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We present an extension of the discontinuous Galerkin method which is applica-
ble to the numerical solution of diffusion problems. The method involves a weak
imposition of continuity conditions on the solution values and on fluxes across inter-
element boundaries. Within each element, arbitrary spectral approximations can be
constructed with different ordersin each element. We demonstrate that the method
is elementwise conservative, a property uncharacteristic of high-order finite elements.

For clarity, we focus on a model class of linear second-order boundary value
problems, and we devel@ppriori error estimates, convergence proofs, and stability
estimates. The results of numerical experimentf-oand p-convergence rates for
representative two-dimensional problems suggest that the method is robust and ca-
pable of delivering exponential rates of convergence.1998 Academic Press

Key Wordsdiscontinuous galerkin; finite elements.

1. INTRODUCTION

This paper presents a new type of discontinuous Galerkin method (DGM) that is a
cable to a broad class of partial differential equations. In particular, this paper addre
the treatment of diffusion operators by finite element techniques in which both the app
mate solution and the approximate fluxes can experience discontinuities across interel
boundaries. Among features of the method and aspects of the study presented here
following:

e a priori error estimates are derived so that the parameters affecting the rate of co
gence and limitations of the method are established;

o the method is suited for adaptive control of error and can deliver high-order accu
where the solution is smooth;

o the method is robust and exhibits elementwise conservative approximations;
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e adaptive versions of the method allow for near optimal meshes to be generated;
o the cost of solution and implementation is acceptable.

The use of discontinuous finite element methods for second- and fourth-order elliptic pr
lems dates back to the early 1960s, when hybrid methods were developed by Pian a
collaborators. The mathematical analysis of hybrid methods was done bsl&apd];
Babwkaet al.[9, 10], and others. In 1971, Nitsche [38] introduced the concept of replacit
the boundary multipliers with the normal fluxes and added stabilization terms to prod
optimal convergence rates. Similar approaches can be traced back to the work of Percel
Wheeler [40], Wheeler [42], and Arnold [3]. A different approach was flermulation

of Delves and Hall [25], who developed the so-called global element method (GEN
applications of the latter were presented by Hendry and Delves in [26]. The GEM cons
essentially in the classical hybrid formulation for a Poisson problem with the Lagran
multiplier eliminated in terms of the dependent variables; namely, the Lagrange multipl
is replaced by the average flux across interelement boundaries. A major disadvantac
the GEM is that the matrix associated with space discretizations of diffusion operat
is indefinite, and thus the method is unable to solve time-dependent diffusion proble
being indefinite, the linear systems associated with steady state diffusion problems r
special iterative schemes. Moreover, the conditions under which the method is stable
convergent are not known. The interior penalty formulations of Wheeler [42] and Arnc
[3] utilize the bilinear form of the GEM augmented with a penalty term which include
the jumps of the solution across elements. The disadvantages of the last approach inc
the dependence of stability and convergence rates on the penalty parameter, the loss
conservation property at element level, and a bad conditioning of the matrices. The D
for diffusion operators developed in this study is a modification of the GEM, which is fre
of the above deficiencies. More details on these formulations and the relative merits of €
one will be presented in Section 3.1.

The first study of discontinuous finite element methods for linear hyperbolic problems
two dimensions was presented by Lesaint and Raviart in 1974 [31] (see also [30, 32]), \
deriveda priori error estimates for special cases. Johnson andiRitké [28] and Johnson
[27] presented optimal error estimates using mesh-dependent norms. Among the apy
tions of the discontinuous Galerkin method to nonlinear first-order systems of equatic
Cockburn and Shu [19-22] developed the TVB Runge—Kutta projection applied to gen
conservation laws, Allmaras [1] solved the Euler equations using piecewise constant
piecewise linear representations of the field variables, Lowrie [37] developed space-t
discontinuous Galerkin methods for nonlinear acoustic waves, Bey and Oden [15] prese
solutions to the Euler equations, and Atkins and Shu [4] presented a quadrature-free irr
mentation for the Euler equations. Other applications of discontinuous Galerkin meth
to first-order systems can be found in [16, 29].

The underlying reason for developing a method based on discontinuous approximat
for diffusion operators is to solve convection—diffusion problems. Solutions to convectio
diffusion systems of equations using discontinuous Galerkin approximations have b
obtained with mixed formulations, introducing auxiliary variables to cast the governii
equations as a first-order system of equations. A disadvantage of this approach is
for a problem inRY, for each variable subject to a second-order differential operdtor,
more variables and equations are introduced. This methodology was used by Dawson
Arbogast and Wheeler [2], and also by Bassi and Rebay [12, 13] for the solution of
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Navier—Stokes equations, Lomtetal.[33—36] and Warburtoat al.[41] solved the Navier—
Stokes equations discretizing the Euler fluxes with the DGM and using a mixed formula
for the viscous fluxes. A similar approach was followed by Cockburn and Shu in
development of the local discontinuous Galerkin method [23]; see also short-course r
by Cockburn [18].

