxi-
mation and the data for the original problem. The methods described in the present section require the
solution of a local boundary value problem approximating the residual equation satistied by the error
itself. The local error estimator is the norm of the solution of the problem. Such schemes give rise to
implicit error estimators. The boundary value problems arc local in the sense that they are posed either
over a single element or a small subdomain of clements.

One might wonder whether it is worthwhile considering implicit estimators at all. since explicit schemes
are apparently much simpler. There are good reasons for using implicit schemes. Firstly. the explicit es-
timators lead to local error indicators containing generic constants. These constants are, in general,
unknown. In practice, one can try to find a suitable bounds on the values of the constants. However,
the values of constants would be dictated by the worst case scenario and therefore would usually give
pessimistic estimators. Secondly, there are two types of residual present in the explicit estimators corre-
sponding the interior and the boundary. The correct relative weighting to attach to each type of residual
is far from obvious. In addition. it is conceivable that there are cancellations between the two types of
residual that is lost when one deals with each separately,

Implicit estimators, and the element residual method in particular. avoid such issues by solving a
boundary value problem with the residuals as data. In this way the generic constants are avoided and
the correct balance between the two types of residual is catered for by the solution process itself. The
drawback is that onc is obliged to solve an auxiliary problem requiring an appropriate approximation
scheme: as we shall see. this creates its own difficulties.

The ideas will be illustrated by considering the model problem in Section 1.5. The basic idea is to
approximate the residual problem characterizing the true error:

B(e.v) = B(u.v) — B(uy.v) = L.(v) — B(uy.vl YveV. (4.1)
4.2. The subdomain residual method

A methad for a posteriori error estimation based on solving local residual problems with homogeneous
essential boundary data over small patches or subdomains of the domain 2 was devised by Babuska and
Rheinboldt [13]. The approach is particularly noteworthy because it provides a gencrally applicable
method of a posteriori error estimation with firm theoretical foundations. Here. it will be assumed that
the partition P is locally quasi-uniform. although Babuska and Rheinboldt [13] dealt with more general
classes of partitions (see also [10]).

4.2.1. Formulation of subdomain residual problem
Let ¥ denote the set of element vertices in the partition P and {6, },.c ¢ denote the first-order Lagrange
basis functions based at the clement vertices. These functions are characterized by the conditions

Hn(-\'mJ = Oum (42)
where x,, is any vertex in ¥ and

> tx)=1. xel (4.3)

ney¥

The support {2, of the nodal function #, consists of the patch of elements containing the vertex x,,.

The method is formulated starting with Eq. (4.1) characterizing the true error e € V. The usual consid-
erations apply: while. in principle. one could approximate the solution of this equation using a refinement
of the finite clement subspace X it would be simpler to compute a new finite element approximation di-
rectly. The underlying idea is to replace the single global problem characterizing the error by a sequence
of independent problems posed on small subdomains of the partition P. The nodal basis functions may
be utilized for this purpose. With the aid of property (4.3)
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B(e.v)=8B (e, v Z H,,) = Z B(e.vt,) = Z L(vt,) — B(ux.vb,) (4.4)

new new ney
where v € V. Each of the functions 6,v belongs to the space H[}(f),.). Dectine the local bilinear form
By Hl(f2,) x H}(£2,) — R by

B,(i,v)y= [|_ (Vu-Vv+cuw) dx (4.5)
1,

and the local load functional L,, : H‘;(f),,) + R by

L,(v) :]}E }‘vdx+[,_ guds. (4.6)

LAl

The subdomain residual problem is to find ¢, € Hl}(f),,) such that
Bu(u.v) = La(v) = Buux.v) Vv € H}($D). 47)
Motivated by Eq. (4.4). the error estimator 7, associated with the subdomain 0, is taken to be

M = ”ld’f!”lﬁ__ (48)

and the global error estimator 7 is obtained by summing

12
nz{an;} : (49)

new

In practice. the subdomain residual problems are approximated using a finite dimensional subspace of
H(}(.Q,,). We shall return to this point in Section 4.2.4.

4.2.2. Nomenclature and assumptions
Suppose that the basis function 8, is non-zero on an element K: then

l6,(x)| €1, x€K (4.10)

and. moreover. there exists a constant C depending only on the non-degeneracy of the element such
that

|V6,(x)| € Chy'. x€K. (4.11)

It is possible to partition the set of vertices ¥ into the union of disjoint subsets ¥;. ¥,, ... such that
any pair of nodal basis functions in the same subset ¥, have non-overlapping supports. Specifically. the
condition that will be required is

Y, 6, € ¥, :m#n = supp’6, Nsupp’8,, is empty (4.12)

where supp"6, denotes the interior of the support of 6,. It is casy to see that this process is always
possible since one can simply choose cach of the sets W, to consist of a single basis function. Later. it
will be found advantageous if this is accomplished using as few subsets as possible. The smallest number
of subsets will be denoted by p and referred to as the overlap index for the partition.

Let K be any element in the partition P. The set of basis functions which are non-zero on this
clement is denoted by o(K). The maximum cardinality of any of these sets is denoted by 7 and referred
to as the intersection index. If the partition is locally quasi-uniform then the intersection index will be
equal to the maximum number of vertices in any element. However. if the mesh is not proper then
the intersection index may increase without bound as the refinement progresses. Such a situation is
disallowed by requiring the intersection index 7 and the overlap index p are uniformly bounded for the
family of partitions.



34 M. Ainsworth, J.T. Oden/ Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88

The subdomain consisting of the elements which neighbour element K is denoted by

K =it {Uf:jﬂf is nnn-cmply} . (4.13)

Since the elements are non-degenerate the maximum number of elements contained in any of these
subdomains is bounded by a multiple of 7. Local approximation properties will be needed. In particular,
there exists [26] a constant € such that for any v € /1'({2) and any element K there holds

h;,' [|lv - H‘\.vfh‘__“\,] +|v— J'.’_\»u|,_:“\.J < C|v|”,(x,—) (4.14)

where [y is as in Theorem 1.1,

The assumptions are true regardless of the polynomial degree actually used to construct the finite ele-
ment subspace. and merely impose restrictions on the mesh topology and mesh geometry. The conditions
are always satisficd should the partition be locally quasi-uniform.

4.2.3. Equivalence of estimator
LEMMA 4.1. Suppose that the above conditions hold. Then there exists a constant C depending only on
the non-degeneracy of the elements such that for any v € H'({2)

Z 16x(v — ”.\'U)"ir'w) <cr |”|if'(m' (4.15)
newy

PROOF. Let K be any clement and 6, € ¥ be a nodal basis function which does not vanish on K. Then.
2 2 2 2 2
6. (v — ”,\’U)"H'U\') < ”f’u":,x(x; lv - ”XU|HI|m + |9n|u'l-m(.\') lo - Il-\'U"L:[.‘\') -
Thanks to propertics (4.10)-(4.11)
2 : 2 =2 2
||6n(v — H.\’””IH‘(K} <C{lp - ”x”hrum +h v = ”XU";_,IK)}
and using the approximation property gives
2 2
16 (v = Hxv)lpay S C|U|”1‘§, -
Summing this inequality over all vertices gives the result

Do M0uo = Hxo)lipny =3 D 18:v = 1x0)ll7 5

new KePnea(K)

<y N |v|if,(;;)

KeP newr(K)

=Cr ). s

KeP
-~ 2 2
SCt Wl

as claimed. O

THEOREM 4.2. Ler w, denote the local error estimator obtained using the subdomain residual method.
Then there exists a constant C depending only on the non-degeneracy of the elements such that

% < llelll € Crn (4.16)

where 7 is the overlup index and p is the intersection index.

PROOF. Using the Galerkin orthogonality
B(e.v) = B(e,v — liyv)
and then by property (4.3)
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Ble.v) =Y B(e,0,(v — llyv))

ne'r
and noting that #,(v — ITyv) € H{!(ﬁ,,)

Ble.v) =" B(¢n. alv - Tlxv)).

new
Hence
1Be.v)l € 3 malllou(v - Mx0)]l]
Hne

Applying the Cauchy-Schwarz Incquality and Lemma 4.1

1/2
|B(e.v)] < Cn {Z l6a(v - nxunﬁm,,,} < Cnr ol < Crrlllell

ney
from which the result follows immediately

lllell] € Crx.

Conversely. consider

"?2 = Z n,:: = Z By(dn. bu)

new new
=Y Bule.d) =Y Ble dn)
nevy ney
=B(e,Y_ ba)
newy
< el eulll-
nevy

By partitioning the set ¥ of vertices as described above

IS dull2 =1 S ullE <MY dullP =03 3 Nitull?
¥,

new, ¥, nev,

newvy ¥, ne¥,
where property (4.12) has been used. Consequently,

IS dullP < pn?

ney
and the result follows immediately. O

4.2.4. Treatment of residual problems

The subdomain residual method described above requires the exact solution of the local problems

by € ‘H(}(ﬁn) :By(dy,vy) = L(Un) = Bn(”x‘vn) Yu, € ”J(f)u)‘

35

(4.17)

In practice. the method is seldom used. partly because it is inconvenient and relatively expensive to
develop approximations over the patches (2,. Babuska and Miller [10] circumvented this difficulty by
obtaining an equivalent measure for the local error estimator |||¢,]|| as follows. Integrating the right-hand

side of (4.17) by parts gives

L(v,) — Bu(uy.vy) = Z /Krv,, dy + Z /Rv,, ds
=~ Jy

Kefl, yCil,

(4.18)
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where r and R are the usual interior and boundary residuals. A routine application of the Cauchy-
Schwarz Inequality lcads to the bound

/2
ol I
M <CL Y Wiy + S xRy - (4.19)
KC;}.. Tc;}n

Summing this estimate over all vertices in the partition and regrouping the terms leads to the familiar
explicit error estimator

el < €Y nE (4.20)
KeP
where
k= Wiz + D Ak IRz (421)
yCaK

Babuska and Miller also obtain the [ollowing result:

S hxlirlligy + D W IRl < €O+ ) (4.22)
Kcﬁ,, f(_'}},,
where
2 1/2 =
e= Y Ik lrlim + Y MR = Ryllie: (4.23)

Kef, ycil.,
This result is essentially identical to those derived in Section 3.4 when considering explicit error estimators
but predates the discovery of those estimates.

4.3. The element residual method

4.3.1. Formulation of local residual problem

In principle. onc could approximate the problem (4.1) and obtain an approximation to the actual
error function. The optimality of the Galerkin method and the associated orthogonality property of the
error. means that one must use a larger subspace than the original finite element subspace X if one is
to obtain a non-zero approximation to the error. The cost of solving the problem would be comparable
with simply resolving the original problem using the finer discretization. One can attempt to reduce the
cost of solving this global problem by replacing it by a number of independent local problems posed over
cach element in the domain. The local problems could then be approximated relatively inexpensively
and even solved in parallel.

Let the error on an element K be denoted by e = 1 — uy. Thanks to the smoothness of the finite
¢lement approximation on the element interiors, one finds that the error satisfies the differential equation

—Ae+ce=f+Auy—cuy ink. (4.24)

The major difficulty is to supplement the equation with appropriate boundary conditions. There arc
various cases to consider. First. suppose that the element K intersects a portion of the boundary of the
domain {2 where an essential boundary condition is imposced. The appropriate boundary condition for
the local error residual problem is clearly

e=0 ondKnlp. (4.25)

Here. it has been assumed that the finite element approximation has been constructed so that the
essential boundary conditions are satislied cxactly (although this is not essential). Next. suppose that the
element intersects a portion of the boundary 242 where a natural boundary condition is imposed. The
local error residual prablem is subjected to a natural boundary condition

Oe Dy

ng_m on K N I'y. (4.26)
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So far. appropriate boundary conditions have been clear. It remains to consider the case when the
element boundary lies on the interior of the domain. The first decision is whether to imposce an essential
or a natural boundary condition. The element residual method is based on using a natural boundary
condition. Idecally. one would like to impose the condition

de du  Ouy

g~ Ong  Ong

(4.27)
K
on the edge separating clements K and J. where uy|x denotes the restriction of the finite element
approximation to an element K. Unfortunately. the true flux appearing on the right-hand side is unknown
in general. However. one may replace the true flux by an approximation obtained from the finite element
approximation itself

g~ \Ong (4.28)
where we dcfine
Ay 1

<m> = iﬂx = {(VN_\')K + (VN_\')J} 3 (429)

The motivation for this choice is founded on the hope that by averaging the discontinuous finite element
approximation to the normal flux one obtains a reasonable approximation to the true flux.

The error residual problem is formulated as a variational equation as follows. On each element K the
actual error satisfies the boundary value problem

)
By(e.v) = Fx(v) - Bi(uy.v) + [ 2 pds Yue Vg (4.30)
Jak Ong
Here.
Vi ={ve H(K):v=0o0ndKnIp} (4.31)

and By : Vg x Vg — IR is the local bilinear form

By(u.v) = [A (Vu-Vu+cuv) dx (4.32)
and Fg : Vi — R is the local load functional

Fg(v) = [va dx. (4.33)

The error residual problem is the weak form of the problem specified by the conditions (4.24)-(4.28):
find ¢y € Vi such that

()
By (dx.v) = Fx(v) - Bg(uy.v) +/ (ﬂ)um Yu € V. (4.34)
ok \ dng
Here. the definition of the average has been extended to include the portion I'y of the exterior boundary
, 1 - -
<‘)'A> _J3m {(Vuy)x +(Vuy),}. on f_n] (4.35)
on g. on K NIy.

The question naturally ariscs as to whether there exists solutions of the residual problem (4.34). In
general. the answer is negative! The difficulty arises from the non-trivial kernel of associated with the
bilinear form Bg(-.-). Unless the data satisfies appropriate compatibility conditions. the problem will
fail to possess solutions. Therefore, extra assumptions must be made to ensure well-posedness. One
alternative is lo work on a subspace of Vg on which the bilincar form will be coercive. This approach,
although apparently crude. leads to useful crror estimators. An alternative approach is to try to choose
the boundary data more carefully so that the underlying problem is naturally well-posed so that there is
no need to resort to altering the space V. This approach, known as the equilibrated residual method.
will be discussed in the next section.
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4.3.2. Subspaces for the element residual method

The error residual problem (4.34) is an infinite dimensional problem. The element residual method
is obtained by constructing particular finite dimensional subspaces Y of the local spaces V. Here. the
discussion is restricted to first-order finite element approximation; the general case will be dealt with
later.

Quadrilateral elements
Consider the case of finite element approximation using piecewise bilinear functions on quadrilateral
elements. The local approximation space for the error residual problem is constructed using the basis
functions specified on the reference element
K={F.9:-1<xg: -1y} (4.36)
The edge bubble functions are given by

-~ l -7 -~

=3~ N 1-Y)

- 1 5 =

R=5=-F)1+5)

{ (4.37)

=501-)(1+y)

-~ ] -7 -

Xs=35(1~y)1-x)
and the intenior bubble function c}; is given by

b=01-)(1-5). (4.38)
The space Y is defincd by

Y = span{X. o Xa Xs- 0} (4.39)

and the error residual problem 1s approximated using the subspace Yy obtained by mapping the bubble
space Y to the clement K.

Triangular clements
The paper by Bank and Weiser [23] on the clement residual method considered the case of linite
element approximation using piecewise affine functions on linear triangular elements. The local approx-
imation space for the error residual problem is constructed using the basis functions specified on the
refercnce element
K={(F5H:0<3<!: 0<F<1-%}. (4.40)

The functions A;. A» and A; denote the barycentric (area) coordinates on K and the edge bubble functions
are given by

=40y x=4XAx T =4AA (4.41)
Let ¥ denote the space

-

¥ =span {%1. %2 a} - (4.42)

The crror residual problem is approximated using the subspace Yy obtained by mapping the bubble
space Y to the element K. The bubble space suggested by Bank and Weiser conlains no interior bubble
function. Verfiirth [56] has suggested an alternative bubble space based on including the extra interior
bubble function.

In each of these cases. the basic pattern for approximating the local problem (4.34) is to increase the
order of the space used to construct the original finite element approximation and then factor out the
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functions which arc non-zero at the vertices of the element. This may be achieved by subtracting the
interpolant in the original finite element space.

The discussion has been restricted to first order finite element approximation. For higher-order ap-
proximation, some care has to be excrcised when selecting the subspaces with which to approximate the
residual problem (sec [3] and Section 4.5.3).

4.3.3. The classical element residual method
The classical error residual method [22.23.29.48) for a posteriori error estimation is 1o solve the local
error residual problems

bk € Vi1 Bi(dg.v) = Fx(v) — By(uy.v)+ /

Iiv
<( % > vdsy YvevYy (4.43)
K

oy
thereby obtaining a function éy. The local error estimator ng on clement K is defined by
nx =k lllx (4.44)

and the global error estimator is obtained by summing the local contributions

1/2
n= {Z n;}} . (4.45)

KeP
As remarked carlier. such estimators will be referred o as implicit estimators.

4.4. Equivalence of estimator

4.4.1. Relationship with explicit error estimators
The implicit estimators can be related to the explicit estimators of Section 3. By applying Greens
identity to the right-hand side of the error residual equation (4.43) one obtains

Bg(dx.v) = / rvde + Rvds Yve Yy (4.46)
JK K

where r and R are the precisely the interior and boundary residuals appearing in the explicit error
estimators. Choosing the function v to be the estimated error function ¢y leads to

. - / Pl / Reby dis. (4.47)
K N

The function ¢ belongs Lo a finite dimensional space. Moreover. if the gradient of ¢x vanishes then ¢y
itself must be the zcero function. Therefore. there exists a constant C which depends only on the shape
regularity of the element K but not on its size such that

"‘f’a\'”;,_.un < Chy |d’K|Hi(x) (4.48)
and for any edge y C 9K
o172
Nbicllry < C by - (4.49)

With the aid of these results and the Cauchy-Schwarz Inequality

> : 1/2
g < C 4§ hg n"“:,,(m*' Z haf “R"I.;(y) |¢'K|H'tm (4.50)
yCik
from which one can deduce that
1/?
. 5 1 2 -
n < C hi’( u"“l;u{} + 3 Z hg [lRl[L:{ﬂ (4.51)
yC Ak

where term on the right-hand side is the explicit error estimator discussed carlicr.
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4.4.2. Further boundy

Suppose that the space Y used to approximate the error residual problem is equipped with an interior
bubble function. This assumption rules out the space chosen by Bank and Weiser [23] for piecewise affine
approximation on linear triangles. but is satisfied if the space is chosen as suggested by Verfiirth [56).
Let ¢ € Yi denote the interior bubble constructed in Theorem 3.3. The following result complements

Lemma 3.6:

LEMMA 4.3. Let r and R denote the interior and boundary residuals associated with the finite element
approximation constructed from the subspace X. Suppose that ¥ and R, are finite dimensional approxi-
mations to the residuals on an element K and on an edge y C 0K, and let g denote the element residual
error estimator. Then there exists a constant C depending only on the shape regularity of the elements such
that
- | —
NPl ny < Clhg ke + 17k = rllx) ) (4.52)
and
Rll,cn < CLhM Pk + B2 1k = Pl iy + IRy = Rl } (4.53)
IRy < Clhg "k +hg™ |7k Ly(K) ¥ Ly - IRE

PROQOE The first result is shown by following the arguments from (3.32) to (3.60). except that the
identity (obtained by choosing v = Fg ik in (4.43))

Bx(dx . Txdn) Z/K'J’KVFK dy

is used in place of (3.53). The second result is obtained by following similar arguments to those from
(3.61) to (3.67) and using the identity (which follows from (4.43) with the choice v = R, x,)

HK((ﬁK.RYX?):/ r?\;,x,dx+/,r,Rﬁ,ds
K Y
instead of (3.62). O

4.4.3. Proof of equivalence
Thanks to the relationship between the explicit and implicit error estimators, one immediately obtains
the following result as a corollary of Theorem 3.7 (cf. [56]):

THEOREM 4.4. Let ng denote the local error estimator obtained using the element residual method.
Then there exists a constant C depending only on the shape regularity of the elements such that

lllell* < € Z ik + i If = ”Pf";,_.m} + Z hi g - “p!-’il},z(ﬂ ' (4.54)

KeP yoaknly

Moreover, the local bound

g <CSNelllz ik If = oflii,w + D b llg— gl (4.55)
yCOKNIy
holds for all elements K € P.
As noted elscwhere. the extra terms depend on the smoothness of the data and will often be negligible
in comparison with the estimator and the actual error. In this sense. the element residual method gives
an equivalent measure ol the discretization crror in the energy norm.

4.4.4. The effect of numerical quadrature
In practice. just as for explicit error estimators, the computations of the the integrals appearing in
the element residual equation will be performed using numerical quadrature. Therefore. the computed
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error estimator 7, will be obtained by solving the perturbed problem

bk € Yi: By(dx.v) = Lx(v) — Bx(h‘,\uv)-i-\/ <%>vdy Vv e Yy (4.56)
aK K
and where Ly : Yy — R is the functional
f«(u}:f(!,,f)udr-r-] (Ipg)vds (4.57)
K Ak

where I, f and Ipg are the polynomials which interpolate to the data at the quadrature points (assuming
the data 1s sufficiently smooth). This estimator can be analyzed by noting that

Bi(dg.v) = BK{IEK,U) + /,\U_ Ipf)vdy + /K - (g - Ipg)vds (4.58)

from which one obtains

loxlllx = Mdxllk| < € hx If = fll iy + Do Bl = Tl ¢ - (4.59)

yoaknly

This estimate used in conjunction with the previous result gives:

THEOREM 4.5. Let fig denote the error estimator obtained from the element residual method in the
presence of numerical quadrature. Then there exists a constant C depending only on the shape regularity
of the elements such that

Mel? < Y ak+ D i If = Il + Y hxllg = Toglli.cyy ¢ - (4.60)

KeP KeP vCin

Moreover, the local bound

=2 2 2 < 2
ik < C el +h N = ol + D e llg = gl (4.61)
yCAKNM

is valid.
4.5. Performance of estimators

The robustness and quality of cstimators along with the identification of limits of their performance
is of vital importance. Studies of this type have been undertaken by Babuska et al. [15.16]. Here. the
influence of the subspace used to solve the element residual problem is studied. In practice. the only
feasible approach is to construct an approximate solution to the local problem. The choice of subspace
used for first-order finite elements is reasonably well established and understood: sce for example [23)
and Section 4.3.1. For higher-order finite element approximation, the situation is less clear and some
unpleasant surprises are lurking.