In the present investigation, a discontinuous Galerkin method for second-order sys
of partial differential equations is presented in which the solution and its derivatives are
continuous across element boundaries. The resulting scheme is elementwise conser
a property not common to finite element methods, particularly high-order methods.
formulation supportd-, p-, and hpversion approximations and can produce sequenc
of approximate solutions that are exponentially convergent in standard norms. We ex|
the stability of the method for one- and two-dimensional model problems and we pre
a priori error estimates. Optimal ordar and p-convergence in thél! norm is observed
in one- and two-dimensional applications.

Following this Introduction, various mathematical preliminaries and notations are
sented in Section 2. Section 3 presents a variational formulation of a general linear diffu
problem in a functional setting that admits discontinuities in fluxes and values of the s
tion across subdomains. Here properties of this weak formulation are presented, layin
groundwork for discontinuous Galerkin approximations that are taken up in Section 4
Section 4, the discontinuous Galerkin method for diffusion problems is presented. A st
of the stability of the method is presented angriori error estimates are derived. Thest
theoretical results are then confirmed with numerical experiments. The results of se
applications of the method to two-dimensional model problems are recorded and discu
It is shown, among other features, that exponential rates of convergence can be attair

2. PRELIMINARIES AND NOTATIONS

2.1. Model Problems

Our goal in this investigation is to develop and analyze one of the main component
a new family of computational methods for a broad class of flow simulations. In this pa
we analyze the diffusion operator. Model problems in this class are those character
diffusion phenomena of a scalar-valued figJdhe classical equation governing such steac
state phenomena in a bounded Lipschitz donsainRY, d =1, 2, or 3, is

V.AVW =S inQ, 1)
whereSe L2(Q), andA € (L*(Q))4*4 is a diffusivity matrix characterized as

A(x) = AT(x),
ma'a>a'A(x)a>wpa'a, a1 > ag > 0,Vae RY,

)

a.exin Q.
The boundary 2 consists of two disjoint partd;p on which Dirichlet conditions are
imposed, and'y on which Neumann conditions are imposeg:NT'y =@, Tp Uy =02,
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andmeasl’p > 0. whereas boundary conditions are

u="f onIp

_ 3)
(AVUu)-n=g only.

Unfortunately, the classical statement (1)—(2) of these model problems rarely makes si
from a mathematical point of view. In realistic domafasnd for general datéd, S, f, g),

the regularity of the solution may be too low to allow a pointwise interpretation of the
solution of these equations. For this reason, weak forms of the model problem mus
considered in an appropriate functional setting.

2.2. Functional Settings

As noted previouslyQ c RY, d =1, 2, or 3,denotes a bounded Lipschitz domain. Fol
classes of functions defined &) we shall employ standard Sobolev space notations; thu
H™(Q) is the Hilbert space of functions defined @rwith generalized derivatives of order
< min L2(Q). The standard norm o ™(£2) is denoted|u|| ymq) or simply||u||m, and the
seminorm orH™(Q2) is denotedu|m. SpaceH3(Q2), for s> 0 not an integer, are defined
by interpolation. The closure @§°(2) in H™(Q) is Hg"(€2), and H ~™(2) denotes the
dual of HJ"(2).

2.3. Standard Weak Formulation and Galerkin Approximation

A classical weak formulation of problem (1)—(3) is stated as follows:
Findu € V() such that

B(u,v) = L) YveV(Q); (4)
here

V(Q) = {v e H'(Q) : yovlr, = 0},

B(u,v) = / Vv-AVudx, L) = / de><+/ vg ds— B(U, v),
Q Q I'n
andue HY(Q) is such thatyl|r, = f, o being the trace operator. A weak solution of
problem (1)—(3) is1 + U.

The existence of solutions to (4) can be established using the classical generalized |
Milgram theorem [5, 39].

A Galerkin approximation of (4) consists of constructing families of closed (gene
ally finite-dimensional) subspaceg, c V, and seeking solutions, € V;, to the following
problems:

Find uy, € V;, such that

B(Uh, vh) = L(vh) Vvh € Vh. (5)

Let us assume that the conditions of the generalized Lax—Milgram theorem hold. It follo
that (5) is solvable if there exist, > 0 such that
inf ~ sup [B(U,v)| = (6)

ueVy veVh
Mulive =1 jofly, <1
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and

sup|B(u,v)| >0, v#0,veV. @)

ueVh

A straightforward calculation reveals that the emor uy, in the approximation (5) of (4)
satisfies the estimate

MY .
[u—unllv < <1+—> inf lu—wlly, (8)
J/h weVh
whereM is the continuity constant defined as
B(u,v) < M|ulvilvllyv, Yu,veV.

Proofs of the generalized Lax—Milgram theorem and of the estimate (8) can be foun
[5, 39].

2.4. Families of Regular Partitions

Since our discontinuous approximations are to be ultimately defined on partitions of
domaing2, we now establish notations and conventions for families of regular partitic
[17]. Let P = {Pn(R2)}n-0 be a family of regular partitions o2 c R into N = N(P},)
subdomainge (see Fig. 1), such that fd?, € P,

_ N(Pn) _
Q= U Qe, andQeN Q¢ = ¢ fore# f. (9)

e=1

Let us define thénterelement boundaryy

M= ) 02rNaQe). (10)

Q¢,Qe€Ph

On e, we definen=ne 0n (02 N 32 +¢) C Iint for indicese, f such thae> f.

2-D Discontinuous Approximation

FIG. 1. Notation: subdomains and boundaries after discretization.
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2.5. Broken Spaces
We define the so-callelofoken spaceen the partitiorP, (R2),

H™Pn) = {v € LA(Q) :vlg, € H™(Q) V2% € Pa(Q)}, (11)

if ve HM(Qe), the extension ob to the boundanp <., indicated by the trace opera-
tion yov, is such thatyyv € H™Y2(9Qe), m> 1/2. The trace of the normal derivative
yiv e H™¥2(3Q¢), m> 3/2, which will be written asVv - n|,q,, is interpreted as a gen-
eralized flux at the element bound&r2e.

With this notation, fow|q, € H¥%+<(Qe) andv|q, € H¥?+<(Q¢), we introduce th@ump
operator {] defined onles = Qe N Q2 # 0 as

[vov] = (Vo) lagenrer — (Vo) la@srer, €3> T, (12)

and theaverageoperator(-) for the normal flux is defined falAVv) - n € L?(T'ef) as

1
(AVv)-n) = 5(((AVv) “Mlsgere + (AVV) -Mlagar, ), €>F, (13

whereA is the diffusivity. Note thah represents the outward normal from the element witt
higher index.

2.6. Polynomial Approximations on Partitions

For future reference, we record a local approximation property of polynomial fini
element approximations. L&t be a regular master elementif, and let{ Fg.} be afamily
of invertible maps frons2 onto 2. (see Fig. 2).

For every elemen®, € Py, the finite-dimensional space of real-valued shape functior
P c H™() is taken to be the spad®, (2) of polynomials of degree: p. defined or.

B, (f‘) =l ] B B s

FIG.2. Mappings2 — Q. and discontinuous approximation.
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Then we define
Pp(Qe) = {¥ | ¥ =¥ oFgl ¥ € P=Pp (D)} (14)
Using the spaceB, (22¢), we can define

N(Pn)

Vp(Pr) = [] Pp(Qe). (15)

e=1

N (Py) being the number of elements in partiti®y.

The approximation properties ¥, (P) will be estimated using standard local approxi
mation estimates (see [6]). Lete H3(Q2¢); there exist a constaft depending o and on
the angle condition of2¢, but independent af, he = diam(Q¢), and pe, and a polynomial
up of degreepe, such that for any & r < s the following estimate holds:

n—r
e

P

lu—uplre. = C——lullse.. s=0; (16)

here||-|I;.q, denotes the usual Sobolev norm, ang min(pe + 1, S).
The following local inverse inequalities for a generic elemegare valid foru e Pp, (Q2)
and pe > 0 (see [8, 14]):

2
<Che'pilulZg,. (17)
0,0Q% ’

2 —1,2 2
|u|0,aQe§Che pe”U”o’aQe, ‘a—n

3. AWEAK FORMULATION OF DIFFUSION PROBLEMS
IN BROKEN SOBOLEV SPACES

We focus on a model linear diffusion problem in a bounded domain; given @at@s2,
S, f, g), we wish to find a functiom such that

—-V-(AVu) =S inQ
u=f onlp (18)
(AVu)-n=g only,

whereA e (L*())%*4 is a diffusivity matrix satisfying the conditions stated in (2).