Although the classical element residual method is popular. relatively little is known about its perfor-
mance. For instance. it was only comparatively recently proved by Duran and Rodriguez [31] that the
classical element residual error estimator converges to the actual error in the energy norm for regular
solutions on parallel meshes of linear triangular elements.

Throughout, it will be assumed that the mesh and the true solution are as regular as necessary for the
analysis. This is an unrealistic assumption from the practical viewpoint. but serves to isolate the effects
associated with the approximate solution of the local residual problem from effects due to singularities.
non-smooth domain. irregular meshes and so on. A simple test of the performance of an error estimator
is consistency (or asympiotic exactness). Roughly speaking. an a postcriori error estimator is said to be
asymptotically cxact if the ratio of the estimated error to the actual error tends to unity as the mesh
size tends to zero. Whilst asymplotic exactness should not be over-emphasized. it is uscful 1o understand
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how the estimator behaves in the most favourable case when the mesh is regular and the underlying
problem smooth.

To begin with, we analyze the case when the local residual problem is solved cxactly. As already
noted. this is not a viable proposition, but will bring into sharp relief the effects not associated with
the approximate solution of the local problem. The selection of suitable approximate subspaces is then
discussed. It is shown that the estimators arising from solving the local problems approximately perform
better than if the problems are solved exacily.

4.5.1. Exact solution of element residual problem

In this section. we review the analysis in [2] for the classical element residual technique applied to
pth order finite element approximation on quadrilateral elements. It is assumed that the local residual
problems determining the error estimator are solved “exactly’. Of course. it has alrcady been stated
that there will not. in general. be an exact solution of the residual problem. Here. the term “exact” is
understood to mean that the space H'(K)/IRR is used in place of V. The analysis will show that in
the case of odd order approximation of regular solutions on meshes consisting of quasi-uniform square
clements. the classical element residual estimator is asymptotically exact in the encrgy norm.

The conditions under which the result is demonstrated at first appear unnecessarily strict. It is surprising
that the result is the best possible. A counterexample will be given of even order approximation on
square elements of a problem with a smooth (polynomial) solution where the element residual scheme
asymptotically tends to overestimate the true error by a factor of \/2(p + 1). A second example (again
with polynomial solution) on a uniform partition gives an error estimate which tends to overestimate
by a factor of at lcast 1+ Ccos*8 where 6 is the angle between the normals to the element edges.
Asymptotic exactness is therefore seen to be a rather fragile property.

The proof makes use of superconvergence results due to Lesaint and Zlamal [44]. However. while the
superconvergence results continue to hold for approximations of all orders and for partitions containing
clements other than squares. by themselves they are insufficient to guarantee the cffectiveness of the
cstimator. A difference between the behaviour of error estimators for odd versus even order approxi-
mation has already been observed by Babuska and Yu [19]. The results will shed light on the source of
this difference.

Assumptions on the mesh

It will be assumed that the domain §2 may be obtained by an affine invertible mapping of a reference
grid. The reference grid is supposed to consist of squares with sides parallel to the coordinate axes. The
images of each of the squares under the mapping generate a partitioning P of the domain §2 into the
union of non-overlapping quadrilaterals. The assumptions are extremely stringent. cssentially restricting
one to square elements. However. it will be found cven thesc arce insufficient to guarantee the asymptotic
exactness of the a posteriori error estimators.

These conditions satisfy the assumptions (2.6)—(2.7) and (4.5) in [44]. under which they were able to
show that if the true solution u of the model problem is sufficiently regular. then the finite element
approximation uy exhibits superconvergence. The following special case of their result will be useful:

THEOREM 4.6. Suppose that the finite element partitions satisfy the above conditions and that all integrals
are evaluated exactly. If the true solution u belongs to HP*2({2). then there exists a positive constant C
such that

W Iy — uyll] € Chp*! """m-v’un (4.62)
where [Tyu € X is the interpolant to u at the Gauss-Lobatto nodes.
PROOF: For any v € X it follows from the orthogonality of the error in the Galerkin approximation

that B(ITyu — ux.v) = B(Ilyu — u.v). The result then follows on recalling the following result (Eq. (4.9)
in [44]):



M. Ainsworth, 1.T. Oden/Compmu. Methods Appl. Mech. Engrg. 142 (1997) 1-88 43

+1
and choosing v = yu —uy. 0O
Accuracy of averaged flux
The accuracy of the flux approximation on the element boundaries is critical to the performance of

the error estimator 0. Therefore. let y be an interelement edge. The key result concerning the accuracy
of the averaged flux is

THEOREM 4.7. Let p € N be odd and v € HP*2(()). Suppose that the partition consists of square sub-
domains. Then there exists a constant C, depending only on p. such that

v allyv
on on

where y is the subdomain consisting of the pair of elements sharing the edge vy.

< '’ [0ly40-23) (464)
Lay)

PROOF. See [2]. O

The hypotheses that the polynomial degree be odd and the elements be square might scem to be overly
strong. However. counterexamples 2] show that the result is sharp.

4.5.2. Performance of the error estimator

This section contains three principal results. The element residual error estimator is shown to be
asymptotically exact for odd degree elements on meshes of squares provided the truc solution is suffi-
ciently smooth. It is shown that this result is sharp. Counterexamples are given showing that the estimator
is not asymptotically exact for cven order elements on square elements and that the estimator is not
asymptotically exact for odd order elements when the clements are not approximately square.

Asymptotic exactness on square elements of odd degree
Suppose that the solution # of the model problem belongs to the space HP*3(§2). Let i be the
solution of the local problem
Find ¢, € H'(K)/R such that for all v € H'(K)/R

(d”””>uds. (4.65)

Ong

By (W, v) = Fx(v) — Bx(Ilyu,v) + y{x

For any v belonging to /{'(K)/IR. it then follows that

allyu du
23 o ; = ot e . .66
By(Ux —u+Ilyu.v) }gm (( Dy > i)ux) vds (4.66)

By the Cauchy-Schwarz Inequality:

o1 0
f (22,
oK any dng

=

Ou Ollyu
on oK) - 4.67
n ( on >|| LK) ol ok (4.67)

Let K denote be the subdomain consisting of the clement K and its neighbours. Using Theorem 4.7

yields
A Mlyu u dlyu 5
an an an n

Ly(lks)
Collecting these results gives for any v € H'(K)/IR:

2

L:(9K) s
ol Jek

. 2p+l 2 -
< Ch !”!H’"‘(K] y (4.68)

|Bk (¥ — (1 — Ixu).v)} < ChP*'2 {etl s iy Wl oy - (4.69)
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Hence.
ok — (= Myl < CHP il ;- (4.70)
Moreover. for any v belonging to Xy:
J
Bx(dx — ¥k, v) = By luy — Iyu.v) *j{ (‘— (ITyu — ux)>vds (4.71)
ok \Ong
and using the Cauchy-Schwarz Inequality and the Trace Theorem leads to the cstimate
léx = dxlllk < Nlux = Myufllk + Cllluy = Hxulllz - (4.72)
Finally.
llle = éxllix < I = Hyw) = gglllx + g = dxlllk + | Ixwe — uxllx (4.73)
and collecting the foregoing results. there follows:
Z I[le = ‘I’Kllli’ <C {“l”z\'“ - ”X“I? + WP+ |”ﬁfr-?u)}} - (4.74)
KeP

The optimal rate of convergence in the energy norm that may be achieved using degree p elements is
O(h?). Only in trivial cases can this rate be exceeded. If there exists a constant C(u) for which the error
in the energy is bounded below by C(u)A? then the error is said to be properly O(h”). The main result
may now be stated:

THEOREM 4.8 Let p € N be odd and u € HP**()). Suppose the error e measured in the energy norm
is properly O(hP) and that all integrals are evaluated exactly. lf the partition consists of square elements,
then the error estimator n is asymptotically exact, i.e.

lim
o ||le|||

=1. (4.75)

PROOEF. Follows immediately from Eq. (4.74) by using Theorem 4.6 and the assumption on e. O

Non-asymptotic exactness for elements of even order
The estimator 7 is not asymptotically exact when the approximation is of ¢ven order as the following
counterexample shows. Consider the problem:

—Au= —pp+1)x*" in0
u= 0 onlp (4.76)
Qufon=0 on N

with 2= (0,1) x (0.1) and [}, being the vertical boundarics of £2. The partition is formed by subdividing
2 into uniform squares of size h. The true solution is

w(x.y) =x(x? - 1) (4.77)

and the true error on element K may be computed explicitly [2]

) 2 (R\P (p+1)°
itk = 57 (3) (%) (@.78)

where &, is the coefficient of the leading term in the Legendre polynomial. For the local error estimator
Nk . it suffices to consider only those elements K lying on the interior of the partition, since the combined
cffect of elements on the boundary of the domain 2 becomes negligible as the partition is refined
(provided the true solution is smooth). The estimator when the polynomial degree is even is
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) I\ p+ 1)’ 2
T "_"} —
K I(2) ( kp ) {2P+1 +2}' (4.79)

Consequently, when p is even:
. n
lim —— = 1/2(p +1). 4.80
wo e ~ V2P (480)

Non-asympiotic exactness on non-square elemenis

The estimator is not asymptotically exact when the subdomains are not square even if the approxi-
mation is of odd degree. Suppose that the domain {2 is a rhombus with angle 6. Details will be given
for the case of first-order approximation of the problem:

-Au=f inf2 wu=0 onlp dufon=g only. (4.81)

The data f and g are chosen so that the true solution is u«(x,y) = y2. The domain {2 is partitioned into
a mesh of N x N uniform rhombuses. The finite element approximation of this problem coincides with
the interpolant of the true solution. The true error is given by

8hi(h . \°
|||e|||i=§(gs=[1f1) | (482)

The solution of the error residual problem is difficult to compute exactly for this example. However,
bounds can be established using variational analysis (see [2]):

> h (8 16
& 2; — = iz -ZH . “
el 1(2 sm&) {3+ 5 o8 } (4.83)
Hence. using the expression for the true crror reveals
2
Illtblllzx > 142 coss. (4.84)
llelll% 3

Letting ny and n; denote unit outward normals on adjacent edges of any subdomain in the partition, we
obtain
2
lim —
w0 |lel||?
Therefore the estimator cannot be asymptotically exact unless the normal vectors are orthogonal so that
the mesh must consist of squares.

>1+ % |y - ma) (4.85)

4.5.3. Analysis and selection of approximate subspaces

The case of finite element approximation on quadrilateral elements using piecewise polynomials of
degree p was studied in the previous section. Following the analysis in [3]. the effect of solving the local
residual problems approximately is studied. At first sight. one might expect that the effect of solving
approximately would only exacerbate the already tenuous situation regarding the performance of the
estimators. It is perhaps surprising that this need not be the case.

Parallel meshes R

Let P be a regular partitioning of the domain 2 and Fg : K +— K be an invertible, bilincar transfor-
mation of the reference element onto an element K. More specifically, we shall consider the class of
parallel meshes. That is, each clement K is a parallelogram with sides of length hg. k¢ making angles
akx and Bx with the coordinate axes (see Fig. 4). It is assumed that there exist positive constants C. 6
such that for all K € P

1 hg

C S kg £ C: 0<|Bx—ak|<T—0 (4.86)
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by

Fig. 4. Notation for parallelogram element.

and for any pair of neighbouring elements K and K’ therc holds
lax — ak| < Chg: 1Bk — Bkl < Chi. (4.87)

If h is the maximum element size, then the constants C' and 6 should be independent of h. Strictly
speaking. parallel meshes are mild distortions of the partitions described above.

Hustration of influence of upproximate subspaces

The a posteriori error estimate on element K is obtained by solving a local residual problem of the
form

Find ¢, € Yy such that for all v € Y

BK(d)K.v)=/fvdx—BK(ux.U)+/ <2Ei>vd.v (4.88)
K ax \Ong
where Yi is a finite dimensional subspace of H'(K). In the previous section. it was assumed that
the subspace Yy was chosen to be H'(K). The estimator resulting from solving exactly were rather
discouraging. asserting that the estimator gives a consistent error estimator only under highly restrictive
conditions. The assumption that the error residual problem be solved exactly is now relaxed. At first
sight, one might expect this to lead to an even less encouraging result. However, we shall see that this
need not be the case. provided that the subspace is selecled with some care.

The choice of subspace for the error residual problem has a significant effect on the performance of
the error estimator. as the following simple illustration shows. Consider the problem

Find u such that

~Au=f in2=(0.1)x (0.1). (4.89)
The boundary conditions and data f are chosen so that the true solution is given by
u(x,y) = x(x” - 1) (4.90)

for p € N. The problem is solved using elements of degree p on the meshes consisting of lines parailel
to the x and y axes. The finite element approximation is identical to the interpolant. The error residual
problem will be solved using various choices of subspace:

Full space’
Y = 0(p+ )\R
Uniform

Y =span{{L.%,... .3} Wy (). Wpra (B) {1.5.... .77} . Wprt (IW,i () } (4.91)
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where
wp+] (3) = ”}lu(-\- o= Sj)

and s; = —=1+2j/p. j=0.... ,p.

Legendre

-~

Y =span{{l,X.... .37} Py (3). P () {1.5.... . 3P} . Ppat(D)Ppa ()}

where Py, is the degree p + 1 Legendre polynomial.

Lobarto

Y =span{{1.%,... .} Lyu (). Lyt D {1.5.... .57} . Lpus ) Lpr ()}

where L, (s) = (1 - sZ)P;H](s).
The subspace Yy used for the solution of the residual problem is then

Yy ={0oFg' :0e Y} (4.92)

In each case, the error residual problem is solved and the cerror estimator computed. Table 1 shows
the results obtained for uniform mesh spacing (fix = kx = h for all K). The performance of the error
estimator is seen to be quite sensitive to the choice of subspace used to solve the residual problem.
In some cases. the estimator is a gross over-estimate while in others estimates the crror as begin zero.
Moreover. increasing the dimension of the subspace does not improve the performance of the error
estimator; the full space is consistent only when the polynomial degree is odd (as found in the previous
section). The Lobatto basis is the only choice that is consistent in all cases.

Suppose that the mesh spacing is non-uniform. The analysis in [3] shows that the estimator based on
the Lobatto subspace is consistent when the degree p > 1 and inconsistent when p = 1. The results of
using estimators based on the other spaces are inconsistent for all values of p.

It is worth observing that these results have been obtained for a very simple model problem. The
purpose is to illustrate that even in such a simplified setting the error estimator can give misleading
results inconsistent with the actual error unless the subspace used to approximate the residual problem
is chosen carefully. Even so. one finds that the estimator can still be inconsistent if the mesh is only
mildly non-uniform. In practical computations the true solution may be singular and the mesh highly
irregular. It is only to be expected that further problems in the performance will arise.

It can be shown [3] that the behaviour illustrated in the examples is true generally whenever the mesh
is parallel and the true solution smooth. Equally important is to understand the mechanism leading to
these somewhat surprising phenomena. Henceforth, it will be assumed that the Lobatto subspace is used.

Accuracy of boundary flux functionals

The analysis in the previous section showed that the boundary flux approximation plays a key role
in the performance of the error estimator. Suppose elements K and K’ share a common edge y. The
performance of the error estimator depends crucially on how well the the boundary flux functional I7(")

Table 1

Performance of error ¢stimators on uniform mesh

Degree True error Square of error estimator

P |||f|||i, Full Uniform Legendre Lobatto
144 14 1 g4 1

1 1h i ih 3 % s
146 3 g6 1

2 0l h a5 M8 0 3 bt
g8 18 6227 18 I

3 s M 30000375000 /" i h" s A

1 g 5 4,10
4 e ! S W 0 g 10
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defined for fixed v € Y by

du
) = [,«(K> vds (4.93)

is approximated by ['(uy) where wy is the finite element approximation to «. The accuracy of the
boundary flux functionals plays a key role in the proof of:

THEOREM 4.9. Suppose that the mesh is parallel and the true solution u belongs 10 HP**({2). If the error
is properly O(h?) and p > 1. then the error estimator obtained using the Lobatto basis is asympiotically
exact:

lim

I = 4.94)
fim el (

PROOF. See [3]. O

4.5.4. Conclusions

The error residual method for a posteriori error estimation is based on solving local residual problems
for the error. It has been seen that the estimator is quite sensitive to the choice of subspace used to
solve the problem. In particular. using a full space of polynomials is inappropriate since the resulting
estimator may give results completely inconsistent with the actual error. By considering certain subspaces
of polynomials the estimator can be improved. Theorem 4.9 shows that if the mesh is parallel and the
true solution smooth. then the resulting estimator is consistent with the actual error for degree p > 1
finite element approximation. However. the estimator is still inconsistent on non-uniform meshes when
p=1L

The results can be explained as follows. The error in the finite element approximation can be thought
of as consisting of a number of components. The true solution of the residual problem can also be
regarded as comprising of a number of components. some of which correspond to actual modes in
the true error and other spurious modes that arise from the formulation of the problem using inexacl
boundary data. When a full space is used to approximate the problem. all of these components are
present in the approximation. The resulting estimator is inconsistent owing to the contributions from
the spurious modes. However, when a subspace Yk is used to approximate the residual problem. then
the components orthogonal to Yg are not present in the approximation. If the subspace can be chosen
so that it is precisely the spurious modes that are orthogonal to the space, then the consistency of the
estimator will be recovered.

It is not surprising then, that the estimators are so sensitive to the choice of subspace. The results
obtained using the subspaces in the illustration can be interpreted in the light of this explanation as
follows. First. the subspace based on Uniform Nodes (4.91) is inappropriate since it still contains some
spurious modes when the degree p exceeds two. leading to over-estimates of the error. On the opposite
extreme, the subspace basecd on Legendre Nodes is inappropriate since it is not only orthogonal to
the spurious modes but also to modes that represent the actual error. leading to gross under-estimates
of the error. The subspace based on Lobatto Nodes is orthogonal to spurious modes but at the same
time provides sufficient resolution of the true modes (whenever p > 1). An alternative possibility is to
construct the boundary data for the underlying problem differently, for instance, using the equilibration
procedures discussed in the next chapter.

5. The equilibrated residual method
5.1. Introduction

The advantages of using implicit error estimators have been outlined in Section 4. The element residual
method requires the solution of local boundary value problem. However. in many ways the basic for-
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mulation of the element residual problem is somewhat unsatisfactory. For instance. the local Neumann
problems that must be approximated may not have a solution. This ‘difficulty’ is avoided by solving
using a quotient space with the null space factored out. In Section 4, the estimators were shown to
perform extremely well in certain circumstances. However. the investigations revealed other deficiencies
in the basic formulation of the problem. In particular. the construction of the boundary data for the
local problem is somewhat ad hoc.

An alternative criterion for choosing boundary data is to require that the local problem is well posed.
This requires that the boundary data be in equilibrium with the interior residual. The equilibration
condition was lirst used in a posteriori error analysis by Ladeveze and Leguillon [43]. who wished to
solve a local dual problem for the error. The element residual method with equilibrated data was first
used by Bank and Weiser [23] who. on the basis of numerical experience. conjectured that the resulting
estimator gives an upper bound for the error. The method was analyzed and generalized by Ainsworth
and Oden [5] which the current exposition [ollows closely. One by-product of [5] is a proof that Bank
and Weiser's conjecture is correct.

Consider the usual model problem described in Section 1.5. Suppose that X C V is a finite element
subspace constructed on a non-degenerate partition P. The finite element approximation of this problem
is to find ny € X such that

B(ux,vyx) = L(vy) Vuy €X. (5.1)
The error e = 1 — uy belongs to the space V and satisties

B(e.v) = B(u.v) — B{uxy.v) = L(v) - B(uy.v) YvelV. (5.2)
5.2. A posteriori error analysis

5.2.1. Mesh dependent forms and spaces o
It will be convenient to reduce the global spaces and forms into sums of contributions from each of
the elements in the partition P. With this in mind. define the broken Sobolev spaces for m € Z°

H™(P) = {v € Ly(£2) :v|x € H"(K) VK € P}. (5.3)

Here. and in what follows. vx denotes the restriction of v to a single element K. The associated mesh
dependent norm is

1/2
IIU"m_'P == {Z ”vK |LG.‘(} “ (54)

KeP
For each element K € P. let

Vg ={veH' (K):v=0o0nIpnIK} (5.5)

and introduce the bilinear form By : Vg x Vg — R

By(u.v) = f (Vu - Vu+cuv) dr. (5.6)
K
Similarly. Fx : Vx — R is defined by
Fyx) = / fodr. 5.7)
K
Hence forv. w eV
Bv.w)= Z By(vg. wg) (5.8)
KeP
and
L) = Y Fxw)+ [ glews)ds (59)

KeP
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The inner products on the Sobolev spaces are decomposed as sums of contributions from each element

in the partition in an analogous fashion. The broken version of the space V is defined by
V(P)={veEL()):vxk e Vg VK € P} . (5.10)

Later, we shall wish to consider the space of continuous linear functionals 7 on V(P) which vanish on
the subspace V. Therefore, let H(div, {2) denote the space

H(div, 2) = {A € [Ls(2)]’ : divA € Ly(2)} : (5.11)
cquipped with norm
41l aiv. = {lAllg.0 + lldiv AJlg o}/ (5.12)

Let M denote the subspace

M ={A € H(div, 02): vn-Ads:()'v’vEV}. (5.13)

an
The following result is originally due to Raviart and Thomas [51]:

THEOREM 5.1. A continuous linear functional T on the space V (P) vanishes on the subspace V if and
only if there exists A € M such that

Tlv) = Z){ vk ng - Ads (5.14)
kep oK
where nyg denotes the unit outward normal on the boundary of K.