The weak formulation of (18) that forms the basis of our discontinuous Galerkin metl
is defined on a broken spa®&P;,), Py, being a member of a family of regular partitions of
Q. In particular,V (Py) is a Hilbert space on the partitidh,, which is the completion of
H32+<(Py), € > 0, with respect to the mesh-dependent norm

2 2 2
vl = |U|1,73~h + |U|O,rph» (19)
where

vlf 5, = Bn(,v), Ba(u,v)= Y [ Vu-AVudy, (20)
Qe€Ph $2e
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_a 2 o —w 2
0I5, = [hvov[g, + 10 (AVV) NGy + (W [yovl|g
+ W ((AVV) NG . (21)

and
|3 = / v2ds, for I' € {I'p, I'n, Tint}-
r

In (21), the value oh is he/(2x1) on I'p, and the averagéhe + ht)/(2x1) on that part
of I'iny shared by two generic elemerfiz and Q2 ¢, the constantr; being defined in (2).
A complete characterization of the spa¢€P;) for the one-dimensional case is described
in [14].

We should note that the terrhg®, with « = 1/2, are introduced to minimize the mesh-
dependence of an otherwise strongly mesh-dependent norm. The inner product assoc
with ||-|lv is the symmetric bilinear form

(U, v)y = Br(u, v) +/ (h™*yov you + h**(AVv) - n (AVU) - n) ds

I'p

+ / (h®((AVv) - n)((AVU) - n) + h™*[yeu][you]) ds. (22)
1—‘im
Next, we introduce the bilinear forl.: V (Pn) x V (Pn) — R, defined by

Bi(u,v) = Bh(u,v) + [ (Z(AVv)-nu—v(AVuU)-n)ds
I'p

+ [ (E(AVY) -m[u] = (AVU) -nm)[v])ds, (23)
Cint

and the linear formL..: V (Pr) — R, defined by

Le) = ) {/Q dex}j:

Qe€Ph €

(AVv).nf ds+/ vq ds. (24)

' I'n
In(23), we denote by(A Vv) - n) the limits of the sequences of averaged fluX@sv vy) - n)

on I With these conventions and notations in place, we consider the following weak
variational boundary-value problem:

Findu € V (Py) such that

B,(uv)=L,.(v) YveV(Pn. (25)
That (25) indeed corresponds to our model diffusion problem is verified in the followir

theorem:

THEOREM3.1. Suppose Sf, and g are smootlcontinuou$ and that the solution u to
(18) exists andAVu) € HX(Py). Then u is a solution aR5). Converselyany sufficiently
smooth solution of25) is also a solution of18).

Proof. This follows from standard arguments and use of Green'’s formula. For detal
see [14]m



DISCONTINUOUS GALERKIN METHOD 499

Remark 3.1. Let us note that
By(v,v) = Bn(v,v) >0, YveV(Ph); (26)

the above inequality only indicates that the bilinear form is positive semidefinite. As shc
later, the variational formulation is stable, i.e., it has no zero eigenvalues; theBafore)
is positive definite. It is the skew-symmetric part®f (-, -) that renders it positive definite.

3.1. The Global Element Method and Interior Penalty Formulations

The global element method [25, 26] consists in the classical hybrid formulation fc
Poisson problem with the Lagrange multiplier eliminated in terms of the dependent \
ables; namely, the Lagrange multiplier is replaced by the average flux across interele
boundaries. The GEM can be written as follows:

Findu € V (P) such that

B_(u,v) = L_(v) Vve V(P. 27)

A significant disadvantage of this method is that the matrix associated with the above &
ear form is indefinite (the real parts of the eigenvalues are not all positive), which prev
the solution of time-dependent diffusion problems and also the utilization of many itera
schemes for the solution of steady problems. The reason is that for advancing in time
solution to time-dependent diffusion problems, the real part of the eigenvalues of the s
discretization needs to have the appropriate sign; otherwise the problem is unconditio
unstable.

Given that the goal of this investigation is to obtain a solver for convection—diffusi
equations within the usual CFD settings, it is of paramount importance to generate ¢
merical technique which can handle these equations using pseudo-time-marching sch
The main disadvantage of the GEM is its inability to generate systems of equations w
are amenable to the aforementioned solution techniques. Other than this disadvanta
GEM performs better than the technique that we advocate when the error is measured
L2 norm (optimal for anyp); this is not the case with the technique that we advocate, whi
loses one order for even powepsvhen the error is measured in thé norm (optimal for
any p in the H! norm). The GEM has the advantage of producing symmetric systems
equations, but this advantage is not of interest for convection—diffusion problems, wi
are intrinsically asymmetric (non-self-adjoint) problems.