PROOEF. Suppose 7 € V(P)' vanishes on V. By Riesz’ Theorem. any continuous functional on the space
H'(K) may be written in the form

2
dv
. _'/K {;A"B_r; +f'ub‘} dx (5.15)

where Aj and ay € L.2(K). Therefore. summing over the elements shows that for any v € V(P), r may
be written in the form

2
- v
T[v] = Z /ﬁ {Z Afft'iT +auu} dx (5.16)
KeP j=1 !

where A; and agp now denote elements of the global space L,({2). Owing to the hypothesis on 7 it follows
that foranyv eV

2
v
()_/“{EA,-E +ﬂ’gv} dr. (5.17)

Hence, in the sense of distributions
i S
-t g =
ax; 10 (5.18)

and consequently (A, Az) belongs to the space H(div, £2). With the aid of (5.16). (5.18) and Green's
Identity

2 :
dv  0A;
Tv] = Z / Z{A,--—i-—’u} dx = f vk ng - Ads. (5.19)
Kep K =1 c').t,- 8.\‘,‘ g aK

Finally. A € M since for any v € V
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(l:r[vlzz ﬁ;\ UKJJK-Ad.\‘zf vn-Ads. (5.20)
oK an

Kep ¢
The converse is shown using similar arguments. 0O

The import of this result is that one may identify = with an element A of the space M and vice versa. In
view of Theorem 5.1. we shall abuse the nomenclature slightly and refer to an element of M as being
a lincar functional.

5.2.2. Preliminaries
The residual equation (5.2) characterizing the error may be stated equivalently as a minimization
problem

minJ(v):vevVv (5.21)

where J : V — R is the quadratic functional

J() = % B(v.v) — L(v) + B(uy.v). (5.22)
The error ¢ in the finite element approximation is the minimizer of J

—% B(e.e)=J(e)<J(v) VYveV (5.23)

where (3.2) has been used.

In principle. one could approximate the problem (5.23) directly and thereby obtain a computable
bound on the error. However. the cost associated with solving a global problem renders this approach
impractical. However. an alternative approach is to attempt to reduce the single global problem (5.23)
into a sequence of independent problems posed locally over each element. The advantage would be that
each of these smaller problems might then be approximated comparatively inexpensively and even in
parallel.

The theme throughout the rest of this section is to recast the global statement (5.23) as a sequence of
independent local problems posed on each element K € P. However. rather than simply decompose the
problem indiscriminately and risk losing the valuable bound on the actual discretization error, we shall
proceed in a way whereby the relationship is preserved.

The approximation to the true flux on the inter-element boundaries played an important role when
we considered the classical element residual method. There a simple averaging of the finite element
approximations to the flux from the neighbouring elements on an edge was used. Approximations to the
true flux will again be of importance, but at this stage we shall proceed more generally as follows:

Approximation of fluxes on element boundaries

Let P denote the element edges in the partition. Suppose that we order the elements in some way.
For instance, one could order elements according to their global numbers in the finite element code. Let
ox 1 0K — {+1,—1} be the piecewise constant function on the edges of element K defined by

+1 seKnZ.Km'
ok(s)=4 -1 seKnJ, K<J . (5:24)
+1 sean

Notice that if elements K and J share a common edge then
ox(s) = —ay(s) seKnl. (5.25)

With cach element interface y we associate a smooth function g, : y — R. If y lies on the portion of
the boundary I'y on which a Neumann boundary condition is prescribed then we shall always choose g,
to be the Neumann data g on the edge. It will be unnecessary to define g, should ¥ lie on the Dirichlet
boundary I'. Specific constructions for the functions g, on the interior interfaces will be discussed later.
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The approximation to the flux is then defined by
gk = Okgy on vy C oK. (5.26)

There is no danger of confusion with the Necumann data g using this notation since the functions gg
agree with the boundary data on I'n. The notation [ is used to denote differences in values of functions
v from the broken space V(P) across element boundaries

_ ) oxlvg —vy) on y=KnJ 57
= {v on y C 92 (5.27)

and n is defined by

n=oaxng onycCdadk. (5.28)
These definitions are unambiguous since on any edge K N7 one has

ox(vg —vy) = oy(v; — vk) (5.29)
and

ar N = ayny. (5.30)
The following identity valid for v € V(P) is readily obtained:

Zf grods =y /gy[v] ds. (5.31)

KeP YEOP

5.2.3. Localization

The process of decomposing the global problem (5.23) into smaller. local problems posed over the

elements can now be discussed precisely. Two basic steps are involved in breaking up the problem:

e Decomposition of the quadratic functional J into separate contributions from each element.

e Localization of the global space V. The essence is to decompose the space V of globally smooth
functions into functions belonging to the broken space V (P). These functions need not be continuous
across the interelement boundaries and allow one to deal with a series of problems, on each of the
elements independently, thereby substantially reducing the complexity of the problem.

The chief difficulty arises in the second step. If one were to simply substitute the space V with the

broken space V(P) then the key relationship (5.23) with the true error would be irretrievably lost.

We begin by extending the functional given by

Vow— L(w)—B(uy.w) (5.32)
to the broken space V(P). For any w € V(P) define the linear functional R : V(P) —» R by
R(w) = Z {Fx(w) - Bx(ux,w)+f CxWi dv} z /g.,[w[ds (5.33)
Kep aK
Notice that, thanks to (5.31). wheneverw e V
R(w) = L(w) — B(ux.w). (5.34)

so that R is an extension of the functional (5.32) to the whole of V(P).

LEMMA 5.2. Under the above notations and conventions. there exists . € M such that for all w € V (P)

pw)=3Y" /gyIWIds (5.35)

yedP
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PROOE. The right-hand side of Eq. (5.35) is continuous on V(P) and vanishes on V. Applying Theo-
rem 5.1, the result follows immediately. O

Applying Lemma 5.2 yields the identity

Rw)=3 {Fx(“’) ~ By(uy.w)+ }f} 8K ds} - p.(w) (5.36)

KeP
valid for all w € V(P).

3.2.4. Variational analysis

The requirement that v belong to the space V in (5.23) may be regarded as a constraint on the
interelement continuity of the function v. Recall that the aim is to relax this constraint and yet retain
the bound on the error. Therefore. we follow the standard approach of introducing a Lagrange multiplier
to enforce the constraint indirectly. Let the Lagrangian functional £: V(P) x M — R be defined by

L{w. )= ; B(w.w) — R(w) — pn(w) (5.37)
and note that
1 g
sup L(w. ) = { 5 Bw.w) ~R(w) ifweV (538)
peEM +00 otherwise

Morcover. for w € V. (5.34) and (5.2) reveal

% B(w,w) — R(w) = % {B(w—e.w—e¢) - B(e.e)}

1 1 .
>—=-Ble.e)= —= . 5.39
3 (e.e) lek’lll (5.39)
Therefore,
1
— Y= inf sup L(w.u)=sup inf L(w.pu). (5.40)
2Ill-‘-‘ll! ---evm,,e_ﬂ (w. p) ﬂe_ﬂwevm (w.p)

The interchange in the order of the inf-sup is justified here since a saddle point is obtained when the
multiplier w is the true interelement flux. This choice is a valid multiplier as can be secn by applying
Theorem 5.1. Eq. (5.40) immediately gives the bound
1 2 .
—-= = inf L(w. (5.41)
Sl > inf £0v. )

which is valid for any u € M. Moreover.

Liw.p)= Z ini;_ {; B(wg.wg) — Fx(w) + Bg(uy,w) — f LKW ds} +u.(w) = pnlw) (542)
K

_p“'a'E K “~ oK
and so
| \ L
=5 lllellf* > 3 inf Jx(w) + . (w) = (o) (5.43)
= Kep KETHA
where
Ji(w) = ; Bi(w.w) — F(w) + Bg(uy.w) — f gxwk ds. (5.44)
< aK

Studying the cstimate (5.43) one sees that the space V has been replaced by the broken space V(P)
while preserving the bound on the error. Thus, the continuity requirements on the choice of admissable
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functions imposed by the space V have been relaxed. Howevcer. the statement (5.44) has not yet been
decomposed into independent contributions from each element. The contribution from Lagrange multi-
plier term p,(w) — () preserves the bound on the error. In fact. examining Lemma 5.2 reveals that
the interelement continuity requirement is being imposed indirectly through the Lagrange multiplier
acting on the jumps [w| on the admissable functions. A key point now emerges: this coupling between
elements can be removed by choosing the Lagrange multiplier u to be equal to u.. while simultaneously
retaining the bound on the error.

Summarising. we have shown:

THEOREM 5.3. Let Jg @ Vg — R be the quadratic functional

J(w) = % Bi(w.w) = Fg(w) + Bg{uy,w) — ?( gxwg ds. (5.45)
oK
Then,
Mell? < =2)" inf Jx(wx). (5.46)
Kep "NEVA

5.3. The equilibration principle

To begin with, assume that the coefficient ¢ appearing in the differential operator is strictly greater
than zero. Later. this assumption will be removed. Theorem 5.3 leads us to consider a sequence of local
minimization problems posed on each element K

inf Jg(v) (547)
velVy
where Ji is the quadratic [unctional defined in equation (5.44). For the present purposes it will be
convenient to reorganize the terms appearing in the functional J¢. Applying Green's identity gives

Fg(v) — Bg(u_y.v)+f grxvds = / rodr + R.vds (5.48)
aK K K
where r is the interior residual
r=f+Auy —cuy (5.49)
and R. is a modified form of the boundary residual
R. =gk —ng - Vuy|k. (5.50)

THEOREM 5.4. Let
Wik ={p€ H(div. K) :ng -p =R, on 9K} (5.51)
and define Gg : Wy — R by

. | 1
Gep) =3 [ popdx-5 [ (V-pentac (5.52)
2 K 2¢ K
Let ¢y be the solution of the problem
Bi(@g.v) = Fi(v) — Bg(uy.v) +f grvds Vv € V. (5.53)
K
Then Vg € Wy and
; 1 ) . .
inf Jx(v) =Jx(dx) = —5 llI¢xlllx = Gk (V) = sup Gg(p). (5.54)
veVg 2 peWy

PROOF. The existence and uniqueness of ¢y is a consequence of the Lax-Milgram Theorem. Problem
(5.53) means that in the sense of distributions



M. Ainsworth, 1.T. Oden/ Compur. Methods Appl. Mech. Engrg. 142 (1997) 1-88 55

—div(Vy) +cody = r (5.55)

and hence. since r is smooth on the interior of element K and ¢y belongs to Ly(K). one sces that
Vg € H(div. K). Furthermore, again in a distributional sense, we have

n- Vg =R, (5.56)
and hence V¢, belongs to Wy.
Eq. (5.53) is the Euler equation for the functional Ji and consequently ¢ is a minimizer of Ji. and

Ix(dk) = =3 I (557)
Furthermore.
Gx(Van) = =3 [ 1V6xf dx=3 [ 2 (ei? ar= -3 il (558)
K KC 2
Finally. since G is strictly concave and quadratic. it suffices to show Gy is stationary when Vg Let
qge{peHdiv,K):n-p=0} (5.59)
and let A € R. Then V¢ + Ag € Wy and
d

- Gr (Vb +Aq) lnmo = = / g Ve dr— f L (div g)(div Vg + i) dr
K K¢

—- [ q-Vaxar- [ @ivg)ocar
K K
=—¢ dk(ng-q)ds (5.60)
3K
and this vanishes owing to (5.59). O
Using Theorems 3.3 and 5.4 one obtains

COROLLARY 5.5. Let ¢y and Gy be as above. Then
lllell* € =23 Gk(pk) (5.61)
Kep

for any choices of p € IlxepWkg.

The implication of this result on the computation of error bounds is that by simply constructing elements
of the sets Wg. one can obtain rigorous upper bounds on the error. Of course. care must be exercised
in choosing py if one is to obtain realistic bounds.

Suppose p € Wi then and define 8k to be

i
then
ﬁsznh‘-pds+[rdr
Jok K
=4 R.ds +/ rde (5.63)
K K

or alternatively

8k = Fx(1) = Byluy. 1) +){ gx ds. (5.64)
aK

Observe that 8 is independent of the particular choice of p. Now. with the second term of the functional
Gy in mind. we note that by the Cauchy-Schwarz Inequality
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8 < meas(K) ]K(V‘p+r): dx (5.65)
and hence for any p € Wk,

/'; %{V p+r) dx > 8} Jc meas(K). (5.66)

This estimate shows that as we refine the partition so that meas(K) tends to zero then the bound
proclaimed by Corollary 5.5 will become trivial. unless the quantity 8¢ vanishes too. The value of 8 is
not something which may be altered by our choice of p. since it is a generic property arising from the
definition of the space W itself. Essentially. & represents a third type ol residual in addition to the
interior residual r and the boundary residual R..

The means by which we can control the quantity &k is provided by the functions g, that also determine
the boundary conditions on the local error residual problem (5.53). Consequently. a natural strategy is
to attempt select these functions in such a way that the quantity 8¢ vanishes. This procedure is referred
to as equilibration.

So far. we have assumed that the parameter ¢ in the differential operator was strictly positive. Much of
the foregoing analysis cannot be directly applicd when ¢ vanishes. A natural question to ask is whether
the equilibration criterion is still relevant. Inserting the function v = A. where A is an arbitrary real
number. into the original quadratic functional Jg gives

J.t\()t:l = FA(A) = BK(H,\'.A) +f 8!('\ ds = )HSK, (56?)
aK

Consequently, unless 8g vanishes. the value of the functional Ji can be made as negative as we wish
by choosing A appropriately. Therefore. if Theorem 5.3 is to yicld useful information. it necessary that
the data be equilibrated. If the data is equilibrated then Theorem 5.4 may extended to include the case
c=1(

THEOREM 5.6. Suppose that ¢ =0 and let

Wy ={pe€ H(div.K):divp=ron K and ng -p= R. on 9K} (5.68)
and define G : W — R by
1
Gelp) = —3 /p-pd.r, (5.69)
Jx

Let ¢ be the solution of the problem

By (g .v) = Fx(v) — Bg(uy.v) +f gxvds Yve Vg (5.70)
aK
Then Vg € Wy and
. 1
inf Jx(v) =Jk(éx) = —3 lléklllx = Gk (V) = sup Gg(p). (5.71)
veVy 2 pEW,

The proof is virtually identical to Theorem 5.4. The requirement that the data be equilibrated is necessary
if the set Wy is to be non-cmipty.
When ¢ = 0 the local minimization problem is the variational form of the pure Neumann problem
-Ady =r inK (5.72)

subject to the boundary conditions d¢x /dn = R. on the whole of dK. The cquilibration principle has a
natural physical interpretation that the interior load r is in equilibrium with the boundary forces R..

5.4. Construction of equilibrated fluxes

The discussion above indicates the advantages of constructing approximations to the interelement
fluxes in such a way that the data for each of the element residual problems is equilibrated:
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UZFK(I)—BK(lfx.l)-I' /axg;\'d.\'. (573)

The equilibration condition cannot be satisfied for each clement independently of the remaining elements
since the flux approximations gx and g; on neighbouring elements K and / are related by the condition

8K = OK8y = —0y8y = —4;- (5.74)
In effect. while the localization arguments from earlier have decoupled the element residual problems.
coupling still persists implicitly through the boundary conditions if we demand that the data be equili-
brated.

There are now two issues to be resolved:

¢ is it possible to satisfy the cquilibration conditions at all?

o if s0. can this be achieved by performing independent local computations?

It is essential to reduce the computation of equilibrated fluxes to independent local computations so
that the resulting error estimator is economical to compute. Perhaps surprisingly. we shall find that the
answer to both of these questions is affirmative. Moreover, the fluxes are not uniquely determined and
there is more than one procedure whereby equilibrated fluxes may be computed locally.

The basic idea used to obtain local problems is to introduce a partition of unity as follows. Let ¥
denote the set of element vertices in the partition P and for n € ¥ let #, denote the first order Lagrange
basis function based at the vertex x,. That is. 8, is piecewise linear (or bilinear) on the partition and
satisfies

Hn(xm) = 8un (5?5)

where 8,,, is the Kronecker symbol. For each clement K € P, let ¥(K) C ¥ consist of the vertices of
clement K. Notice that

> b)=1. xek. (5.76)
nev(K)
Finally. lct f),, denote the elements having a vertex at x,.

We describe two basic procedures for obtaining equilibrated data: Ladeveze's Method [43] and Flux
Splitting [5.6].

5.4.1. Ladeveze’s method
Ladcveze and Leguillon [43] (see also [23]) construct equilibrated fluxes by defining the flux approxi-
mation on the edge y between clements K and J to be

Auy
gk = <E:-—> + ok By (5.77)
where
g 1 — -
:_3"_,\» = 5m {Vuyxlg + Vuyl;}, on KnJ (5.78)
dn g. on Knliy

and By : y — R is a linear function on cach edge and is identically zero on ['x. It is easily seen that
this choice satisfies our carlier conditions on gg. Substituting the definition (5.77) into the equilibration
condition (5.73) and rewriting gives

- aK/,s1r ds = 8x(1) (5.79)
yCaK Y
where
Auy :
S (V) = Fg(v) = By (uy.v) +% — Yuds. (5.80)
K (?n,;

The equilibration condition (5.79) is localized by inserting the sum (5.76) in place of unity giving the
following condition for cach element K
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DI ] BBy ds = Y Bk(bh). (5.81)

ne¥(K) ycdk Y ne¥(K)

Let ¢,. n € ¥ be piccewise linear functions defined on the edges. The functions are constructed so
that on any edge y with an endpoint at x,, there holds

/ Uin(5) () 5 = By (5.82)
Y

where 8, is again the Kronecker symbol. A straightforward computation shows that on an edge y with
endpoints x,, and x,. one¢ has

2
57
where |y| is the length of y. On this edge the piecewise linear function B8, may be written in terms of
the functions ¢, and i,

Yn(s) = 2ou(s) - ¢m(-\‘)) (583)

1‘37(3') = :"r!’m(s) + B;:'pn(s) (5.84)
where B7' and B} are constants to be determined. Inserting this definition into condition (5.81) and

simplifying gives the condition that for cach element K

-3 S wBy =Y k(6. (5.85)

ne¥(K) ycdk ne¥(k)

A sufficient condition for (5.85) to hold is

= Y oxBy=8k(0,) Vne W(K) (5.86)
yCakK

which may in turn be reformulated: for each n € ¥

-3 oxBl=8(0) VK€D, (5.87)
yCaK

The difference is that before we sought to satisfy the condition for each element by solving over the
nodes of the element. Now. we seck to satisfy the condition for cach node by solving over the elements
containing the node. Later. we shall show that there exist constants 87 such that the conditions (5.87)
are satisfied. Once these constants have been ascertained. one then reconstructs the flux approximation
from the definitions (5.77) and (5.83).

5.4.2. Flux splitting

An alternative approach to constructing equilibrated fluxcs was developed in [5.6). The basic approach
stems from the construction of the flux approximation employed in the classical element residual method.
There. a simple averaging of the finite element approximations to the flux from the neighbouring ele-
ments on an cdge was used. A natural alternative is to use a weighted average of the fluxes from the
neighbouring clements. To this end. introduce smooth functions @, : y — IR on the interior edges. The
functions a, are identically zero on exterior edges. Suppose that elements K and J share a common
edge 7y. then the approximation to the flux on the edge is taken to be the weighted average

RK =0 EE’{ (S 88]
on [, :
where
dux\ _ l+rr-u n-Vuy|g + ‘l"“’“ n- Vuy| i
o ). = \3*tkY BllE™ |\ 3=y 5 VR o

Notice that the scheme is consistent in the sense that if the approximation from each of the ncighbouring
«lements is the same then the approximation ggx will agree with this value. This expression may be
rewritten as
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Ouy\ _ [ouy duy
(W) - < n > Ty [ an 36)
where
Ay
[3—}:] =Ny o anh\z +ny -Vl‘fxl; (591)

is the jump in the approximation to the flux across the edge y. Inserting (5.91) into the equilibration
condition and simplifying leads to the condition on each element K

-3 o /a, [0“‘] ds = 8¢ (1). (5.92)

yCilk
As before. this is still a global problem thanks to the coupling across edges expressed through the
functions a,. The functions a, are chosen to be piecewise linear on the edges
ay(s) = ', b(s) + a} B,(s) (5.93)
where a:, are constants to be determined. In an attempt to decouple the problem, we replace unity on

the right-hand side by the sum (5.76) and insert the definition (5.93) to obtain the condition for each
element K

a“[\. a"x =
- Y o, fra,.(s) T ds — ) oxa /6(3)[ ]a-, = > Sk(th). (5.94)
yCOK yCaK nev(K)
One way to obtain a solution of this system is to satisfy the stronger conditions: for cach vertex x, € ¥

o] ~
- E oy /H,,(s) ﬂ ds = 8x(0,) VK € (), (5.95)

an
yCidK = =

If conditions (5.95) hold then by summing over all vertices n € W(K) one obtains (5.94). The systems
(5.95) consist of independent problems to be solved for af over the support of the function 6,. As
before. it is not immediately obvious that there is a solution of the problems. However. if one can find
constants a',", satislying these conditions then the flux approximation is obtained from definitions (5.93)
and (5.88).

5.4.3. Solvability of local equilibration systems
Both Ladeveze's Method and Flux Splitting reduce the single coupled global cquilibration condition
into a sequence of independent equilibration problems. Each such problem is localized over the patch

{2, of elements surrounding each of the nodes x,, in the partition. Both systems of equations are of the
form: for each vertex x, € ¥
=3 oxul = 6x(8) VK C O, (5.96)
yCokK

where. in the casc of Ladeveze's method

ny =By (5.97)
and in the case of Flux Splitting
ey
= Dy : 4
Ky = ay [f(\)[(”]ds (5.98)

This correspondence means that we may deal with the solvability of the local equilibration conditions
for both methods at the same time. To simplify the notation we shall omit the superseript n.

Proper partitions in the plane
Suppose that the partition P is proper. That is. each element edge is cither a subsct of the exterior
boundary 342 or a complete cdge of another element in the partition. The domain (2 is supposed to be



60 M. Ainsworth, 1.T. Oden/ Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88

two dimensional. There are now two possibilities to be considered depending on whether the vertex x,
lies on the boundary of 2 or the interior.

Interior Vertex. If x, is an interior vertex then the subdomain {2, is of the form shown in Fig. 5. The
system (5.96) in this case is

—m + py = 81(6,)
— 2+ p3 = 8(6y)
(5.99)
—pN + py = n(0)-
This represents a system of N linear equations in N unknowns. However, the equations are linearly

dependent as may be secen by summing all equations. The left-hand side then vanishes. Fortunately.
summing the right-hand sides gives

4 Y Ouy _
gax(en)=gﬁq(ﬂn) - Bk'(llx.f},,)-l—f;f( <E 0,(s) ds
=F(6,) — B(ux.6,) (5.100)

where the final step follows since the integrals over the boundary cancel pairwise across on each edge.
and because we have summed over all elements on which 6, is non-zero. Noting that x,, is an intcrior
vertex it follows from the definition of the finite element approximation wy itself that

B(uy, 6,) = L(6,) = F(6,) (5.101)
and so the sum of the right-hand sides also vanishes. Consequently. the system (5.99) has solutions
determined up to an arbitrary constant.

Boundary vertex. Suppose that the vertex x, lics on the boundary I'v as in Fig. 6. The values of the
constants g on the edges y, and yy,, arc required to vanish in both Ladeveze’s and the Flux Splitting
methods. This is a natural condition since the value of the flux on these boundaries is known exactly
and it is undesirable to introducc any perturbations. Incorporating these constraints. the system (5.96)
has the form

w2 = 8 (6,)
— M2+ p3 = 8(6,)

(5.102)

= HUN = 6&\(911)

Fig. 5. Paich {J, associated with interior vertex x,,.

Fig. 6. Patch 2, associated with boundary vertex x,,.



M. Ainsworth, 1.T. Oden/ Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88 61

This time there are N equations in only N — | unknowns. The first N — | conditions in (5.102) uniquely
determine the unknowns. Summing the first N — 1 equations reveals that

N
py = —8x(0h) + Y 8x(6,) (5.103)

K=l

and then a calculation similar to the case of an interior vertex shows that the second term on the right-
hand side vanishes. Consequently. the Nth equation in the system (5.102) is automatically satisfied. The
system therefore has a unique solution when the vertex lies on the boundary.

There is an additional possibility that may arise in the Flux Splitting algorithm. It may happen that
the approximation to the normal fluxes between two elements is continuous. This imposes the extra
constraint that the constant pJ must vanish. If there is only onc edge on which to enforce the constraint
then there is no problem since the solution of the original problem was determined only up to an
arbitrary constant. However. for more than one edge the conditions cannot be satisfied in general. In
practice. these situations occur due to symmetry which often allows the system to be solved anyway.

Irregular partitions in the plane

Several finite element codes now incorporate local refinements in which irregular partitions are created
(see Fig. 7). Previously. these cases have not be singled for attention because little is changed from the
analysis of the proper partitions. It is worth pointing out the differences in the equilibration procedures
for such meshes. The discussion is based on Ainsworth and Oden (5].

The first difference comes in the classification of the vertices of the partition. The open nodes in Fig. 7
show where the linear degrees of freedom must be constrained so that a conforming approximation is
obtained. Such vertices must now be excluded from the set ¥ of regular vertices in the partition. The
Lagrange basis function associated with the vertex x,, shown in Fig. 8 is still defincd to be the piecewise
bilinear function satisfying the conditions

Opn(Xm) =6y me ¥, (5.104)
However. a little reflection reveals that 6, is also non-zero on elements not containing the vertex x,,. In
particular. the support of 8, consists of elements 2. ... 7. The previous definition is modified to become

O, ={K €P: K Csupp by} (5.105)

That is, {2, consists of the elements on which 8, is non-zero. The definition of the set ¥(K) is also
modified to

7,
AN
N
3 4 e 7,
3 4 3 4 /
L X ™~
7, — e | 7 N7,
X X 2/ \\
n o 7 s\ ~ 7,
5 ,?: 7, 7.

Fig. 7. An irregular partition created by local refinement.

Fig. 8. Notations for equilibration problem on patch 5,,.
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Y(K)={ne ¥: K Csuppb,} (5.106)
Each of these definitions generalize the original conditions. It is worth noting that the key identity (5.76)
used in the localization process is preserved

> Gx)=1, xek. (5.107)
nev(K)

Both Ladeveze’'s method and the Flux Splitting algorithm are derived following the same steps as before.
This leads to a series of local systems of equations that are expressed exactly as in (5.96): for each vertex
X, EV
~ Y oxuly=8k(ba) VK C 0, (5.108)
yCaK

However. the modified notations mean that the issue of solvability has 1o be considered afresh. For
example. expanding the conditions for the vertex x, using the notations shown in Fig. 8 gives (omitting
superscripts)

—p = pe— = 8(6,)

By — g = 83(6,)
Mo — §3— Ly = 84(6,)
(5.109)
7 — pg = &s(6,)
M3 — Hs+ g+ g = G6(by)
Mg+ ps = 37(6,)-

The system is singular as may be seen by summing the left-hand sides. As before the sum of the right-
hand sides reduces to L(8,) — B(uy . 6,) which vanishes since (x, is a regular node) 6, belongs to the
finite element subspace. It suffices to show that this is the only linear dependency within the system. For
proper partitions this was a trivial fact.

Consider then a general regular vertex x,. The system (5.108) may be expanded as a matrix cquation

Mu =& (5.110)

where & € R with E the number of elements contained in the patch (J,. We examine the null space
Ker,M', where M" is the transpose of M. Suppose that £ € Ker M'. Then M'¢ = 0. First, notice that
each column of M (and therefore each row of M') has precisely two non-zero entries corresponding a
single edge vy in the patch (2,. Moreover. if the edge y separates elements L and R, with L > R say.
then these entrics are: +1. in the row corresponding to element L: and —1 in the row corresponding
to element R. In turn this means that & - & = 0 since M'¢ = 0. Thus. for any pair of neighbouring
clements in the patch we have that the corresponding components of & must be identical. However, for
any pair of elements K and J in the patch. starting from K we can always find a path leading to element
J by passing across element edges. As we pass across an edge the value of the component of £ in the
new element is the same as the value in the initial element K. Hence, & = & for all pair of elements
in the patch. We have shown that if £ € Ker M' then £ must have all its components equal, i.e.

KerM' = span{A} (5.111)

where A = (1.... .1)". Therefore. a necessary and sufficient condition for the systems (5.108) to have a
solution is that the sum of the components on the right-hand sides be zero. This has already been seen
to be true. The solution exists and is determined up to an arbitrary constant (as for proper partitions).

The systems (5.108) have a sufficiently simple structure on proper partitions for it 1o be possible
to write down solutions explicitly. However, on irregular partitions this is not so straightforward. It is
undesirable to attempt to enumerate every possible mesh configuration. A simple general procedure for
constructing solutions was presented in [5]. A typical system is of the form
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My = 8. (5.112)
Suppose that we can find a solution of the related system

MM'éE=46 (5.113)
then we simply take u = M'£. The matrix MM" is symmetric. positive and indefinite. Moreover

Ker(MM') = Ker M' = span{A} (5.114)

with A as before. Therefore. the system (5.113) has solutions. The key observation is that in addition,
the matrix MM' has a particularly simple structure. Assume K and J arc elements in the patch £,
Earlier arguments show that the components of M are given by

[ ify=KnJ with K >J
Mgy={ -1, ify=KnJwithK <J . (5.115)
0, otherwise

Consider the diagonal element of MM" corresponding to clement K:

MM'|xk =D Mg, (5.116)
Y

where the summation is over all edges in the patch. Therefore.
[MM'|x x = number of elements in palch adjacent to element K. (5.117)
A similar argument can be used to obtain the off-diagonal clements (K # J):

1. if K and J share an edge

otherwise (5:118)

[MMIIKJ = { 0.
The net result is that the ropology matriv MM is readily constructed dircctly from the topological
information in the patch and has integer entries. The conjugate gradient algorithm is suitable to solve
(5.113) since the matrix vector products may be efficiently implemented and the method generally
requires at most three iterations (even for irregular meshes in three dimensions). Having obtained £.
the action of M" is performed using the information in (5.115). The advantage of this approach is that it
copes with all mesh topologies in a straightforward and numerically stable manner. Further details and
operation counts will be found in [5)].
Once a solution of the systems (5.108) has been computed. the fluxes are constructed using (5.83) for
Ladeveze's method or (5.93) for Flux Splitting. There is the difficulty with Ladeveze’s method that the
definition (5.82) characterizing the function ¢, has to be altered to accommodate the various topologies.

Partitions in three dimensions

Equilibration on (proper and irregular) partitions in three dimensions is essentially the same as in
two dimensions with element faces taking over the role of the clement edges. The solvability of the
systems can be dealt with by precisely the same argument used for irregular partitions in two dimensions.
Furthermore. the system can be solved efficiently even on irregular meshes by following the approach
based on the topology matrix discussed above.

The minor difference with the two-dimensional algorithm is that the definition of the functions ¢, used
in Ladeveze’'s method must be altered. The chief advantage of the Flux Splitting approach is that it can
cope with the myriad of possible mesh configurations when using irregular meshes in three dimensions.
The drawback is the careful treatment sometimes needed for continuous fluxes.

5.4.4. Higher-order equilibration
Let X be the finite element subspace and for each element let X consist of the restrictions of
functions from X to the element K. It has been demonstrated that flux functions g, on the edges may
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be constructed so that on cach element K in the partition

0= Fx(v) — Bgl(uy,v) + / gxvds forallv e Xg. (5.119)
aK

The equilibration condition follows immediately from this fact. So far all the arguments have been for
first-order approximation. The question arises of whether (5.119) can be satisfied when X is constructed
using higher-order basis functions. The following simple inductive argument will show how property
(5.119) can be satistied when X is constructed using higher-order basis functions.

Suppose that the finite element subspace is based on polynomials of degrec p = 2. Associated with
cach edge v in the partition is a test function 8, € X supported on the two elements sharing the edge.
Often 8, is referred to as the edge bubble function. Let

2, ={KeP:KCsuppby} (5.120)

so that fl,, consists of the elements of which y is an edge.
Let g be edge functions constructed so that condition (5.119) holds whenever v is a first-order
polynomial basis function. New edge functions approximating the boundary flux arc defined by

By =8y + Iy ¥y (5.121)
where ¢, : ¥ — R is the quadratic function uniquely defined by the conditions
f PYy(5)0u(s)ds =0 forallme ¥ (5.122)
Y
and
/r{;.f(s}ds =1. (5.123)
Y

The constant u, will be chosen to satisfy the higher-order equilibration condition. The boundary function
is then given by gx = okg,. The equilibration condition

0 = Fe(v) - BK(;:X.U)+/ gxv ds (5.124)
aK

can easily be seen to hold whenever v € X is a first order basis function. Moreover. the condition holds
when v € X is a second-order interior basis function supported on the single element K, from the
definition of the finite element approximation itself. Thus. it suffices to deal with the case of v being an
edge bubble function. Inserting the expression (5.121) into the condition (5.119) with v = 6, leads to

~ox iy = 8l (by) VK €D, (5.125)

where
8 (v) = Fx(v) — Bx(ttx.v}+/ g\vds. (5.126)
aK

This is analogous to the condition (5.87) but has a simpler form owing to 6, being supported on only
one edge. Letting R and L denote the pair of elements sharing edge y with R > L gives the conditions

~he =5e(0) (5.127)
Hy :6;,(67')-
The system has a solution since
81(0y) + 8,(0y) = L(6,) — B(uy.0y) =0 (5.128)

thanks to the definition of the finite element approximation. The construction is repeated for all edges
allowing boundary fluxes to be found such that condition (5.119) is satisfied.
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The process described above shows how boundary fluxes equilibrated up to first order may be extended
to second order. The same arguments may be used inductively to extend the equilibration to the full
order p of the finite clement approximation. Of course. one cannot then continue to higher-orders since
the argument relics on properties of the finite element approximation.

The results obtained in this section are summarized in:

THEOREM 5.7. Let uy € X be a Galerkin finite element approximation:
B(uy.v)=L(v) VvelX. (5.129)

Then, there exist smooth (polynomial) functions defined on the interelement edges such that the equilibra-
tion condition is satisfied

0= Fg(v) = Brluy.v) +f gxvds Vv e Xg (5.130)
IK
where
Fg(v) = / fodye (5.131)
K

and gx +g; = 0on K NJ. Moreover. the functions ma y be computed locally using the algorithms described
above.

3.5. A posteriori error estimators

Two key results have been obtained: Theorem 5.3. is the basic result showing the possibility of ob-
taining computable upper bounds on the energy norm of error in the finite element approximation: and
Theorem 5.7, showing that it is possible to compute approximations to the boundary flux so that the
equilibration condition is satisfied. The task is to use these results to derive a posteriori error estimators.
There are two basic approaches: solve the primal problem or solve the dual problem.

3.5.1. Primal method
The primal method consists of solving the primal problem (5.53):

By (dg.v) = Fx(v) — Bg(uy.v) +f gxvds Yve Vg (5.132)
aK
where Vi is the space
Vk ={ve H'(K):yo=0on I, NIK}. (5.133)

A solution exists provided that the equilibration condition is satisfied. According to Theorems 5.3 and
5.4 (or Theorem 5.6 in case ¢ = () one obtains

llell? < ) Illéxlll- (5.134)
KeP
Thus. an appropriate choice for the error estimator ng is to take
nk = [lldklll&- (5.135)

This method is not a viable algorithm since the space Vi is infinite dimensional.

Relationship with classical element residual method

The problem (5.132) is reminiscent of the classical element residual method discussed in the previous
section. In fact. suppose that the finite element approximation iy is based on first order basis functions
and that we simply take the boundary flux functions to be
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Juy
={ =), 5.136
&y < on > ( )

The residual problem (5.141) may not have a solution with this choice of data. However. if we [irst
replace the space Vi by the finite dimensional subspace

Vi & Yk (5.137)

where Yg is one of the subspaces defined in Section 4.3.1. then problem (5.141) now has a solution. The
method is precisely the classical element residual method. The approximation provided by the subspace
Y means that one will not have a guaranteed upper bound on the crror.

5.5.2. Duality method
An alternative approach is to solve the dual problem suggested by Theorems 5.4 and 5.6: find p € Wk
such that
Gk(p) > Gklq) Vg€ W (5.138)

where W is defined in Theorems 5.4 and 5.6. The equilibration principle assures us that a solution p
exists. An error estimator may be defined by

nx = —2Gk(p) (5.139)
and Theorem 5.3 then gives the upper bound
el < ) Ml (5.140)
KeP.

The infinite dimensional problem (5.138) has to be approximated by a suitable finite dimensional approx-
imation. Ladeveze and Leguillon [43] construct a finite dimensional subspace of Wy using a finite element
discretization on a partitioning of the clement K into three or four subelements. Many other construc-
tions suggest themselves. The basic approach to a posteriori error estimation based on constructing a
dual variational principle seems to be due to de Veubeke [27].

5.6. The equilibrated residual method
The infinite dimensional problem to be approximated is: find ¢x € Vi such that
Bi(dg.v) = Fg(v) — Bi(uy.v) +%’ gxvds Yve Vg (5.141)
oK

where the finite element approximation wy is based on polynomials of degree p. Suppose that the
boundary fluxes have been chosen so that the equilibration condition

0 = Fg(v) — Bi(uy.v) +f ggvds Yv e Xy (5.142)
aK

is satisfied. We construct a family of subspaces Y};‘). g € N as follows. If the element K is the image of
the reference element K under an invertible mapping Fg then

Y = (GoF;' 0 € R(g) (5.143)
where ﬁ(q) is the space

-~ é(q) if Kisa square
Rig)={ % ~ : 5.144
(@) { P(gq) if K is a triangle ( )

In particular. note that the local finite clement space X = YE’). A scquence of error estimators for
g =p.p+1.... may be defined by: find ¢7 € Yé') such that
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B (Y. v) = Fx(v) - BK(ffx.u)+}§ gkvds Yoe v (5.145)
aN

with the error estimator given by

Mok =/ Bk(8, 6. (5.146)

By increasing the polynomial degree g. the accuracy of the approximation to the infinite dimensional
problem (5.141) is improved. In effect. one is using the p version finite element method on the single
clement K: cf. Babuska et al. [17.18).

It is impractical to calculate the error estimators using the full space Y;(‘” for larger values of ¢ owing
to the expense of the computation. The alternative is to solve on a subspace of the full space Y}("’, For
instance. one might use the same functions used for the classical element residual method. However, the
equilibration property may be exploited by using a morc appropriate subspace Bﬁ;”

BY ={vev? B,w)=0vwe YY"} (5.147)

Clearly, these basis functions will be problem dependent and are discussed more fully later. Importantly.

the dimension of the space B(‘” is significantly less than the full space Yi.’”

dimY®W =(g+1? and dimBY =2g+1. (5.148)

The size of the error residual problem using the space B:."’ is relatively modest but the danger is that
accuracy may have been sacrificed. The principal property of the subspaces is that the solution of the
error residual problem is identical with the solution obtained using the full space:

THEOREM 5.8. Suppose that the boundary fliuxes have been chosen so that the equilibration condition
is satisfied. Forq =p+1,p+2,... let (I),(f) € Y};") be such that

Bk (¢ .v) = Fx(v) — By (ux,v) + ﬁx gkvds Vve vy (5.149)
and let (i:w - Bﬁ” be such that
Br(3.v) = Fu(0) - Bilux.0) + § grods Vo e BY. (8180}
aK
Then
o = Z o (5.151)
j=p+1
and
(q) S 30
Mok = - eIk - (5.152)
j=p+1

PROOEF. The definition of the spaces Bg‘) implies that for any v; € BE) and wy € Bi‘f"
Bvj,we) =0 if j#k (5.153)
and forg > p
q 3
v =xxu |J BY. (5.154)
j=p+l

Therefore. we may write

(") =Wy + Z W, (5.155)

j=p+l
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where wy € Xg and w; € Bg). Let Dg(v) denote the linear functional appearing in the error residual
problem

Dg(v) = Fy(v) — Bg(uy.v) +f gruds. (5.156)
aK
Then. for any vy € X. the equilibration property reveals that
q
0= Dylvx) = B(og .vx) = D Blwj.vx)+B(wy.vx) = B(wx.vx) (5.157)
j=p+l
and hence. wy = (). Therefore. for any vy € Bg‘)
q
B(d{).vi) = Dx(vi) = B(dy vx) = D B(wj.vi) = B(wi,vx) (5.158)
J=p+1

and hence wy, = ¢°). Consequently.

o = Z Y. (5.159)
j=p+!
Property (5.153) immediately shows that

B(tﬁ(q} (‘Fl): Z B(‘bU) ({b,?)) O (5.160)

J=p+l

The result shows not only that one may use the reduced spaces B‘Ec“ to construct the solution on the

full space, but also reveals that the functions &,{f‘". k=p+1,p+2,. .. may be computed independently
and then summed. In cach case. the resulting error estimator is identical. The result is of considerable
practical importance with regard to computing the estimators economically.

A posteriori error estimates for the residual problem

One can actually assess the accuracy of the approximation :b,(c‘” & ¢ to the solution of the infinite
dimensional problem. If the p-version finite clement method is used to approximate a solution having a
singularity on a corner of the domain then the rate of convergence is (sce [18.17))

ek — & llik < CN;“ (5.161)

where N, = (¢ + 1) and C. a are positive constants depending only on ¢x. A simple computation
reveals that

lléx — &PNI% = [kl = ek (5.162)
Therefore. we make the assumption that
Wk lIik = Md NI = CN2 (5.163)

Suppose that we compute |[|7*|[|« and |||(f:}c’"n|||g. The value of |||¢7]|| is known to be zero owing
to the equilibration condition. Theorem 5.8 may be invoked to obtain the values of |||¢“|||x. ¢ = p.
p+1 and p+2. Three equations may be obtained from Eq. (5.163) by choosing ¢ to be p, p+1 and
p + 2. Eliminating the constants C and « between these equations leaves the following equation for the
‘unknown” |||y ][«
1B, 2/ N pat)
el = oL IIB _ el = oL 1B ™7 (5.164)
+1 - .
MbxllE = el Ml = eI
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This equation may be solved to obtain an approximation to the value of |||éx]||x. This type of extrapo-
lation technique has been used to obtain global a posteriori error estimates for p-version finite element
computations [54].

Summary

The purpose of this scction has been to show how. in principle, one may resolve the infinite dimensional
local error residual problem (5.53) cxploiting the equilibration property. A key role is played by the
finite dimensional subspaces B}\?" In particular. one may control the accuracy of the approximation of
the infinite dimensional problem. and cven make use of an extrapolation procedure to obtain enhanced
approximations to the energy of the true solution. Summarizing, we have

THEOREM 5.9. Suppose that the boundary fluxes have been chosen so that the equilibration condition
is satisfied. For each clement K € P. let d:,(f) € B};’). gq=p+1l.p+2,... be defined by

By (" v) = Fx(v) — B (ux.v) +f gxvds Vv eBY. (5.165)
aOK
Then
d 7 (k) 2
3" ek = ol as g — oo (5.166)
k=p+1

and the error in the finite element approximation is bounded by

Melll> < > lexlll- (5.167)

KeP

PROOEF The limit (5.166) follows from the convergence estimates for the p-version finite element
method and Theorem 5.8. The bound (5.167) follows from Theorems 5.3. 54 and 5.6. O

5.7. Treatment of the local spaces B

5.7.1. Construction
l.et K be a reference element and define the space

B = {ve R(g): B(u.w) =0Vw € R(g - 1)} (5.168)

where ﬁ(q) is either (}(q) or f;(q) depending on whether K is a square or triangle. A basis for B is
casily constructed. Suppose that the basis functions for R(g) are ordered so that functions belonging 1o
the subspace R(g — 1) appear first. Let ¥, be the vector whose components are the basis functions. so
that

Y, =¥ ¥yl (5.169)
where W (respectively. ¥y, ) is formed using the basis functions from ﬁ(q — 1) (respectively, ﬁ(q)\ﬁ(q -
1)). This partitioning induces a block structure on the element stiffness matrix

[’1“‘ Anr (5.170)

A Aun

A basis for the space B@ is obtained by letting
W, = Wy - A AL W (5.171)
and taking the basis functions to be the components of ¥, It is readily verified that these functions

form a basis for the space B@. Figs. 9-11 show typical basis functions for the spaces B®. B® and BY
when K is the square reference element and the bilinear form corresponds to the Laplace operator. The
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(a) THREE MORE BY ROTATION.