The method of Nitsche [38] and the interior penalty formulations of Wheeler [42] a
Arnold [3] are very similar; they are based on the solution of the following problem:
Findu e V (P) such that

B_(u,v)+/ avuds—i-/ a[v][u]ds:L_(v)+/ ovfds YveV(®P);, (28)
I'p Cint r

D

hereo = Kh~1 is the penalty function. The value & is critical because if it is too small

this technique is the same as the GEM, which has the problem of indefinite system
our experience, the parametétis problem dependent and has to be chosen very careful
otherwise the rate of convergence is not optimal. Other disadvantages include the loss
conservation property, and a bad conditioning of the matrices. This technique also proc
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symmetric systems of equations, but as explained above, this in not an advantage fo
type of problems that we are planning to solve.

The DGM developed in this study does not present the deficiencies pointed out bef
and we believe it is much better suited to the solution of CFD problems.

4. THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION PROBLEMS

The variational formulation (25) will now be used as a basis for the construction of d
continuous Galerkin approximations of the model diffusion problem. In the discontinuc
Galerkin method, the partitions of the solution domain, on which problem (18) is posed,
now finite elements, across common boundaries of which the test functions can experit
jumps. The Galerkin approximation is thus defined on a subsyga(®,) of the Hilbert
spaceV (Py) introduced in Section 2. Thus, the general setting of the approximation res
(8) is applicable and can be used to dedwveriori error estimates for the method.

Let us now consider the finite-dimensional subspegeP,) C V (Pn) defined in Sec-
tion 2.6 as

N(Pn)
Vo(Pn) = [ Pa(Qe). (29)

e=1

Our discontinuous Galerkin approximation (25Mp(Py) is
Findu, € Vp(Ph) such that

By (Unh, vn) = Ly(vn)  Yon € Vp(Ph), (30)

whereB, (-, -) andL_(-) are defined in (23) and (24), respectively.
An immediate observation is that the discrete scheme defined by (30) is conserva
This is the subject of the following section.

4.1. Strong Conservation at Element Level

A solution is said to bglobally conservativé the balance of thepeciegthe solutioru)
is satisfied on the solution domain as a whole, bwdlly conservativef a partition of
the solution domain exists such that the balance is satisfied within each subdomain of
partition.

Considering a generic elemeft € P, when the test functiomy, is a piecewise con-
stant (unit) function with local support on elemert, from (30)—(23)—(24) we obtain the
approximation

—/ (AVuh)-nds—/ ((AVUp) - Ng) ds:/ Sd><+/ gds, (31)
0QeNI'p 0Q2eNTint e 0Q2eNIy

which means that conservation at element level is ensured when the flux agross
defined as the average flgA V) - ng).

4.2. Numerical Evaluation of the Inf-Sup Condition

In order to apply the generalized Lax—Milgram theorem [5, 39] and the estimate (
we must know the continuity and inf-sup parameters. The continuity condition holds w
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e | I

FIG. 3. Subdomain for successive global refinements.

M=1,i.e.,
[By(u, v)| < [ullvlvllv, (32)

where||-||v is the associated norm defined in (19). To verify this, we multiply the integrar
appearing o, andI'p in the definition ofB, (-, -) by h*h~*, and use standard inequalities
[14] to show that

—a 2 « —a 2
|B+<u,v)|s|u|1|v|1+()h youlg r, + 1M (AW W) N5 - + [~ [youl o

1/2
b AV mEr, ) (ool + I AV i
—a 2 N ) 1/2
+ |h [vou] |0.rim + Ih*{(AV) - n>|o,rim>

< (lulzlvls + [ulo.rp, [vlors, )

Thus, using (19), we obtain
[B+(u, v)| = [ullvllvllv. (33)

The behavior of the discrete inf-sup parametgappearing in (8) as a function of mesh
parameterf andp is of paramount importance in determining the stability of the DGM. ,
straightforward calculation of,, for representative cases can be done using the eigenve
problem described below.

THEOREM 4.1. Let H, be an n-dimensional Hilbert spacand Cy, € R" x R" the
symmetric positive definite matrix associated with the inner produgtinLet B: Hy x
Hn — R be ageneric bilinear forrandB € R" x R" the associated matrjxhen the inf-sup
condition associated with B -) can be evaluated using the eigenvalue problem

BT Cy,-BU = Amin CynU. (34)

from which we obtain the inf-sup constaft= /Amin-

Proof. Given thatCy, is symmetric and positive definite, it can be factored into lowe
upper triangular fornCy, = U,TihUHh. Then, the norm irH,, is related to the Euclidean
norm|-|| in R" as

2 T T 2
[vll%, =V'Cy,v=V"UL Uyv=|Unv|], veR"
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FIG. 4. L-shaped domain—nomenclature.