Fig. 9. Typical basis functions in the space B>
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Fig. 10. Typical basis functions in the spuce B™.

matrix A, is singular unless the constant mode is factored out by prescribing a Dirichlet condition at
a single (arbitrary) point.
A basis for the spaces B{‘” can be found in the same manner.

5.7.2. Approximate subspaces
An obvious drawback in constructing the spaces B:;” is that the computation has to be repeated for
each clement. An alternative is to define approximate subspaces
BY = (boFg' 0 € BY} (5.172)

where Fy : K — K is the usual mapping of the reference element. The space B is then constructed
once and for all on the appropriate reference element and the basis functions “hard-wired’ into the finite
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(a) THREE MORE BY ROTATION. {b) ONE MORE BY ROTATION.
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Fig. 11. Typical basis functions in the space B,

element code. The bilinear form B(-.-) is taken to be the operator for the class of problems under
consideration with frozen cocfficients. If the elements are not too distorted then one might expect that

as the partition is refined. the spaces Bm produce results approaching thosc obtained if the true spaces

Bg” were used. This statement will be quantified after the next section.

5.7.3. Framework for analysis of approximate subspaces

The analysis of the effect of choosing a subspace with which to approximate the full space may be
dealt with under a general framework. The problem on the full space is of the form: find ¢ € Y such
that

B(d.v)=D@) YveY (5.173)
where the data D(-) satisfics the equilibration condition
Dw)=0 YveXcCY. (5.174)

Typically. we choose an approximate subspace Y’ to be the space Y with clements of the subspace X
excluded. Therefore. let [1:Y — X be bounded. linear and surjective. The approximate subspace has
the form

Y={v-lv:veY} (5.175)
The approximation to the problem on the full space is to find: ¢’ € ¥’
B(¢'.v)=D@) VveY'. (5.176)

The issue is to assess the accuracy of the approximation |||&]]| = |||é’||]. The accuracy is related to the
angle between the subspaces Y’ and X expressed through a Strengthened Cauchv-Schwarz Inequality.

THEOREM 5.10. Suppose that the Strengthened Cauchy-Schwarz Inequality holds
[B.w)| < mlllvillliwlll VeeY.welX (5.177)

where 0 < u < 1. Then
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Ne'lll < [l < 11|11 (5.178)

\/_

PROOE. Let v € Y be arbitrary. Then

lllo = 1ol = vl = [l + 2B, Lo - v)
<Ml = 11|l + 2pl||To]|[]]je ~ ||
<l + plllv = [l (5.179)

where the inequality 2pab < a® + u?b? has been used. Hence.

[[lv = T[] <

1
—=== lIIvlll- (5.180)
V1i-p

Note that

B(d.v)
il = sup E122! (5181
vey lIolll
and so by the equilibration condition and the definitions
|B(¢.v — IIv)|
¢||| = sup ——————
S ]
|B(¢".v - IIv)|
=sup ———————
veY il
: v — L]l
< i sup 1ol
ey NI
1
< ——=—llI4'lll (5.182)
VAT

Finally, since Y' C Y
HI@'lIIF = D(&") = B(d.¢") < |l ]I 191l (5.183)

and the result is proved. O

The subspaces Bj?] defined earlier are constructed so that the Strengthened Cauchy-Schwarz Inequality
is valid with the constant g = 0. Theorem 5.10 confirms the earlier finding that the solution on the
subspace coincides with the solution on the full space. The effects of using the approximate subspaces
Eg” can be analyzed by estimating the size of the constant u. Intuitively. if the elements are not too
distorted then g will be small meaning that the subspaces provided a satisfactory approximation.

5.7.4. Alternative choices of subspace
Oden et al. [47] proposc an alternative set of subspaces for dealing with the error residual problem
which have been popular. The subspaces are based on a “p-interpolation” operator 11, : Q(p + 1) — Q(p)
defined by
1w =y +ug +uy (5.184)

where «; is the standard bilinear interpolant to i at the vertices of the square reference element K. To

describe the functions ug and ;. we first introduce the space lP,(J”)(!) of polynomials of degree p on the
interval / that vanish at the endpoints. The restriction of the function ug to each edge ¥ of the reference
element K belongs to the space ]P{n”(?) and satisfies
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_ _ Polbdhe () e~
ﬁ(uE (u—u))v'ds=0 YveP(y) (5.185)

where the prime denotes lhe derivative with respect (o arc length. The interior function w; € Q(p)
vanishes on the boundary OK and satisfies

/EV(M, —(u=uy, —ug)) - Vodr=0 Yo e Q(p)n H(K). (5.186)

The operator [1; is used to construct an approximate subspace for solving the error residual problems

M — 2 Ty =

MPV ={ve Qp+1): ITv =0}. (5.187)
We shall analyze the effectiveness of this choice using the framework of the previous section. First. we
find a simpler description for the spacc.

The interior function 1; vanishes along each of the boundaries ¥ and so Eq. (5.185) may be rewritten

as

L(Hﬁu)’ v'ds = ﬁu'u'd.\' Yv e IP'(,"’](?). (5.188)

1y Y
Similarly. Eq. (5.186) is cquivalent to

/K’V(”’:”) -Vody = /EVH -Vvdr Vv e Qp)nH(K). (5.189)
The operator /1 has a far simpler interpretation:

LEMMA 5.11. Let I, : (}{p +1)— é{p) denote the interpolation operator that interpolates at the Gauss—
Lobatto points. That is.

(Iu)(&. &) = u(dj &) Vj.k=0...., P (5.190)
where {j are the zeros of the polynomial (1 — s~ )L (s) with L., the pth degree I.egendre polynomial. Then
1w = Hyu (5.191)

PROOE Let 8 € Q(p) be the difference
&= Ilu- Iu. (5.192)

Each of the operators /1; and II, interpolate at the vertices of K and hence & also vanishes at the
vertices. Let ¥ be any edge of K. Then by (5.188)

[‘8' v'ds = ﬁ(”;,n = Ilu) v'ds ];(u — [pu)'v' ds (5.193)
Y Y T
but on the edge u — Ipu x (1 - .s‘z]L;,(S) and since L, satisfies Legendre's ditferential equation
ﬁ&'u’(x}ds x /AL,,(.V)U'(s)d.\' =0 (5.194)
Y Y

using the orthogonality property of chcndn.. polynomials. Hence, § vanishes on the boundary 9K.
Finally. by (5.189). for any v € o) N H'(K)

/AVS -Vodx = [}_V{H;,u ~ lpu)-Vody = ﬁV(u — Ipu) - Vv dx. (5.195)
K K K
However. u — [lu o< (1 — .t'z)L;,(.\')(l - _vz)L;,(y) and so similarly to above onc finds
ﬁva-vazo Yu e Q(p) N HA(K). (5.196)
K

Hence. since & vanishes on the boundary it follows that 8 is identically zero. O
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Table 2

Values of strengthened Cauchy-Schwarz constant u for Oden et al. basis function

Degree

1

d ® Vi
2 0.6741 1.359
3 ().8898 2.191
4 0.9229 2.595
5 0.9387 2,901
6 0.9539 3333
7 0.9559 3.406
8 0.9636 3.740
9 0.9662 3.878
10 0.9705 4.149

An immediate consequence is that the space MY may be rewritten more simply in the form

M) = span { x;()xp ) xp (DX, ) xp(xpy) j=1....p=1} (5.197)

where x;(s) = (1 - .\'3)1.;.(.\'). The constant g in the strengthened Cauchy-Schwarz Inequality may be
computed by solving an eigenvalue problem. Table 2 contains the values obtained for various polynomial
degrees for the Laplace operator. One sees that the value of the all important quoticnt 1//1 — u? grows

relatively slowly. The spaces Mfé“” used on an actual element are obtained through the usual mapping
principle and may result in much larger Cauchy-Schwarz constants if the elements are distorted or if
the operator is not the Laplacian.

6. Applications
6.1. Stokes and Oseen’s equations

There are a number of specific issues that must be resolved when developing a posteriori error esti-
mates for the Stokes problem. Firstly. the Stokes problem involves an incompressibility constraint and
one must decide how Lo take proper account of the condition. In addition. the Oseen approximation
of the incompressible Navier-Stokes equations contains a non-self-adjoint operator in the momentum
equations. This means that there is no natural energy norm in which to measure the error.

Explicit a posteriori error estimates for the Stokes’ problem have been derived by Baranger and
El Amri [24] and Verfurth [56]. Generalizations of the classical element residual method have been
developed by Bank and Welfert [21] and Verfurth [56]. The estimator is obtained by solving a local
Stokes problem on each element. yielding a pair of functions whose norm is then used as an estimate
of the true discretization error. One might have expected to be faced with an element residual problem
requiring the solution of a local Stokes problem. However. there are drawbacks with this approach. For
instance, it has been shown in earlier sections that the local residual problem has to be approximated
using an appropriatc subspace. However, when dealing with the Stokes problem, the subspaces used to
approximate the pressure and velocity components should also be constructed so that the inf-sup stability
condition is satisfied. Consequently. one faces additional. rather awkward difficulties in designing stable
schemes with which to approximate the local problem.

The present discussion follows [7]. The error estimator is based on solving local residual problems.
Firstly, the basic question of the norm in which the error will be estimated is considered. One outcome
is that, perhaps surprisingly. it is unnecessary to solve a local Stokes problem in order to obtain an
a posteriori error estimate. The significance of this conclusion in the design of a general a posteriori
error estimation procedure for incompressible fluid flow is vital. In particular, the approximation of
the local residual problems can. to a large extent. be developed independently of the type of element
used to approximate the original fluid flow problem since there is no inf-sup condition to be satisfied.
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The analysis is valid for essentially any conforming discretization scheme for the Stokes problem. The
approach reveals an appropriate equilibration principle for the determination of the boundary data and
the error estimator provides an upper bound on the true error in an cnergy like norm.

6.1.1. Model problem
Introduce function spaces V and W as follows:

V = H)(Q) x H})(£2) and W = Ly(0). (6.1)
Let B:V xV = Rand b: V x W — R be the bilinear forms

b(v.q) = —/ q dive dx (6.2)
and !

B(v.w)= /“ {vVv-Vw+w (U -V)v} dx (6.3)

where v > 0 is the viscosity parameter and U is a smooth solenoidal vector field on {2 (i.e. divU = 0).
For given data f € L,(£2) x L,(£2) we seek the solution of the problem:
Find (u.p) € V x W such that forall (v.q) e V x W

B(u.v)+b(v.p)+b(u.q) = F(v) (6.4)
where F: V' — IR is the linear functional
F(v) = /f ‘v dr. (6.5)
1

Eq. (6.4) may be written equivalently as a pair of equations by choosing v = O and ¢ =0 in turn.
For ease of cxposition we consider only homogeneous Dirichlet boundary conditions. More general
conditions may be dealt with in an analogous fashion. In order to describe sufficicnt conditions for the
existence of a solution to (6.4) we introduce inner products a(-,-) and c(-,-) on V and W, respectively:

a(v.w) = / Vv -Vwdy (6.6)
Ja
and
c(p.q) = [: p g dr. (6.7)

These inner products induce norms on V' and W denoted by ||-||, and ||||.. respectively. The following
facts [36]) concerning B and b will be useful:
o there exists a positive constant Cy such that
1B.w)| < Callvll, Iwl, Yo.weV (6.8)

lbw.g) < v ' oll, llgll. Y(@.q) eV xW (6.9)

¢ b satisfies an inf-sup condition: 1.e. there exists a positive constant ay, such that

b(v.
sup lbw.q)l Zaoplgll, VgeWw (6.10)
revy “L’Ha
e B is coercive: i.e. owing 10 the vector field U being solenoidal there holds
Bv.v)= v} YoeV. (6.11)

Under these conditions it follows |36] that there is a unique solution to (6.4).

6.1.2. Normon 'V x W
The usual choice of norm on the product space V x W is

. 2 12
(.q) = {llol + a2} " 6.12)
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it will be convenient to establish an equivalent norm for the space V x W. Let (e.E)e V x W be

arbitrary. The pair (¢, ¢) € V x W is delined to be the Ritz projection of the residuals. That is.
a(¢p.v) +ec(W,q) = Ble.v)+ b(v,E) + b(e.q) (6.13)

for all (v,q) € V x W. The existence and uniqueness of the pair (¢. ) follows from the continuity of
the forms B and b. Therefore. we may define

e E)Ill = {ll 112 + g2}/ (6.14)

The following result confirms that this quantity is a norm on V' x W equivalent to the usual norm:

THEOREM 6.1. Under the foregoing assumptions and definitions, there exist positive constants ky and
ky such that

killle, EXI < llella + EN < kalliCe . DI (6.15)
where ky depends only on Cg and v: and, ky depends only on Cy and ay,

PROOEF. Right-hand inequality. Making use of (6.10). (6.13). (6.8) and the Cauchy-Schwarz Inequality
yields:

]
IEN, < ™ {llbll, + Carllell } - (6.16)
Using (6.11). (6.13) (with ¢ = —E and v = ¢) and the Cauchy-Schwarz Inequality:
lell; < llll, llell, + vl IEI,- (6.17)

From (6.16) and (6.17) one finds

ez < = (nbll, + <& )2+i||¢|| vl 6.18
2 a ™= 2 a ay c y, o0 c* ( . )

Combining (6.18) with (6.16): once again using (6.18) gives the result with k5 a constant depending on
ay, and Cp.

Left-hand inequality. Using (6.13). (6.8). (6.9) and the Cauchy-Schwarz Inequality gives

ll#ll, < Callell, + v |E], - (6.19)
Using (6.13) and (6.9) gives
)2 = be.w) < v |lell, llwll, - (6.20)

Combining (6.19) and (6.20) yields the estimate claimed where k; depends only on Cp and v. O

6.1.3. Discretization
Let P be a locally quasi-uniform partition of the domain 2. Suppose that each element K is the image
of an appropriate reference element K under the usual type of transformation Fg. The basis functions
on the element K are of the form
Xx =Span{voF7': 0 € P(px)}’ (6.21)
and
Mg = Span{Go F¢': G € P'(py)} (6.22)

where px € N and py € Z* and P, P’ are appropriate polynomial spaces on the reference clement.
The global finite element subspaces X and M are constructed in the usual manner so that the inclusion
X xM c V x W holds. The finite element approximation to (6.4) is then:

Find (uy.py) € X x M such that for all (vy.q) € X xM

B(uy.vy)+b(vy,px) +bluy.q)=F(vy). (6.23)

A few remarks concerning the construction of the linite element subspace X x M are in order. It will
have been noted that there was no requircment for a discrete inf-sup condition to hold. The stability
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of the discretization scheme does not affect the a posteriori error analysis since only stability of the
underlying continuous problem is used. Of course. the indiscriminate use of unstable discretizations is
not recommended.

6.1.4. A posteriori error analysis

The argument closely parallels the discussion of the element residual method with equilibration from
Section 5 with which we assume the reader is familiar. Throughout we shall use the same notations and
conventions.

Mesh dependent forms and spaces
The local velocity space on each subdomain K € P is

Vi ={ve H'(K)x H'(K) :v = 0 on 32N 3K} (6.24)
and the local pressure space is
Wi = Ly(K). (6.25)
The bilincar forms Bg : Vg x Vg — R and by : Vg x Wi — IR are defined as follows:
bg(v.q) = —/ q divv dx (6.26)
K
and
B,dv.w):/ {¢#Vv:Vw+w- (U -V)v} dx (6.27)
K
Similarly. Fx : Vx — R is defined by
Few)= [ f v d (6.28)
JK
Hence. forv.we V andg e W
b(v.q) =Y bk(vk.qx) (6.29)
KeP
Bv.w)= Y Bk(vk,wk) (6.30)
KeP
and
Fv)= Y Fx(vk). (6.31)
KeP

The broken space V (P) x W(P) is defined by
V(P)x W(P)={(v.q) € [Lg(l’))]3 ((v.q)lk € Vk x Wy VK e P} (6.32)

Examining the previous notations reveals that W(P) = W. As before, we consider the space of contin-
uous linear functionals 7 on V (P) x W(P) that vanish on the subspace V x W. Let H(div, {2) be the
space

H(div. 02) = {A € L,(2)*? : divA € L,(2)?} (6.33)
equipped with norm
(ANl iqai. = {IANL, 0y + ldiv A7 o)} (6.34)

The following result generalizes Theorem 5.1:

THEOREM 6.2. A continuous linear functional 7 on the space V (P) x W(P) vanishes on the subspace
V x W if and only if there exists A € H(div. 2) such that



78 M. Ainsworth, J.T. Oden/ Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88

T{(v,q)] = ng -A-vgds (6.35)

where ng denotes the unit outward normal on the boundary of K.

PROOF. Essentially identical with the proof of Theorem 5.1. O

Thanks to this result we may refer to the functional 7 as belonging to the space H(div, £2).
Error analysis

Let (4 x.px) € X x M be the finite element approximation to (¢, p) € ¥V x W. In view of the inclusion
X xM CV x W, the discretization error (e, E)

e =u—uy: E=p-py (6.36)
belongs to the space V x W. Define a pair (¢.¢) € V x W such that:

a(p,v)+c(w.q) = Ble.v)+b(v.E) + ble,q) (6.37)
for all (v.q) € V x W. Theorem 6.1 reveals that the norm of the discretization error is given by

llice, EMIP = Nepll; + w2 (638)

The problem is therefore to estimate |||, and |||, numerically. As before. we reduce the single global
problem (6.37) into a sequence of independent problems posed locally over cach element.

Inter-element boundary flux
The stress tensor p(v, g) is defined by

30,‘
p,-,-(v.q) = !!5_—;; - qS,-}- (639)

where §;; is the Kronecker symbol. The interelement fluxes played a vital role in Section 5. The normal
flux on the boundary of clement K is given by (nk)ijp;. Let ox be as defined in (5.24) and g, 1 y — R>
be smooth functions on the edges vy on the interior of the domain. The approximation to the flux on the
boundary of element K is given by g, where

gx = okg, onyCIK. (6.40)

As before. the notation ] will be used to denote differences in quantities across element boundaries as
before. The following identity valid for v € V (P) is analogous to Eq. (5.31):

me(gx vds =Y [ g, [v] ds. (6.41)

KeP yeop Y

Localization
The next step is to decompose the global problem (6.37) into local problems posed over the elements.

Firstly, the unknowns (u.p) in (6.37) are replaced by appealing 1o (6.4):

a(¢p.w)y+c(d.q)=B(e.w)+b(w,E)+ble.q)
= 5" {Fi(w) — Bx(ux.w) = bx(w,px) = bx(ux.q)}. (6.42)
Kep
The global space V' x W is decomposed into functions that are smooth on each of the elements but not
necessarily continuous between elements. The functional given by (6.42) is then extended to the broken
space V (P) x W(P). For any (w.q) € V (P) x W(P) define the linear functional R : V (P) x W(P) —
R by
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Ri(w.q)l =) {FK("") = Bi(uyx.w) = bx(w.px) — bg(ux.q) *’% 8k WK ds}
= 9K
KeP

-3 [gywlas (6.43)

yeapr©?Y
so that whenever (w,g) € V x W

Rl(w.q)] =ald.w)+c(¥.q). (6.44)

LEMMA 6.3. Under the above notations and conventions. there exists w. € H(div, (1) such that for all
(w,q) € V(P) x W(P)

p vl = Y [g, - ds. (6.45)

YEIP 4

PROOE. The right-hand side of Eq. (6.45) vanishes on V x W. The result then follows immediately
from Theorem 62. O

Applying Lemma 6.3 yields:

R[(w.q)) = Z {FK(W) — Bi(ux.w)—bg(w,px) = bg(ux,q)+ }{KSK WK db‘} - p. [(w, )]

KeP
(6.46)
for all (w,q) € V (P) x W(P).
Variational analysis
Introduce the Lagrangian functional £ : V (P) x W(P) x H(div, {2) — R given by
1 .
L[(w,q).u] = 5 {a(w.w) +c(g, )} = R[(w.q)] = p [(w,9)] (6:47)
50 that
1 5
sup  L{wyq)pl={3 {a(w.w) +c(q,q)} —R[(w.q)] il (w,q) €V xW (6.48)
u€H(div. 1) +00 otherwise
and analogously to (5.39).
1 1 ;
5 {a(w.w)+clg.q)} = R[(w.q)] > =5 lll(e. E)||? (6.49)

for any (w,q) € V x W. Therefore.

sup  L{(w.q).

1 2 .
~sllie. BIP=__inf
2 | | (wq)eV (PYxW(P) yeH(div. 1)

= suf inf L{(w.q) p
:.:Efl{tl[i:r.ﬂ]{“’-if)e V(P)xW(P) [(w.q ]
2 inf L(w.q). .
(wq)EV (P)xW(P) [( {) ® l

= Z inf {1 a(wg.wy) — Fx(w) + Bg(ux,w) +bg(w,pyx)
Kxep VrEV« :

1 . )
= f Bk "Wk ds — 3 "d""“x“f-_x} (6.50)

K
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where the infimum over the space W (P) has been computed explicitly. As usual, the order of the inf~sup
may be changed since a saddle point is obtained when the multiplier p is the true interelement flux.