Angle 90, aspect ratio 1:1 Angle 30, aspect ratio 1:1
Angle 90, aspect ratio 1:2 Angle 30, aspect ratio 1:2
Angle 90, aspect ratio 1:4 Angle 30, aspect ratio 1:4
Angle 90, aspect ratio 1:8 Angle 30, aspect ratio 1:8

FIG.5. Two-dimensional stability analysis: domains.
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FIG. 13. L-shaped domain. Top: Mesh and polynomial basis dftgradaptation. Bottom: close-up view
x 20 at the corner.
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\

|
Error |
] 0627502}
0.763E-02 |
0.700E-02
0.636E-02
0.573E-02 |
0.509E-02 |
0.445E-02 ]
0.382E-02

0.318E-02 |
0.254E-02
0.191E-02 |
0.127E-02
0.636E-03
0.767E-11

FIG. 14. Pointwise error: close-up viewk@0 at the corner).
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Let us now consider the equalities

Bl _ o 0 BWL_ W U BOL g
vety [l veR" |[Upv| — wer™  wl] P =
using this result, we can write the discrete inf-sup constgiais
U,'B U, BU !
Yo = min max |B(u, v)| —mi H Hn UH — mi H Hn HhXH’ (35)
ueHn vetn Ull3g, [[0]l3,  ueR" |[Upufl — xeR" Il

andyy can be evaluated by solving the eigenvalue problem @4).

4.2.1. One-Dimensional Study

We consider the simple Dirichlet probleru” = f on (0, 1), with homogeneous bound-
ary conditions. The following analytical result is proven in [14]:

THEOREMA4.2. Inthe space Y(Ph), if pe > 3, 1 <e< N(Py), the bilinearform B.(u, v)
defined in(23) satisfies

it sup Br@ 0 (1= 3k)
ueVs ey, [Ullvivllv ~ A+ VAo + 1)

wherel.23 < A, < 1.24independently of the discretization parametegsapd h..

Remark. Theorem 4.2 was proven for polynomial basis functions of degBdumer-
ical experiments indicate, however, that the method is stable and convergent for polynol
basis functions of degree2. Note that the method is not stable far< 1.

Using (34), we evaluatg, for various meshe®, and uniformp, pe = p. For uniform
meshesy, =1/3 for p=2, and it changes from 0.5031 to 0.5025 whechanges from 3
to 8. For nonuniform meshes, both for the case of an arbitrary distribution of nodes in wh
the worst aspect ratio between adjacent elementgligtd for a geometric distribution of
mesh points such théit,i,/ hmax= 107, the values ofs, are very close to those obtained
with uniform meshes, the difference being of the order of 1%.

In conclusion, the calculateg is independent of the mesh size and is independept of
for p>3.

The asymptotic values obtained are higher than the analytic value because the latt
only a lower bound of the exact inf-sup constant.

Thea priori error estimate for this case is given by the following theorem:

THEOREM4.3. Letthe solution u t@18) € H3(P,(R2)), with s> 3/2. If the approxima-
tion estimate(16) hold for the spaces MPr), then the error of the approximate solution
Upc can be bounded as

2

hl’-e—l—f

2

lu—upelly <C > (ﬁnuume : (36)
Qe€Ph e

where e =min(pe + 1, S), e — 0", and the constant C depends on s and on the angl
condition ofQ2¢, but it is independent of,the, and p.
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Proof: See proof of Theorem 4.4 with=0.m

4.2.2. Two-Dimensional Analysis

Atwo-dimensional study of the behavior of the inf-sup paramgtéor the discrete case
is carried out for meshes with different numbéigP,) of elements, different degrees of
skewness, aspect ratios, and for uniform and nonunifpgnThese experiments are done
for a model Dirichlet problems, for Laplace’s equation on a parallelogram. Figure 5 sh
some of the subdomains on which the value of the inf-sup parameigicomputed.

First the inf-sup parameteys, is evaluated for meshes with uniform pe=p,1<e <
N(Pr). The numerical estimates indicate that the inf-sup paramgter asymptotically
independent ofi, but depends op. Figure 6 (top) shows the inf-sup dependencedar
meshes with 64 elements; uniform deggeespect ratios 1:1, 1:2, 1:4, 1:8; and skewne:s
of 90° and 30. The asymptotic dependence priwithin the range of interest) is p~* for
all the meshes with skewness of9@nd~ p~1° for those with skewness of 30

Next, the inf-sup paramete, is evaluated for meshes with a random distributiompof
The distribution starts witlpe = pmaxfor element number 1, and for the remaining elemen
the order is chosen randomly between 2 gdy. The numerical estimates indicate tha
the inf-sup parametey, is not very sensitive to abrupt changespinn fact, for orthogonal
meshes, the inf-sup parameigris approximately 5% larger for most of the meshes whei
at least one element h@s < pmax. For skewed meshes in a few cases the inf-sup parame
¥h is less than 1% smaller than the corresponding value vphenpnax for all the elements,
and in many cases it is larger. Figure 6 (bottom) shows the inf-sup dependemctoon
meshes with 64 elements; random distributionpgf aspect ratios 1:1, 1:2, 1:4, 1:8; anc
skewness of 90and 30. The asymptotic dependence priwithin the range of interest) is
again~p~1 for all the meshes with skewness of9@nd~ p~1° for those with skewness
of 30°.

From the above studies it is clear that the inf-sup paramsgtsrasymptotically indepen-
dent ofh but depends op. The dependence gnis not significant for practical calculations,
since the loss 0D (p) accuracy can be offset by the better approximation achie®ed))
using highp for cases with high regularity. By assuming that= O(p-%,), ¥ >0, an es-

max
timate of the global rates of convergence of the DGM can be easily estimated. We h

THEOREM4.4. Let the solution u t@18) € H3(P,(R2)), with s> 3/2, and assume that
the value of the inf-sup parametenjig= C, psWith« > 0. If the approximation estimate
(16) hold for the spaces MPn), then the error of the approximate solutiom ¢ can be
bounded as

2
hte—1-e¢
lu—upcly < Cpha > (Wnunme) : 37)

Qe€Ph €

where e =min(pe + 1, S), € — 0", and the constant C depends on s and on the ang
condition ofQ2e, but it is independent of,the, and p.

Proof. Let us first bound|ul|y as

g <€ > (ulfg, +h MUl 200 + DUl 2icq,) - (38)
Qe€Ph
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Degree
13

O=NWLOdON®W

Error
.15231E-02

14059E-02
1288BE-02
11716E-02
.10545E-02
93730E-03
.82014E-03
| 70297E-03
58581E-03
S 46865E-03
35149E-03
23432E-03
11716E-03
99156E-10

FIG. 15. Stability test: &« 20 at the corner ) Togp-enrichment at the singularity. Bottom: Pointwise error and
mesh.
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FIG. 16. Top: Mesh and polynomial basis afterp adaptation. Bottomx 20 at the corner.
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and using the approximation estimate presented in (16), there exists a local polynoi
approximatioru, of u € H%(P,(£2)) in the norm|-|ly such that

2

//.e—l €

lu—uplly <C Z < <37 ulls Qe> , $>3/2, ue=min(pe+1,8),e—0".
Qe€Ph

Finally, using the continuity and inf-sup parameters, and assuming that the exact solu

u e H3(Py), we arrive at the priori error estimate

2
u—uoel? = (14 ™) int ju— w2 =cpe 3 (M)
DGlly = b ) wpeVe Wplly = ax pgfs/zfe 5% | >

Qe€Ph

wheres > 3/2, ue= min(pe + 1, s), andC depends o but is independent af, he, and
Pe. W

Remark 4.1. The error estimate (37) is a bound for the worst possible case, including
possible data. For a wide range of data, however, the error estimate (37) may be pessim
and the actual rate of convergence can be larger than that suggested by the above bot

The value of the parameterdepends orpe and ond. Ford =1, « = 0 regardless op,
as long age > 2, whereas fod = 2 the value depends on the mesh regularity; numeric:
evidence suggests that for the cases consideredl.0 — 1.5, again forp, > 2, as otherwise
the method is unstable.

5. NUMERICAL EXPERIMENTS

We shall now examine experimentally the performance of the DGM for several rep
sentative examples.

5.1. Two-Point BV Problems

We will first analyze test cases of the type

d?u

ux) =0 atx=0andx=1.