This choice is a valid multiplier as can be seen by applying Theorem 6.2. Summarising. we have shown:

THEOREM 6.4. Let Ji : Vg — R be the quudratic functional

Jx(wg) = %u(wg, wy) = Fx(w)+ By, w)+bg(w.px) = fu{ gx Wk Us. (6.51)
Then,
||(e, E)II® < z {—2 121; Je(wg) + ]|divuxnix} : (6.52)
KeP SRS

6.1.5. Analysis of local error residual problems
The analysis has led to problems on each subdomain of the form

inf Jg(wg). (6.53)
wxEVy

Suppose for a moment that a minimum exists. then the minimizing clement is characterized by finding
¢, € Vi such that

a(@g.v) = Fx(v) — Bg(ux.v) — bg(v.py) +f g vds Vve Vg (6.54)
aK

This problem decouples into a pair of Poisson type problem with Neumann data. The result of the
foregoing analysis has been that one can obtain a local a posteriori error estimator for the Stokes
problem by solving auxiliary Neumann type problems for the residual in the momentum equations. The
contribution from the incompressibility constraint may be calculated explicitly. This has a considerable
impact in the computation of the error estimator since one need not solve a local Stokes type problem
as, for example. is the case with [21] and [56]. The approach suggested above could be used in the context
of those papers. yielding significantly simpler local problems.

The necessary and sufficient conditions for the existence of a minimum are that the data satisfy the
following compatibility or equilibration condition:

0=Fg(0) - Bg(uyx.0)—Dbx(0,px) +f gx-0ds (6.55)
K
for all 8 € Kerla. V| where
Kerfa. V] ={0 € Vg :ax(w,0) =0V¥we Vi}. (6.56)

If the subdomain K lies on the boundary @42 then the local problem (6.54) will be subject to a homo-
geneous Dirichlet condition on a portion of their boundaries and thus will be automatically well posed.
However. elements away from the boundary are subject to pure Neumann conditions and the null space
will consist of the rigid body motions

Ker[a. V] = Span {8, 6>} (6.57)
where
0, = [{‘J] 0 = m (6.58)

The equilibration theory and procedures described in Section 5 can be applied to each of the equations in
the system (6.55) in turn, giving boundary data satisfying condition (6.55). It is worth noting that there
is only an equilibration requirement for the momentum equations and not for the incompressibility
constraint.
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In summary. the numerical procedure is to first calculate equilibrated boundary data that ensures the
local problems (6.54) are well posed. These problems are then solved numerically using the approximate
subspaces discussed in Section 5 giving an approximate solution ¢ 4. The process then yiclds an a
posteriori error estimate ng on the subdomain K

k= {ll @kl x + diva |} }'72. (6.59)

A global error estimate may be obtained by summing the local estimates. Theorem 6.4 guarantees that
the estimate bounds the true crror [[|(e. E)||| from above. provided that the local approximate subspace
provides sufficient resolution.

6.1.6. Summary and conclusions

An important point of the analysis is that one does not have 1o solve a local Stokes problem, it is
sufficient 1o solve a pair of independent local Poisson problems. This means that onc is solving a system
of two equations (since the residual corresponding to the incompressibility condition can be treated
directly) rather than the system of three coupled equations needed for other techniques. Importantly.
when one comes 1o construct the basis functions used in approximating the local problems. there is no
issue of stability (inf-sup) conditions. These conditions can be quite problematic if one is trying to solve
a local Stokes problem using an appropriate space. requiring a carcful stability analysis [21). This issue
does not arise with the approach presented here. These features make the computation of the estimators
less expensive. and more easily applicable to general finite element schemes for Stokes™ type problems.

Although the analysis suggests that the boundary data for the local residual type problems should be
chosen to satisfy an equilibration condition. the above comments are equally valid whether one is equi-
librating the boundary fluxes or not. Of course. one loses the upper bound property if the equilibration
condition is not satisfied. but this may not be of primary importance in some applications.

One can question the usefulness of an upper bound in the unorthodox energy norm |[||-]|| albeit
equivalent with the H' type norms. The analysis could be used to obtain an estimator in /{' norm. The
energy of the actual solution can be estimated in the same [||-||], being computed at the same time as the
error estimator by modifying the right-hand sides used in the error estimation process (after omitting the
terms Bg(u y.v) and b(v. py) in Eq. (6.54)). The process yields a sufficiently good estimate for practical
purposes and may be used to scale the error cstimator giving an estimate of relative error. It is therefore
possible to perform rigorous and quantitative error control for Stokes' and Oseen type problems.

Summarizing. it has been shown that the cquilibration principle carries over from the scalar case along
with the basic steps in the analysis. In addition. the procedure for the treatment of side conditions. such
as the incompressibility constraints, has been outlined.

6.2. Incompressible Navier-Stokes equations

Following Oden et al. [49] the analysis for the Stokes and Osecn problem will be extended to the
incompressible Navier-Stokes equations with small data. Let D : V x V x V — R be the trilinear form

D(u.v.w) =/ u-Vv - wdy. (6.60)
i

The form D is continuous in the sense that there exists a constant Cy such that
1)(“ D, W) s (‘D |“ |”|un |v|”l”n IWIul(“) . (661)

We shall assume that Cp is the best possible constant such that (6.61) holds. The incompressible Navier—
Stokes problem is to
Find (u.p) € V x W such that for all (v.q)e V x W

a(u.v)+b(v.p)+ D(u.u,v)+blu,.q)=F(v) (6.62)

where F : V — R is the linear functional

Fv) = fﬂf v dv. (6.63)
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The problem (6.63) is known [36] to possess a uniguc solution whenever the data is sufficiently small.
In particular. if
2

v i
for some fixed number ¢ € [0.1) then there is a unique solution u € V satisfying
v
<0 :
LIRS Ch (6.65)

The finite clement approximation to (6.62) is then:
Find (u# x.py) € X x M such that for all (vy.q) €X x M

alux v)+bv.px)+D(uy.uy v)+bluy, q)=F(v). (6.66)

The finite clement subspaces X and M are constructed as described previously. It will be assumed that
the finite element approximation u y converges to the velocity # as the partition is refined.

6.2.1. A posteriori error analysis

The basic idea behind the extension of the analysis for the Stokes and Oseen type problem to the
Navier-Stokes equations was suggested by Wu [S8]. Let (e, E)) be the error in the finite element approx-
imation and define a pair (¢, ¢) € V x W to be the Ritz projection of the modified residuals

a(@p.v)+c(p.q) =ale.v)+bw.E)+ble.q)+8(u.uyx.v) (6.67)
for all (v,q) € V x W_where
8u uy.v)y=D(u.u.v) - D(uy uyx.v). (6.68)

The data on the right-hand side of (6.67) defines a continuous linear functional and so the pair (¢. ¢)
exists and is unique so that we may dcfine

Nite. E)I| = {12 + lial2}72. (6.69)

The idea cchoes the basic step (6.13) used before. However. there is a signilicant difference: before the
pair (e.E) was arbitrary but now it is essential that (e, E) be the error in the finite element approxi-
mation. Furthermore. owing to the presence of the non-linear term 8(-,-.-) one cannot directly apply
Theorem 6.1. However. suppose for a moment that

killlte. ENII® < llell; + 1EN; < klice, ENIP (6.70)
for non-negative quantities k, and k,. Let ¢ € Vi be such that
a(@ . v) = Fx(v) —ag(ux.v) — bg(w.px) = Dx(uy.uy.v)+ ﬁxgx -vds (6.711)

for all v € Vi where the boundary data has been chosen so that the equilibration condition

0=Fg(8)—Bg(uy.0) —bg(8.py) — Dg(ux,uy. 0}+}( gy -0ds (6.72)
aK

is satisfied for all 8 € Ker[a. V). The local a posteriori error estimate on element K is taken to be

k= {lbkllag +divuclf ¢ }'72. (6.73)
An argument identical to the linear case reveals that
e, E)IP< S ng =2 (6.74)
KeP

Consequently. thanks to the equivalence (6.70). n provides an error estimator for the incompressible
Navier-Stokes problem with small data. It remains to prove the equivalence (6.70).
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PROOE First. we obtain bounds for the form 8(-.-,-). Suppose v € V then

S(u.uy,v)=D(u.u.v)—D(uyx.uy,v)
=D(u.e.v)+D(e,uy.v)
< Cpflu Iu'm) e Iulm) l”'n'(u) + el |”X|H'(u) |U|H‘[u)}
<

2
Cp{2|u |u!{n) |e |n'(m |”|H1(m +e |u'un |v|n'(n)}

<Cp {29 le sy [0l + |"|ul(m |U|Hl(u)}

_ {29 Loy, |,,.[,,,} lell, o],

83

(6.75)

where (6.61) and (6.65) have been used. If v = ¢ then a sharper bound may be obtained by first noting

[36. Eq. (6). p. 285]
D(u,e,e)=10

and then following similar steps to before giving

)
S(u,uy.e) < {9 — l"fﬁ!(m} llell2-

Left-hand inequaliry. Using (6.9). (6.67) and (6.75) gives

lell. < v IEN + {3 L2 Ielmun} llell, -
Using (6.9) and (6.67) gives

Wl < v lell,
and hence

ky {1+ OGel o)} e M < llell} + IEN:
where ky depends on Cp and v.

Right-hand inequality. Using (6.10). (6.67) and (6.75) gives

|b(v. g)l
a | E| < sup
veV II lla

AT n

C
<lloll, +llell, {3 + *:—) ielwu;)} .

la(@.v) —ale.v) — 8(u.uyx.v)|

Equally well. using (6.9). (6.67) and (6.77) gives

lel>=a(d.e) —ble.E) — 6(u.uy.e)
=a(d,e)—c(y,E)—8(u.uy.e)
¢
<ttt + 1ol 1T+ {0 + 2 el } el

Since |e|z1() — 0. we may choose € > 0 sufficiently small that

e Cp
0+ ? + — 'f.’ IH'(“) = 9 < 1.

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)

(6.83)
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Hence. from (6.82) and (6.81) we obtain

a1 1 C b C
el < z 101t + et {1+ = (34 52 telm )} + el {0+ L el |

Nl o'l + 5oz {0t s o= (34 L kel }2. (6.84)
Hence. for |"lH'lﬂ) sufficiently small
llell} < Clas.v. Cp.leligy - (B3 + w2} (6.85)
and using (6.77) gives
W1 < Clan.v. Cp. lelay - NI + w2} (6.86)

and the result follows. O
6.3. Variational inequalities

A class of variational inequalities describing the flow of an ideal fluid through an unsaturated porous
medium [41] will be considered. The strong form or linear complementarity problem governing this
situation is to find u such that on the domain {2 there holds

“Auzfi wuzy, (Au+flu-y¢)=0 (6.87)

subject to Dirichlet conditions on the boundary 9f2. Evidently. the chiel feature is the presence of
the inequality conditions. Previously. error estimators have been obtained by solving local problems
analogous to the original global problem. The type of local problem for the error estimator that might
be derived from the system (6.87) is unclear. Naturally. one may expect to obtain the same type of
complementarity condition as (6.87) on the interior of the elements but appropriate boundary conditions
to impose on the boundaries of the elements is not obvious. However. by following the basic idea used
in Section 5 the correct formulations of the local problems will emerge. The approach is based on [8].

6.3.1. Model problem

Let 22 ¢ IR? be an open bounded domain with smooth boundary d{2. For sufficiently smooth data f.
¢ and uy consider the variational inequality:

Find # € K such that

Buuv-u)z2Flv-u) Vvek (6.88)
where K is the convex set

K={veH'({2):v> ¢ on {2and v = uy on 92} (6.89)
and B: X x X — R and F : X — IR are the usual bilinear and lincar forms

B(u.v) = , Viu - Vo dx: F(v) = , fudx. (6.90)

Let P be a regular partition of £2. X be a finite element space on the partition and let Ky = KN X. The
discretised version of (6.88) is:
Find uy € Ky such that
Bluy.vy —ux) 2 Fluy —uy) Yuvy € Ky. (6.91)

It is known [41] that if ¢. f and uy are sufficiently smooth and ¢ < %y on 812 then there exists a unique
solution of both the continuous and discrete problems (6.88) and (6.91).

6.3.2. A posteriori error analysis
Let W denote the convex set
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W= {w:w=v—uy. lorsome v e K} (6.92)
or equally well
W= {weH () w+uy > ¢ in2and w+uy =0 on 92} (6.93)
From the variational inequality (6.88) it follows that the error e is characterised as the solution of the
problem:
Find ¢ € W such that
Bleew—-e)2F(w—-e)—Bluy.w—-¢e) YweWw. (6.94)

The existence of a unique solution of (6.94) follows immediately from the existence and uniqueness of
the solution « of the original problem (6.88). The relation (6.94) is the analogue of the residual equation
from which error estimators were obtained for linear problems. An alternative form equivalent to (6.94)
is:

Find e € W such that

Je) s J(w) YweW (6.95)
where
J(w) = % B(w.w) — F(w)+ B(uy.w). (6.96)

Now. since Ky C K. there follows from (6.88)

lllel|I’ = Be.e)
= B(u.e) — B(uy.e)
<F(e) - Blux.e)

1 2
=—J(e) + 3 llellI” (6.97)
and hence from (6.95) we obtain

inf Jow) = J(e) <~ lell” (6.98)

6.3.3. Localization
The notations and conventions used in Section 5 will be used. In addition, the space W(P) is defined

by
W(P)={we H'(P):w+uy > ¢ in 2 and w+uy =0 on 32} (6.99)

The estimate (6.98) is analogous to the basic result (5.23) used in Section 5 to derive the a posteriori
error estimates. The steps leading from (5.23) to Theorem 5.3 may be repcated giving:

THEOREM 6.5. Let I : Wy — R be the quadratic functional

Jp(w) = %BK{W.W) — Fg(w) + Bg(uy.w) — f gxwds. (6.100)
aK
Then

1P € =2 i (w). .
el Mt;;_g_ml\zg.n (w) (6.101)

As anticipated. Theorem 6.5 shows that in order 1o obtain a bound on the discretisation error one need
only construct clements of the space W(P). The set W(P) does nol impose any interclement restrictions
on the choice. Consequently. the statement (6.101) reduces to a series of local problems of the form:
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Find ¢x € Wy such that

J(dbg) < Jg(wg) Ywg € Wy (6.102)
where. with a slight abuse of notation, we deline
Wk = {wx € H'(K): wx +ux 2 ¢ on K and wg +uy =0 on 9K N0} (6.103)

The main advantage associated with dealing with local problems is that the computational cost is neg-
ligible in comparison with the expense entailed in obtaining wy. This contrasts with the related ideas
presented in [37) where it is necessary to solve a problem of comparable complexity to (6.91) to obtain
an a posteriori error estimate.

6.3.4. Analysis of local problems
Consider the local problem (6.102) on an element K in the interior of the domain (2. The strong form
of the problem consists of a lincar complementarity condition on the interior of the element

-Ad 2 f+Auy: 2y —uy: A +f+Auy)(d - +uy)=0 (6.104)
supplemented with a linear complementarity condition on the boundary 0K

() ) ) My

9 S gx =22, g3y _uy O o o~ 2N (8 — ) =0 onIK.

dn n an an (6.105)

Therefore. we conclude that the appropriate local error residual problem to be solved for the error
consists of the weak form of the problem specified by conditions (6.104) and (6.105).

The local problem (6.102) is automatically well posed if the element K lies on the boundary of the
domain 2. However, if the element lies on the interior of the domain. then it is subject the linear
complementarity conditions (6.105) on the whole of the boundary @K and it may be that the problem
possesses no solution. A routine application of arguments found in [37] shows that the local problem
has a unique solution if and only if the condition

—Fx(1) + B (uy. 1) -){ grds >0 (6.106)
oK

is satistied. If the incquality is not strict then the solution is unique up to the addition of a positive
constant.

The condition (6.106) plays the role of the cquilibration condition in Section 5 and provides a criterion
for selecting the boundary data gg. The discussion in Section 5.4 may be extended to the case of an
inequality equilibration condition and used to deduce that it is indeed possible to construct boundary
data so that condition (6.106) is satisfied.

The approximate solution of the local variational problems (6.102) is complicated by the unilateral
condition in the definition (6.103). In particular. one cannot easily use a p-version flinite element method
to approximate the local problem. An alternative is to subdivide the clement K into a small number of
subelements and compute a local A-version finite element approximation of the local problem. Numerical
examples based on this method will be found in (8).

Acknowledgement

The support of a portion of the work of M.A. by a TICAM Research Fellowship and of J.T.O. by a
contract from the Office of Naval Research is gratefully acknowledged.

References

[1] R.A. Adams. Sobolev Spaces, Pure and Applied Mathematics Series, Vol. 65 (Academic Press, 1978).

[2] M. Ainsworth. The performance of Bank-Weiser's crror estimator for quadrilateral finite elements, Numer. Methods PDE 10
(1994) 609-623.

(3] M. Ainsworth, The influence and sclection of subspaces for a posteriori error estimators. Numer. Math. (to appear).



M. Ainsworth, J.T. Oden/ Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88 87

[4] M. Ainsworth and A.W. Craig. A posteriori crror estimators in the finite clement method, Numer. Math. 60 (1991) 429-463.

(5] M. Ainsworth and J.T. Oden. A posteriori error estimators for second order clliptic systems Part 2. An optimal order process
for calculating self equilibrating fluxes. Comput. Math. Appl. 26 (1993) 75-87.

[6] M. Ainsworth and J.T. Oden. A unified approach 1o a posteriori error estimation based on element residual methods. Numer.
Math. 65 (1993) 23-50.

[7] M. Ainsworth and J.T. Oden. A posteriori error estimates for Stokes’ and Oscen’s equations. SIAM J. Numer. Anal. (1o
appear).

[8] M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities, Numer. Methods PDE
9 (1993) 23-33.

[9) J.P. Aubin and H.G. Burchard, Some aspects of the method of the hypercircle applied to elliptic variational problems, in:
B.Hubbard, ed.. Numerical Solution of Partial Differential Equations—II SYNSPADE (Academic Press, 1970).

[10] I. Babuska and A.D. Miller. A feedback finite element method with a posteriori error estimation Part 1, Comput. Methods
Appl. Mech. Engrg. 61 (1987) 1-40.

{11} 1. Babuska and W.C. Rheinboldt. Error estimates for adapiive finite clement computations. SIAM J. Numer. Anal. 18 (1978)
736-754.

[12] I. Babuska and W.C. Rheinboldt, A posteriori error analysis of finite clement solutions for one dimensional problems. SIAM
J. Numer. Anal. 18 (1981) 565-589.

{13] 1. Babuska and W.C. Rheinboldl. A posteriori error estimates for the linite element method. Int. J. Numer. Mcthods Engrg.
12 (1978) 1597-1615.

(14] 1. Babuska and W.C. Rheinboldt. Analysis of optimal finite element meshes in R', Math. Comput. 33 (1979) 435-463.

[15] I. Babuska. T. Strouboulis. C.S. Upadhyay and S.K. Gangaraj. A model study of the quality of a posteriori estimators for
linear elliptic problems error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech.
Engrg. 114 (1994) 307-378.

[16] 1. Babuska. T. Strouboulis. ('.S. Upadhyay. S.K. Gangaraj and K. Copps. Validation of a posteriori error cstimators by a
numerical approach. Int. J. Numer. Methods Engrg. 37 (1994) 1073-1123.

[17] 1. Babuska and M. Suri. The optimal convergence rate of the p version of the finite element method. SIAM J. Numer. Anal.
24 (1987) 750-776.

{18] 1. Babuska, B.A_Szabo and I.N. Katz. The p version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 512-545.

{19] 1. Babuska and D. Yu. Asymptotically exact a posteriori error estimator for biquadratic ¢lements. Technical Note Inst. Phys.
Sci. and Tech BN-1050. University of Maryland, 1986.

[20] 1. Babuska, O.C. Zienkiewicz. J. Gago and E.A. Oliveira. Accuracy Estimates and Adaptive Refinements in Finite Element
Computations (Wiley. 1986).

[21] R. Bank and B.D. Welfert. A posteriori error estimates for the Stokes problem. SEAM J. Numer. Anal. 28 (1991) 591-623.

[22] R.E. Bank, Analysis of a local a posteriori error estimate for elliptic cquations. in: 1. Babuska et al.. ed.. Accuracy Estimates
and Adaptive Refinements in Finite Element Computations (Wiley. New York. 1986) 119-128.

[23] R.E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations, Math. Comput. 44
(1985) 283-301.

[24] J. Baranger and H. ElAmri. Estimateurs a posteriori derreur pour le caleul adaptatil d'ecoulements quasi-Newtoniens,
RAIRO Anal. Numér. 25 (1991) 31-48.

[25] P.G. Ciarlet. The Finite Element Method for Elliptic Problems (North-Holland. 1978).

[26] P. Clément. Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 77-84.

[27) B. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method. in: Zienkiewicz and Holister. eds..
Stress Analysis (Wiley. London. 1965).

[28] L. Demkowicz. Ph. Devioo and L T. Oden. On an A-type mesh refinement strategy based on minimization of interpolation
errors. Comput. Methods Appl. Mech. Engrg. 53 (1985) 67-89.

29] L. Demkowicz. J.T. Oden and 'T. Strouboulis, Adaptive finite elements for flow problems with moving boundaries. Part 1:
Variational principles and a posteriori error estimates, Comput. Methods Appl. Mech. Engrg. 46 (1984) 217-251.

[30] L. Demkowicz. J.T. Oden and T. Strouboulis. An adaptive p-version finite element method for transient flow problems with
moving boundaries. in: R.H. Gallagher et al.. ed.. Finite Elements in Fluids V1 (John Wiley. 1985) 291-305.

[31] R. Duran and R. Rodrigucz. On the asymptotic exactness of Bank-Weiser's estimator. Numer. Math. 62 (1992) 297-304.

[32] K. Eriksson and C. Johnson, Error-estimates and automatic time step control for nonlinear parabolic problems. Part 1, SIAM
J. Numer. Anal. 24(1) (1987) 12-23.

(33] K. Eriksson and C. Johnson. Adaptive finite-element methads for parabolic problems. Part 1. A linear-model prablem. SIAM
1. Numer. Anal. 28(1) (1991) 43-77.

[34] K. Eriksson and C. Johnson. Adaptive finite-clement methods for parabolic problems. Part 2. Optimal error c¢stimates in
Lo L~and Lol SIAM J. Numer. Anal. 32(3)(1995).

[35) R.E. Ewing. A posteriori error estimation. Comput. Methods Appl. Mech. Engrg. 82(1-3) (1990) 59-72.

[36] V. Girault and P.A. Raviart. Finite Element Mcthods for Navier Stokes Equations, Springer Series in Computational
Mathematics. Vol. S (Springer-Verlag. 1986).

[37] 1. Hlavacek. J. Haslinger. J. Necas and J. Lovisek, Solution of Variational Inequalities in Mechanics, Applicd Mathematical
Sciences. Vol. 66 (Springer-Verlag, 1980).

[38] C. Johnson and P. Hansbo. Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech.
Engre. 101(1=3) (1992) 143-181.



88 M. Ainsworth, 1.T. Oden/ Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88

[39] D.W. Kelly. The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method,
Int. J. Numer. Mcthods Engrg. 20 (1984) 1491-1506.

[40] D.W. Kelly. J.R. Gago. O.C. Zienkicwicz and [. Babuska. A posteriori error analysis and adaptive processes in the finite
element method. Part I—Frror analysis. Int. J. Numer. Methods Engrg. 19 (1983) 1593-1619.

[41) D. Kinderlehrer and G. Stampacchia. An Introduction to Veriational Incqualities and Their Applications (Academic Press,
1980).

(42| M. Krizek and P2 Neitaanmaki. On superconvergence lechniques, Acta Applic. Math. 9 (1987) 175-198.

[43] P. Ladevere and D. Leguillon. Error estimate pracedure in the finite element method and applications. SIAM J. Numer. Anal,
20 (1983) 485-509.

[44] P. Lesaint and M. Zlamal. Superconvergence of the gradient of finite clement solutions. RAIRO Anal. Numér. 13 (1979)
139-166.

[45] A. K. Noor and 1. Babuska. Quality assessment and control of finite element solutions, Finite Elem. Des. 3 (1987) 1-26.

[46] L.T. Oden and L. Demkowicz. Advances in adaptive improvements: A survey of adaptive finile element methods in
computational mechanics, in: Accuracy Estimates and Adaptive Refinements in Finite Elemem Computations (ASME. 1987)
1-43.

[47] J.T. Oden. L. Demkowicz, W. Rachowicz and T.A. Westermann. Toward a universal h-p adaptive finite element sirategy. Part
2 A posteriori error estimation. Comput. Mcthods Appl. Mech. Engrg. 77 (1989) 113-180.

[48] J.T. Oden. L. Demkowicz, T. Strouboulis and Ph. Devioo. Adaptive methods for problems in solid and fluid mechanics. in:
1. Babuska et al.. ed.. Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Wiley. New York,
1986) 249-280.

[49] LT. Oden. W. Wu and M. Ainsworth, A posteriori error estimators for the Navier-Stokes problem. Comput. Methods Appl.
Mech. Engrg. 111 (1994) 185-202.

[50] J. Peraire. M. Vahdati. K. Morgan and O.C. Zienkiewicz, Adaptive remeshing for compressible flow computations. J. Comput.
Phys. 72 (1987) 449-466.

[51] PA. Raviart and J. M. Thomas, Primal hybnid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977)
391413,

[52] L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput.
54 (1992) 483493,

|53] E.M. Stein. Singular Integrals and Differentiability Properties of Functions (Princeton University Press. 1970).

[54] B. A. Szabo. Estimation and control of error based on p convergence, in: I. Babuska et al., ed.. Accuracy Estimates and
Adaptive Refinements in Finite Element Computations (Wilcy. New York, 1986) 61-70.

|55] B.A. Szabo, Mesh design for the p version of the finite clement. Compul. Mcthods Appl. Mech. Engrg. 55 (1986) 181-197.

[56] R. Verfurth. A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309-325.

{57] R. Verfiirth, A posteriori error estimation and adaptive mesh refinement technigues. J. Comput. Appl. Math. 50 (1994) 67-83.

[58] W. Wu, fi-p Adaptive methods for incompressible viscous flow problems. Ph.D. Thesis. University of Texas, 1993.

[59] O.C. Zienkiewicz. J.P. Gago and D.W. Kelly. The hicrarchical concept in the finite element method. Comput. Struct. 16 (1983)
53-65.

[60] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. 1.
Numer. Methods Engrg. 24 (1987) 337-357.

[61) O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery
technique. Int. J. Numer. Methods Engrg. 33 (1992) 1331-1364.

[62] O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and o posteriori error estimates. Part 2: Error estimates
and adaptivity. Int. ). Numer. Mecthods Engrg. 33 (1992) 1365-1382.

{63] M. Zlamal. Some superconvergence results in the finite clement method. in: A. Dold and B. Eckmann. eds.. Mathematical
Aspects of Finite Element Methods. Number 606 in Springer Lecture Notes in Mathematics. 1975.

[64] M. Zlamal. Superconvergence and reduced integration in the finite element method, Math. Comput. 32 (1978) 663-685.



	ocr-a-0441.a_posteriori.pdf
	page1
	titles
	ELSEVIER 
	Computational Mechanics Advances 
	A posteriori error estimation in finite element analysis 
	Contents: 
	1. Introduction 
	1.1. A posteriori error estimation: the setting 
	2 
	Since the beginning of computer simulations of physical events. the presence of numerical error in 


	page2
	page3
	page4
	titles
	IlltlllV",p(!J)= ~ lJ1D"ltIPdt: if1~f1<00 (1.1) 
	IIltlllVm''>«[J) = max II D"ltIlu'(!J) if P = 00 
	IlltIlC'(!l) = esssup III(x)l . 
	h(P) = max "K, 


	page5
	titles
	(1.10) 
	h(P) 
	- - 


	page6
	titles
	R = {(.r .. v) : - I ~ .r ~ 1: -1 ~ .v ~ I}. 
	(1.13) 
	(1.14) 
	(1.15) 


	page7
	titles
	nit . 
	13(1/. v) = r (VIt· Vv + C/lv) dx 
	(1.24 ) 
	L(V)=.Ltvw:+ I"gVds. (1.26) 
	13(/1,'(. vx) = L(vx) VVx E X. 
	( 1.2R) 


	page8
	titles
	l (Ve· Vv + cev) dx = { rv (b- + J: v (11K' 'VII - 11K' 'VI/.r) ds (1.30) 
	if.: iK .rilK 
	IIlelliK ::;; C) IIr1l/dK) + C21111K . 'Vell/.:(iIKI (1.32) 
	lC'VcPK,Vv+ccP1\v)dx= r rvd\·+J: v(g1\-I11\''Vllx)ds (1.33) 
	h h ~~ 
	I/~ 
	TI = {L TIl} 
	(1.37) 
	~ 


	page9
	titles
	T/K 
	2. Estimators based on gradicnt rccO\'c'1' 
	2.1. A priori and a posteriori error estimates 
	(2.1 ) 
	II1elll2 = jl'Vtt - vllxl2 dx. (2.2) 


	page10
	titles
	e E V : B(e. v) = L(v) - B(ux. v) "Iv E V. (2.3) 
	eEV: J(e)~J(w) VwEV 
	J(w) = 2' B(w. w) - L(w) + B(ux· IV). 
	(2.5) 
	1 
	J(e) = 2' B(e.l') - L(e) + B(/(\" e) 
	1 
	=--B(e.e)=-,IIIeIII· 
	(2.6) 
	It = () on an. 
	(2.X) 
	where 
	J(w) = ~ r 1'V1I'12dx- r fwd\"+ r'VlIx·'Vl1'dx. 
	2 if} if} if} 
	(2.9) 


	page11
	titles
	]J E W : Q(P) ~ Q(q) 1:/ q E W 
	W = {q E H(di\'. Il): \7·q+f = a in Il} 
	H(di\'. fl) = {q E Lz(Jl) x Lz(J2) : div q E Lz(f1)}· 
	Illelll ~ J-2Q(q) I:/q E W. 
	(2.13) 
	(2.16) 
	\7'q+[=O in f1 (2.17) 
	B(II.v) = r \711' \7v d\' + r Allvdx (2.18) 
	Jf} .If} 
	v E V : B(y, w) = L(IV) - B(ux. w) I:/w E V. 
	- - 
	Y E V : .I(y) ~ .1(11') I:/y E V 
	(2.20) 
	- 1 - 
	J(IV) = 2 B(w, IV) - L(w) + B(IIX, IV). (2.21) 
	THEOREM 2.1. Let Q(P) be the qlladratic functional on F/(div, Il) given hy 
	.If} .fa A 
	(2.22) 


	page12
	titles
	.In .In 
	9[(1 - TJ)r + W/I ~ (1 - TJ)9(r) + TJ9(q) 
	TJ n n 
	= ( V' . Ly(q - p)] d\" 


	page13
	titles
	IIIell12 = B(e,y) = B(e,y) + «A - c)e.)') = B(y.y) + «A - c)e,y). 
	Q(P). 
	Gx(II"II) == 'VII (2.36) 


	page14
	titles
	(2.38) 
	PROOF. Let 
	F[II](x) = [\711 - Gx (/11'")] (x) x E K. 
	IIF[uIIIL ... ( .... ) = IIF[1t - flp+1IlJlk,,( .... J 
	~ I" - ffp+JlllwLX(K) + IIG,r<llp(1t - flp+1u»III.,,(K)· 
	II Gx [llp (It - ffp+III)]III. ... ( .... ) ~ C If/p(u - IIp+)It)lwl.''(KI' 
	Illp(1I - IIp+ll1)lll'l.>ctKl ~ Ch-I Illlp(1I - IIp+)u)IILx(K) 
	IInp(u - JJp+ll1)III.~(K) ~ C 1111 - np+luIII.xIK)· 
	(2.43) 
	(2.44) 


	page15
	titles
	11111 - IIxlll ~ ChP IlIluPol(JJ)' (2.49) 
	IlIelll ~ C(tt)hP 
	(2.55) 


	page16
	titles
	ITJ -Illelill ~ IIG.du.d - VUx - Vellt.z(fl) + C IleIlLz([l) 
	~ C(tI)/rp+l + ChµllIelli 
	(2.58) 
	TJK = IIGx(It,d - 1t~IIL!\K)' (2.61) 


	page17
	titles
	K 
	.... Lh'C:} · 
	(2.64) 
	[4]. 


	page18
	titles
	Illx - 17puIH1(fl) :::;; Ch2IuIH3(f}) (2.65) 
	IGx[v]IL",(K) :::;; 4Ivl\\"~(K) \Iv EX 
	Gx[17pv] == 'Vv (2.67) 
	11K = IIGx(ux) - 'VuxII l.o(K) . 
	K 


	page19
	titles
	, 
	,2 _ II 1 [iJltx]" .(. (2 (9) 
	[~ltx] = ~1t"'1 + (~ItX I (2.70) 
	I, [']2 
	I 
	(2.73) 
	(2.74) 


	page20
	titles
	L {Gx .... (z) - VItX(Z)}2. 

	tables
	table1


	page21
	titles
	(3. I) 
	(3.2) 
	B(e.v) = B(II.v) - B(ux.v) = L(v) - B(ux.v) \:Iv E V 
	B(e.ux)=O \:IvxEX. 
	KeP .I K .fo/\nr,,, .f /\ 
	B(e,v) = 2: { r rudx+ r Rvds - r ~ux VdS} 
	all \. . 
	R = g - ~ on aK n TN 
	(3.3) 
	(3.4 ) 
	(3.5) 
	B(e.v) = L {1. rud\'+ 1. RVdS} - L 1 [~;:;\.] vds (3.7) 


	page22
	titles
	(3.17) 
	[DUX] 
	0= 2: Irll.rvdx+ 2: 1 Rl1xvds. (3.11) 
	B(e. v) ~ 2: IIrIlL~(K) IIv - IIxvIIL~IK) + 2: IIRIIJ.~('Y) IIv - IIxvIlL1('Y)' (3.13) 
	K=int{U.lEP:lnK#0} (3.14) 
	IIv - I1xvIlLo(K) ~ ChK lviI/IlK) (3.15) 
	Ilv - I1xvlll.,('IK) ~ CIt~(~ Ivll/I(K) (3.16) 
	B(e,v) ~ Clvll/I(!/) {2: h~ Ilrll~.M) + L hK IIRIIL'YJ} 
	IIIell12 ~ C {2: h~ IIrIl7.~(K) + 2: "K IIRIIL'YI} (3.18) 


	page23
	titles
	'" {' , I '} 
	llielll- ~ (L..... hK IIrlli.~{J\) + 2 h1\ IIRlli.~(c1"·) . 
	111\ = hK IIr IL~(1\) + lltK IIRIIL:(ii1\) 
	IIcPFIIIt~(JJ) ~ C IIFIIL:(ll)' 
	1leilL/lI = B(c, cfJe). 
	B(e. v) ~ L IIrIlL~t/\) IIv - n.\'vIlL~(1\) + L IIRIIL~(Y) Ilv - JlxvlluYI' 
	and 
	lIellLJl) ~ C Icl),.IH~(!J) {L hk IlrIlLK) + L h~ IIUIILy)} 


	page24
	titles
	lIeIlL(Jl) ~ C {L /(:- IIrllLKI + L h~ IIRIIL1)} . 
	, " ' 
	L 7J~ ~ CllielW· 
	if, = 27A I A2A) 


	page25
	titles
	K = {(.r,.Y) : -I ~.r ~ 1: -I ~.v ~ 1}. 
	IjJ = (I -r)(l-y) 
	X = 2 (1 - x-)( 1 - y). 
	(3.37) 
	(3.41 ) 
	v~ {k~v2cU} 
	IjJK = ~ 0 F;:': Xy = X 0 F;:'. (3.42) 
	IIhll ~ C,hK: IIJ;:'II ~ C2hir C~lhi: ~ Idethl ~ C3hi: (3.43) 
	~ ~ 
	(3.44) 


	page26
	titles
	EvCr. y) = Hr, .v)v(.\-) 
	(3.47) 
	(3.48) 
	(3.49) 
	hK IIxyvIlL)(KI + hK Ixyvl((I(K) ~ C IIvIlL~(YJ 
	(3.52) 
	IIrKIILK) ~ C 1. I"Kr~ dx. 
	B(e,rdIK) = ( '11KirK dx (3.53) 
	./K 
	r IJIKr~dx= r IJlfoJ,drK -r)d\'+B(e,rK'h) (3.54) 
	JK ./K 


	page27
	titles
	11'II\".Ji'" - r) ux ~ 111///\'/\ 1I1.'{") 11'/\ - rll,.,(/\) 
	1I1/1"',,lIt1\/\1 ~ C 11',,11"1(1\)' 
	111/11\',,11111(", ~ ehK) II'"IIL,(/\} . 
	IIrlll.;IK) ~ C{hK'IIIeIII" + II'K - rll/.o(K}}· 
	(3.56) 
	(3.5H) 
	(3.60) 
	IIRyIlLy) ~ c l XyR~ ds. (3.61) 
	B(e.RyXy) = ~XyrRydx+ r XyRRyds. (3.62) 
	.I; ./y 
	lXyR~ds= r XyRy(Ry-R)ds+B(e.XyRy)- ~XyrRyds. (3.63) 
	y./y h 
	l XyRy(Ry - R) d.l· ~ IIXyRyIlL:(y)IIXy(Ry - R)IIL:(y} ~ C1IRyIlL;(YIIiRy - Rllr.;,y, (3.64) 
	B(l'. XyRy) ~ CIiJelllyIIXyRyIIL1(Y) ~ ChK IIleIIIyIIRylll.;(Y) (3.6) 
	hxyrRy d.l· ~ IIrlll.;(y)IIXyRyIlL1(Y} ~ Ch~21IrIILo(y)IIRyIlL;(Y)' 
	(3.67) 
	(3.68) 


	page28
	titles
	IIrIIL:(K) ~ C{hK11l1e1l1K + IIrK - rIlL:(K)} (3.70) 
	(3.71 ) 
	IIRIIL:(r) ~ C{hK IIlelll'} + hK II! - JI"fIlL:(K) + Ilg - Jll'gIlL:(')'nfN)}' 
	(3.74) 
	(3.75) 
	~llleW ~ L TJ~ ~ C {lllelW + L IIi IIf - /JpfIIL(K) + L h/\ IIg - n,JgIIL(Yl}' (3.76) 
	TJk ~ C {lllelll} + hi IIf - npfllLK) + L h/\ Ilg - 17l'gIlLy)} 


	page29
	titles
	ii~ ~ 11k + h~ Ilf - IpfIILK) + L hK IIg - IpgllLy) . (3.79) 
	iik ~ C {Illelll~ + h~ Ilf - Ilpfllt(K) + L hK Ilg - IlpgIIL(y)} . (3.80) 
	(3.81) 
	(3.82) 
	IIIell12 ~ C {2: ii~ + L hi IIf - Ilpfl(K) + L hK Ilg - IlpgIILy)} . 
	ilk ~ c {111('111~ + hi IIf - Ilpflll:(K) + L hK IIg - ITpgII Ly) } 


	page30
	titles
	-+-=1. 
	IB(e. v)1 = L 1. rev - IIxv) d-r + L ! R(v - nxv) ds 
	IB(e, v)1 ~ L IIrllt.r(K) IIv - Ilxvlll..,(K) + L IIRIILp(YJ IIv - IlxvIlLq(YJ' 
	IIv - nxvll/.q(K) ~ CIzK Ivlll'l(K) (3.87) 
	• 
	and 
	/Iv - llxvIlLq({jK) ~ CII~-l/q IV1II'J(KJ' 
	IB(e, v)1 ~ C Ivlll'~(Jll L h~ IIrllj'r(K) + L hK IIRII~p(Y) 
	lIellw'(JJ) ~ C sup II II 
	c])F E V: B(v. (1)[0') = (F,v) rlv E V 


	page31
	titles
	II cl>Fllw~(fJ) ~ c 1IFIII.q(JJ) . (3.95) 
	B(e. F) ~ L IIrlll.p(K) IIv - [JxvllLq(K) + L IIRIILp(y) IIv - ([xvIlL.(y)· 
	IIv - JTxvIlLq(K) ~ Chi Iv1wJ(K) (3.99) 
	and 
	Ilv - JTxvllLq(ilK) ~ Ch~-I/'1lvl\VJ(K)' 
	(e. F) ~ C 1IFIII.q(J}) L {h7! IIrllt,(K) + ~ ,,~p IIRllj,p(oK,} . 
	(e. F) 
	lIeIlLp(!}) = sup IIFII (3.106) 


	page32
	titles
	8"(x,,,) = 8",,, 
	L /.J,,(x) == 1. x E fl. 


	page33
	titles
	B(e. V) = B (e. v L /I,,) = L B(e. vii,,) = L L(vtl,,) - B(ux, vO,,) 
	(4.6) 
	B,,(II, v) = J (VII' Vv + ClW) dx (4.5) 
	L" (v) = C Iv dx + ( _ gv ds. 
	Jh Ji/IJ"nf'N 
	The subdoll/ain residual prol>lell/ is to find c/J" E HJ (n,,) such that 
	1/" = Illcb"llln., 
	(4.7) 
	4.2.2. Nomenclatllre lind assumptions 
	1 tI,,(x) 1 ~ 1. x E K 
	(4.10) 
	Ive,,(x)1 ~ Chi/ x E K. 
	(4.11 ) 
	(4.12) 


	page34
	titles
	h;/ IIv - rlxvIlL~(I\) + Iv - IIxvIL~(K) :::;; c Ivll/leK) (4.14) 
	L II 0" (v - l/Xv)II;'I(J}) :::;; CT2Ivl~I(Jl)' (4.15) 
	IltI,,(v - nxv)III/'(K) :::;; 1I0"IIL,,(K) Iv - IlxvIH'(K) + 18,,11I·1>.o(K) Ilv - llxvlll.,(K)· 
	~ . . 
	1It1,,(v - nxvlIl7,I(K) ~ C{lv - llxvl;'I(K) +h;/ Ilv - nxvIIL(K)} 
	1I0,,(v - llxv)IIIII(K) ~ C Ivllll(Kl . 
	L II 8" (v - llxv)1I7,'({}) = L L 1It1,,(v - n.\,v)II~'(K) 
	:::;; C L L Ivl~tl(K) 
	(4.16 ) 


	page35
	titles
	and noting Ihnt /I,,(v - rIxv) E I-IJ(n,,) 
	"E'" 
	IB(e. v)1 ~ L 1/"IIIH,,(v - rJxv)lll· 
	IB(e.v)! ~ C1/ {L lI0n(v - nxv)II~I(Jl)} ~ C1/TlvIH1(!1) ~ C1/Tlllvlll 
	1/2 = L 1//~ = L B"(cP,,. cP,,) 
	= B(e, L (/),,) 
	~ IllellllllL rll"l1l· 
	1I1L.., cP"III ~ P1/- 
	( 4.17) 


	page36
	titles
	1')" ~ C { ~ ,,~ IIrll~'(K) + ~ "K IIRII~'(Y)} 
	(4.llJ) 
	IIJell1 ~ C 2.: TIl 
	1')" = IIrIlL'(K' + 6 "K IIRIIL'IY)' 
	6 "K IIrllqKI + 6 "K IIRliuly) ~ C(1')n +E) 
	( 4.20) 
	E = L "i IIrllLKl + 2.: ,,~21IR - Ryllu(y)· (4.23) 
	- - 
	-ile + ce = f + ~lIx - Cltx in K. (4.24) 
	e = 0 on 8K n TD. 
	-8 =g- ~ on DKnTN· 


	page37
	titles
	(4.29) 
	(4.28) 
	( iJIIX) 1 
	-:-- = ~ "K . {(VIIX)K + (VII,d)} . 
	BK(e. v) = Fdv) - BdliX' v) + -;-- v ds 
	Bdll. v) = { (VII' Vv + CIIV) dx 
	lK 
	lK 
	(4.30) 
	(4.32) 
	! (dIlX) 
	Bd4>". v) = Fdv) - Udl/x, v) + -:--J v ds \:Iv E V K· 
	/ ~IIX) = { ~ "K . {(VII,d" + (VII.d)}. on K nJ 
	\ an Kg, on K n rN . 


	page38
	titles
	K = {(x"v'): -I ~.r ~ 1: -I ~.v ~ I}. (4.30) 
	XI = :2 (I - r)( 1 - y) 
	~ I "'2. ~ 
	~ I ~, ~ 
	- .-,._"1 
	~I = (1 - .c)(1 - )'~). 
	(4.38) 
	Y = span{Xt'X2.X3'X4'~} (4.39) 
	X\=4A2A3: X2=4AIA3: X3=4AIA2. (4.41) 
	(4.42) 


	page39
	titles
	. 1 (Ol/x) 
	4>K E YK: lh(cPK, v) = h(v) -lh(ux.v)+ ~ vds "Iv E YK 
	T} = {L T}~'} 1/2 
	BKCcPK,v)=,[rudt"+lKRUd.1 VVEYK (4.46) 
	T}~ = r rcPKdt"+ r RcPKds. (4.47) 
	iK iii,,' 
	IIc/>KIII.2(y) :::; Clt~'!.Ic/>KIII'(K)· 
	T}k ~ ( ilK IIrlll.:IKl + ~ irK -IIRIIL:(y) IcPKIIlI(K) 
	( 4.4R) 


	page40
	titles
	(4.53) 
	(4.54) 
	BK«(PK.rKI/1K) = f l/1"rrK d\" 
	JK 
	.I K Y 
	IIIell12 ~ C L {TJ1.: + hi IIf - I7pfll7'1lKl + L hK IIg - flpgI17.2(y)} . 
	11k ~ c {lllellii + hi IIf - f1,,fIlL(K) + L hK IIg - lJpgIlL(Yl} 
	(4.55) 


	page41
	titles
	- - - 1 \ DUX) 
	1111", III, - 1I1~, III, I .. C {h' II! - I,JIIL,IK' + ,cEw, h tile - I pgIlL,!>, } . 
	II1el1l2 ~ C {~ il1 + ~ hi Ilf -lpfllt(K) + L hK IIg -lpgl(()')}. 
	ilk ~ C {lllelll~ + hlllf - It,fIILK) + L 11K IIg -IPRIIL)')} 


	page42
	titles
	(4.62) 


	page43
	titles
	IB(lIxlI - II, v)1 ~ CJr! 111111/11"'(11) Iv1Hl1J]) 
	Ilav _(al/xv)11 ~CJrl/2lvl .,- (4.64) 
	. In (al/Xll) 
	i ((DllxII) 011) .. 


	page44
	titles
	BK(t!JK - I/1K,U) = Bx(ux -l1xu.u) + 1 /a8 UIxU-ux)) uds 
	IIIt!JK - l/IKIIIK :::; IIlux - 17xulilK + C1l1l1x - I1XItIIIK· 
	Ille - cbK IIIK :::; III(u - l/xlt) - I/1K IIIK + II I I/1K - cJ>KIIIK + I III/xu - uxlllK 
	I· 7J 
	-~II= -p(p+1)xP-1 infl 
	81t/DII = 0 on IN 
	IlIeIW =~ ~. p+l- 


	page45
	titles
	2 = I (~)2P+1 (~)2 {~ 2} 
	p p+l 
	~~) 111;111 = J2(P + 1). 
	IIlelilK ="3 2' Sill 1/ (4.82) 
	111ct>IIIK ~" 2' Sill 0 3 + 15 cos20 . 
	III ct> III i >- I + ~ cos2 f) 
	Illellli 7 5 . 
	h ...... O IllelUZ 7 + Slill '''21- . 
	(4.85) 
	C ~ kK ~ C: {J ~ I/h - elKI ~ 7T- (J (4.86) 


	page46
	titles
	1 1 (tJux) 
	BK(<PK'V)= fvth--BK(ux.V)+ -a vds 
	(4.89) 
	Y = Q(p + I)\IR 
	(4.91) 


	page47
	titles
	Wp+1 (s) = n;~II(s - Sj) 
	Y = span { {1 .. r, .... ?} Lp+1 ev), Lp+1 (x){1.y ..... yP} . Lp+1 <-r)Lp+1 (0} 
	YK = {voF;I: VE Y}. 
	1 ! ,,4 ! ,,4 1 h4 
	2 ~ 116 tb "I, 5i ,,6 
	3 I~~"- I~~ 11K ~~~;.i" h" 

	tables
	table1


	page48
	titles
	r(1I) = :--) v ds 
	l1-+ollklll . (4.94) 


	page49
	titles
	(5.] ) 
	(5.2) 
	H"'(P) = {v E L2(!l) : V\K E Hm(K) V K E P}. (5.3) 
	Ilvllm.p = L lIuKII;' .. K 
	BK(II. v) = 1 (Vii' Vv + CllV) dx. 
	h(v) = LfVdx. 
	(5.X) 
	and 
	(5.9) 


	page50
	titles
	V('P) = {u E L2(fl): UK E VK V K E 'P} . (5.10) 
	IIAIIH(di>,J2) = {IIAllk!l + Iidiv AII~.J)}'/2. 
	M={AEH(diV,fl): 1 UII.AdS=OVUEV}. 
	JiW 
	T[UJ= L 1 uKnK·Ads (5.14) 
	U - l {t Ai :~. + (IOU} dr (5.15) 
	r[u] = L r. {t Ai :~ + (IOU} dr (5.16) 
	0= I {tAj:'~. +oou} dr. (5.17) 
	aA· 
	'" 1 ~ { Du DAj} '" 1 
	r[u] = L., ,L., Ai ax. + Dx U dx = L., h) UK 11K . Ads. 



	ocr-b-0441.a_posteriori.pdf
	page1
	titles
	0= T[V] = L J VK ,,}\ . A d.v = J v,,· A ds. 
	(5.20) 
	min J (v) : v E V 
	lev) = 2. B(u.v) - L(u) + B(ux.v). 
	(5.22) 
	(5.23) 


	page2
	titles
	(5.26) 
	(5.27) 
	v on y c Dn 
	(5,30) 
	V :3 w -+ L(w) - B(ltx. w) 
	J-L'(w) = L 1 gy[w] ds. 


	page3
	titles
	£(w. µ) = '2 B(w. 11') - R(w) - µ(w) 
	sup £(w, µ) = { ~ B(w, IV) - R(w) if w E V 
	1 1 
	~ -'2 B(e.e) = -'2l1leIW. 
	(5.39) 
	--21111e1l12 ~ inf £(w. µ) 
	-~ IIIeIW ~ LillI' hew) + µ.(w) - µ(w) 
	(5.43) 


	page4
	titles
	Then. 
	(5.46) 
	FK(v)-Bdltx.u)+ J gKuds =1 rVdx+l R.uds (5.48) 
	WK = {p E H(dh'. K) : II}\ . P = R. Oil iJK} 
	1 1 1 1 2 
	Gdp)=-- p·pdx-- (\7'p+r) dx. 
	2 K 2c K 
	BK(c/>K' u) = F}\(u) - BK(liX. u) + J g"u ds Vu E V K. 
	inf h(u) =JK(cbK) = --zllllcPKIIIi- = Gd\7cPK) = sup G,,·(p). 
	(5.49) 
	(5.51 ) 
	(5,54) 


	page5
	titles
	11· 'V<PK = R. (5.56) 
	h(<px) = --III<pKIII"· 5.57) 
	2 
	11 z 111.~ 1 J -- 
	Gd'V<PK) = -- 1'V<p1\1 dx - - - (cux) dx = --III<pKIII-· (:).)8) 
	2 x 2 KC 2 
	~Gd'V<PK+Aq)IA=n=- r q''V<PKdx- r ~(dh'q)(div'V<pK+rx)dx 
	dA JK JK c: 
	= - r q' 'V <p}\ tit' - r (div q) <PK dx 
	Jx Jx 
	=_1 <PK(IIX'q)ds 
	COROLLARY 5.5. LeI <PK and GK be as above. Then 
	for allY choices of p E nKE1' WK' 
	8K = L ('V . P + r) dol' (5.62) 
	D}\ = J "}\' p ds + r r dx 
	JilX ./K 
	= JR. ds + r ,. dx 
	l>K=Fdl)-B}\(lIx.I)+J gKds. (5.64) 
	Jc1}\ 


	page6
	titles
	(5.65) 
	11 ~ 1 
	heAl = FK(A) - Bdux. A) + J gKA ds = AoK. 
	JaK 
	GK(p) = -~ r p' ptlr. 
	2.h 
	BK(cbK. v) = Fdv) - B}\(ux. u) + J gKvds \Iv E VK. 
	Jil}\ 
	inf h(u) =h(cbK) = --2111IcbKllli =: G}\(V'¢K) = sup GK(p). 
	(5.70) 
	(5.71 ) 
	-l1cbK = r in K (5.72) 


	page7
	titles
	0= Fdl) - BdIlX·l) + { gK d.\'. (5.73) 
	(J"(x,,,) = 8"," 
	(5.75) 
	L On(x) = 1. x E K. 
	(5.76) 
	(5.RO) 
	- 
	5.4.1. Ladeveze:5 mer/lOci 
	/ ~),IX) = { ~ "K· {VUXIK + VUxIJ}: (.))1 K nl (5,78) 
	- L UK f (3y ds = 15K (1 ) (5.79) 
	. fa (allY) 
	.5}\(v) = J-K(u) - BKCII.Y.u) + ~ IJds. 


	page8
	titles
	L L(7'[.:!t},,{3rds= L 0K(On). (5.81) 
	2 
	- L L CT}\{3; = L SdO,,). 
	(5.85) 


	page9
	titles
	(5.92) 
	(5.90) 
	/(~UX) =/i~I/X)+a [DIIX] 
	~ I [DUx] 
	- L u}\ (ry DII ds=B}\(I). 
	ayes) = a~HI(,\') + a~O,(s) (5.93) 
	(5.95) 
	- L lTKµ'~ = 8,.{0,,) \I Ken" (5.96) 
	"- II I (. [aI/X] d 


	page10
	titles
	-f.L1 + f.Lz = 8\(8/1) 
	~ ~ i (DUX) 
	B(lix, (ill) = L(BIl) = F(B/I) 
	f.L2 = 0,(8/1) 


	page11
	titles
	µ'N = -5N(lJ,,) + L od8,,) 
	f}" = {K E P : K c supp OIl}' 

	tables
	table1
	table2


	page12
	titles
	1fF(K) = {n E 1[/: K c supp /.i,,}. 
	L /.i,,(x) = I, x E K. 
	KerMt=span{A} (5.111) 


	page13
	titles
	Mµ = ii. 
	(5.113) 
	(5.117) 
	(5.118) 


	page14
	titles
	O=Fdu)-Bdllx,u)+ r }.:Kuds forallvEXK. (5.119) 
	fly = {K E P : K c supp 8y} 
	gy = g~ +}Ly l/1y (5.121) 
	(5.122) 
	i 1/1;(s) ds = 1. (5.123) 
	18K 
	8~(v) = FK(v) - BK(IlX. u) + r g~u ds. 
	(5.125) 
	-}Ly = 8~(8y) 
	(5.128) 


	page15
	titles
	B(ux. v) = L(u) Vu EX. 
	BKCcbK.v) = FK(u) - BK(lIx.U) + J gKuds Vu E V}\ 
	VK = {u E H1(K): yu =0 on ron8K}. 
	IlIelW ~ L IIlcbKlllk· 


	page16
	titles
	(5.136) 
	_ (iJltx) 
	8" 
	5.5.2. Duality method 
	TfK = -2GKCp) 
	IIIell12 ~ L IIlcPKIII~· 
	Jil}\ 
	JiJK 
	(5.144 ) 
	~ 
	{ ~ ~ 
	R(q) = ~ ~ 


	page17
	titles
	laK 
	laK 
	111cf>~lllllk = L IlIcb~)lllk' 
	Y(,,) - X . u U B(j) 


	page18
	titles
	DKCu) = Fdu) - Bd/l,\'. v) + J gKU ds. (5.156) 
	-"If; 
	0= D}\(ux) = B(rb~q). ux) = L B(w;. ux) + B(wx· ux) = B(wx. ux) 
	B(;jJik).Vk) = DK(ud = B(rbiq)·ud = L B(Wj.vd = B(WbUd 
	B(rbkq). rb%tl) = L B(;jJ~). ;jJ~». 0 
	IlIrbK - rb1-")IIIK ~ CNq-u (5.161) 
	IllcPK - rb%I)III~ = IlIrbKIII~ -lIlrbiq)III~· 
	IIlrbKllli -llIrb%tlllli = CN;;2u. (5.163) 
	IllrbKIIli- -lllrb~>+2)1I1i­ 
	IllrbKllii - IllcP1+1)III~ I.WJpd/Npl 
	IllrbKIII~ - IIlcP:)III~ 


	page19
	titles
	Jc1K 
	IIJeIlI" ~ L I IIcP}\11Ii:· 
	[ 1LL 11t1.]. (5.170) 
	~, = 1/'1t - AI,,-Al.L 1/'1. (5.171) 


	page20
	titles
	fj~tl = {vo F'K1 : v E B(f/J} (5.172) 


	page21
	titles
	B(cb.v) = D(u) Vu E Y 
	D(u) = () Vu E X C Y. 
	y' = {u - JJv : v E Y}. 
	B(cb'. u) = D(v) Vv E Y'. 
	IB(u.w)1 ~ µ.lIlullllllll'lll Vu E y'. IV E X 
	where 0 ~ µ. < 1. Then 


	page22
	titles
	I 
	1114>'111 ~ 1114>111 ~ ~ 1114>'111· 
	Illu - JIvllf = II1ull12 -lllllull12 + 2B(Ilv, Ilv - v) 
	~ II1ul1l2 -lllllulW + 2JlIIII1ullllllu - I1vlll 
	Illv - /lulll ~ ~ Illvlll· 
	I - Jl 
	111cf>111 = sup IB(¢,u)l 
	1114>111 = sup IB(4). U - I1u)1 
	vEY Illvlll 
	veY IIlvlll 
	~ /I1cf>'/I1 sup Illu - Ilulll 
	~ ~11I4>'III· 
	1114>'1112 = D(cf>') = B(4). 4>') ~ IIlcPllllllcf>'1I1 


	page23
	titles
	~ V(II/ - (II - "/. - liE» . Vu dx = 0 Tlv E Q(P) n HJ(K). (5.186) 
	1K 
	~(JI;II)'u'd.\' = ~II'v'ds Tlv E 1P~')cy). 
	I; h 
	~ V(II,:/t) . Vv dr = ~ VII' Vu dx Vv E Q(p) n 1I1:(K). 
	iK iK 
	(5.188) 
	~ ~ 
	LEMMA 5.1 I, Let fIt, : Q(p + 1) -l Q(P) denote the interpolation operator that interpolales at the Gallss- 
	Lobal/o points. Thm is. 
	where ~j are the zeros of the polynomial (1 - s~ )L~(s) with l.p the pth degree l.eKendre polynomial. Then 
	h"'UldS= hUI;II-JIplI)'VldS h(II-Hpll)'V'dS (5.193) 
	~i)'u'(s)dso:: ~Lp(s)u'(s)ds=O 
	h I; 
	(5.194) 
	~ Vi)· 'Vu dx = ~ 'V(JI;II - /lpu) . Vv <.Ix = ~ 'V(II - JIpll) . 'Vu dx. (5.195) 
	iK JK JK 
	(5.196) 


	page24
	titles
	P 


	page25
	titles
	6.1.1. Mcniel prohll'f1I 
	F(v) = ! I . v dx. (6.5) 
	.In 
	c(p. q) = ! p q d\". (6.7) 
	IB(v. w)1 ~ CB IIvll" Ilwll" Vv. wE V 
	• 
	Ib(v.q)1 ~ "-"/2I1vlla IIqIIL' V(v.q) E l' x W 
	su~ II II ~ ab I lei lie Vq E W 
	(v.q)1-+ lIull;,+lIqll; . 
	(6.9) 


	page26
	titles
	a( cP, v) + c( ~/. (I) = B(e. v) + b(v, E) + b(e. q) (6,13) 
	II/(e. E)1I1 = {lit/lll~ + IIqll~}1/2. (6.14) 
	kdll(e,E)IW ~ lie II? + IIEII~ ~ k2111(e.E)i112 (6.15) 
	1 
	IIEllc ~ ab {llcfJlI" + Cn lIella}· (6.16) 
	lIell~ ~ 1It/l1l" Ill' II" + IIl/1l1c IIElir' (6.17) 
	-21I1ell;~-21 (lIcPlla+Cnlll/1llc)2+~IIt/lIL 1I1/111c' (6.18) 
	1It/llia ~ Cn Ill' II" + v-1f2IIEllc' (6.19) 
	1I1/111~ = bee .1/1) ~ v-1/211e II" IIHc' (6.20) 
	B(lIx,vx)+b(vx,Px)+b(ux.q) == F(vx). (6.23) 


	page27
	titles
	WK = L2(K) . 
	bKCv.q) = - r q divv dx 
	.IK 
	BK(v. w) = r {,JV'v : V'w + w· (V· V') v} dx. 
	JK 
	Fdv) = ,[I' v dx, 
	Hence, for v. wE V and q E W 
	B(v. w) = L BK(VK, WK) 
	and 
	F(v) = L FdvK)' 
	V(P) x W(P) = {(v,q) E [L2Ul)J3: (V.q)IK E VK X WK V K E Pl· 
	ll-I(div. !l) = {A E L2(DfX2 : div A E L2(D)2} (6.33) 
	IIAIIH(div.m = {IIAIiL(1) + IIdivAIILcn)}1/2. 


	page28
	titles
	T[(V,q)J = L J ilK' A . VK ds 
	(6.35) 
	e = U - Ux: £ = p - px 
	(6.37) 
	(6.42) 
	III(e, £)1112 = 1Ic/J1I~ + II~JII;· (6.38) 
	gK = O'}\gy on 'Y C 8K. (6.40) 
	L fa gK' vds = L 1 gy' [v] ds, (6.41) 
	= L {Fdw) - BK(u X. w) - b}\(w,px) - bK(u x.q)}· 


	page29
	page30
	titles
	111(e,E)IW ~ L {-2K'~~kh(WK)+lIdiVllxll;.K}' 
	inf h(WK)' 
	(0.51) 
	(6.53 ) 
	(6.55) 
	a(cPK' v) = FK(v) - Bdux. v) - bK(v,p.d + 1 gK' v ds 'Vv E V K. (6.54) 
	]"K 
	(6.57) 
	(6.58) 


	page31
	titles
	TJK = II t/J K II~.K + IIdlv U x II;,K - . 
	(6.59) 
	JJJ 


	page32
	titles
	IF(v)1 ~ O-C Ivl"I(/Jl Vv E V (6.64) 
	a(1I x. v) + b(v. flx) + D(1I x.1I X. v) + b(u x. q) = F(v). (6.66) 
	a( cP. v) + c( 1/1. q) = a(e. v) + b(v. £) + b(e. q) + 8(u . II X. v) 
	8(u.ux.v) = D(u,u.v) - D(ux.ux.v). 
	kJ I/I(e, £)/112 ~ lie 1I~ + "E"~ ~ k2/1I(e, £)IW 
	a(tP}\.v) = Fdv) - adllx,v) - bdv.px) - DK(UX.IIX'v) + J g}\' vds 
	kK 
	11K = {II tP K II~.K + IIdiv II x II~.K } 1/2. 
	III(e, £)1112 ~ L 1I~ = 112 


	page33
	titles
	S(II.ux,v)=D(u.u.v) - D(ux.ux.v) 
	= { 26 + C: Ie 11I1(n)} lie lIa IIvll" 
	D(II,e,e)=O 
	{Co } 2 
	5(u,llx,e)~ O+-;-Iell/I(fl) Ilell,,· 
	IIEII Ib(v.q)1 
	al> c~SUP-11 
	I 
	~ II tP II" + lie II" {3 + ~~ lell/I(n)} . 
	lie II~ = a( tP. e) - b(e. E) - S(u, u x. e) 
	{CD } 2 
	~lltPllaliella+IIl/!lIc IIEllc+ O+-;-Iell/I(J) lIell.,· 
	(6.7R) 
	(6.80) 


	page34
	titles
	1I1/111~ ~ C(nb.l'. CD. Ie IUI(l})' O){IIt/JII" + II I/i lie} 
	(6.84) 
	(6.86) 
	K. = {u E H1(fl): u ~ 1/1 on nand u = 110 on an} (6.89) 
	B(II.v) = r 'lu· 'ludx: F(u) = r fudx. (6.90) 
	In Jf} 
	B(ux.ux -IIX) ~ F(ux -1I,d VVx E K.x. 


	page35
	titles
	(6.93) 
	B(e. IV - e) ~ F(w - e) - B(IIX' II' - e) V IV E W, 
	(6.94) 
	lee) ~ 1(11') VII' E W 
	I 
	1(11') = 2. B(w, 11') - F(w) + B(It,\'. 11'). 
	IIIell12 = B(e. e) 
	=B(u,e) - B(ux.e) 
	= -l(e) + 2: 1ilelW 
	W(P) = {II' E f11(p): II' +IIX ~ 1/1 in fl and w+ux = 0 on an}. (6.99) 
	ThI'll 
	1ilelW ~ -2 inf L l}\(w). 
	(6,101) 


	page36
	titles
	(6.105) 
	h(IPd ~ h(WK) \l1~'K E WK (6.102) 
	WK = {II'K E 111 (K) : WK + lix ~ l/J on K and I\IK + lix = 0 on DK nUn}. (6.103) 
	-~cP ~ f + .llix: cP ~ ~I - Ii.\': (.lcP + f + .llix) (cP - l/J + It.d == 0 
	~ ~ g}\ - --;--: tf> ~ III - 1/,\< -;- ~ gK - ~ (tf> - l/J + Ii.r> == () on uK. 
	laK 


	page37
	titles
	M. Ail/Sl\'orrh, 1. T. Oden/ColI/pltt. Methods Appl. il,tech. Engrg. 142 (1997) I~ 


	page38