(39)

First we consider problem (39) witB= (47)?sin(4rx), for which the exact solution
IS Uexact(X) = Sin(4r x). Figure 7 shows error in the norif||y andh convergence rate
for uniform meshes. Figure 8 shows error dndonvergence rate for nonuniform meshes
obtained by successive refinements of an initial grid with a subsequent random displacet
of value+0.20h to each interior node. These figures show an asymptotic convergence |
of orderO(hP) in agreement with Theorem 4.3. Note: Tlheonvergence rate is given by

log(ezn/en)
CRy=———, =|up—u .
Rﬁ Iog(2) €n ” h ex”V
The next test cases measure the error inLthaorm. Problem (39) is solved with= (27)?
sin(2 x) on uniform meshes; Fig. 9 shows error in th&norm andh convergence rate.
These figures indicate an asymptotic convergence rate of @de?!) for p odd and
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O(hP) for p even. This test did not involve > 7 because after the first mesh refinement tt
error was|e| < 10713, Next, problem (39) is solved on a nonuniform g¢it0.20n) with
S= (6m)? sin(6rr x). Figure 10 shows error arfdconvergence rate; it is clear from these
figures that the asymptotic convergence rate does not deteriorate for nonuniform grids
numerical convergence rates agree with the upper bound of @rde") obtained in [11].

The following test case deals withand p convergence rates in thé! seminorm. This
test case is the solution to problem (39) wBh= (37)2 sin(3wx), for which the exact
solution iSUexac(X) = 1+ SiN(37 X).

We definep-convergence raté€CR,) as

log(ep/€p+1)
= —————, € =|U—Uexl1, p=2
P |Og(1+ 1/ p) P | 8X|l p
Figure 11 showsh and p convergence rates in tHé' seminorm. These figures indicate
that theh convergence rate @ptimal i.e., O(hP). The behavior of thg-convergence rate
can be estimated by considering that if tptimalerror in|-|1 ise, ~hP/(p!), thenCR, ~
p log((p+ 1)/ h), which is the same as the asymptotic convergence rate shown in Fig.

5.2. 2-D Experiments

The first test case is the solution to the Poisson problem

—AU=4(1-Xx>—y))exp—(x®+Vy?) inQ
u(x, y) = exp(—(x* + y?) onoQ,

whereQ2 is the subdomain shown in Fig. 3. Theonvergence rate is evaluated by successi
global refinements of the domain.

Figure 12 shows the2-norm of the error and the convergence rate. It is clear from the
figures that a convergence rate of or@ghP*+1) is obtained fop odd. Forp even, however,
results indicate that for loy theh convergence rate tends@hP), but for highp it tends
to O(hP+1).

The second test case involvlesp adaptation for a case with low regularity, which is
Dirichlet problem defined on the L-shaped domain shown in Fig. 4, with boundary val
given byu =r?%3sin(20/3), which is a solution to Laplace’s equation.

The p adaptation process is implemented as follows: for every elefagttiat is refined,
the values of the indicatofRAVU) - n]|o.5e, @and|[u]|o.sq, are stored aftaris computed. If
the characteristic size of the elemépt,, in the current adaptation cycle is smaller than th
previous valudn,g (inherited from the parent element), and if the following equations ho

log((IL(AV ) - N]o,52.)01d/ (I[(AVU) - N]|0 50, )new) Neig
IOg(hOld/ hneW) < C(T:T( pe) - 1/2> ,

log((I[ullo,52.)0ld/ (I[U]]0, 552 ) new)
IOg(hoId/ hnew)

Neig
< C(min(pe) + 1/2),
e=1

whereC is a tolerance of value 0.85, then the orgers reduced. The above equation:s
are based on the optimal convergence rate for norms on the boundary of elements
polynomial degreg.. Neig refers to all the neighbors of the element under considerati
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FIG. 18. L-Shape domain: Convergence rates using global and adaptive refinements? lopm. Bottom:
H?® seminorm.
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The error indicator§[(AVu - n]|osq,/meagd2e) and|[u]|o.so./Mmeagde) are used
for h refinement. The max and min values of these indicators over the paffitign) are
computed, and if the value of any of the two indicators associated with an element is wit
a given (specified) percentage (usually 30% of the max value, then the element is refir

The above procedure to refine the mesh and to decrease the order of the polyno
approximation is used until the values of the error indicators are below a prespecified v:
for every element in the mesh.

In the following test case thie-p adaptive process is initiated with a mesh consisting
of three square elements of sizex1l and polynomial basis of order 9. The purpose of
this test is to show that the singularity at the corner is detected bly-ttemvergence rate
information. Figure 13 shows the resultipglistribution anch refinement after five cycles.
Note that the low regularity of the solution is detected because the pideninimum (i.e.,

p =2 for stability reasons) for all the elements close to the corner singularity. Figure
shows a close-up view of pointwise error at the corner.

In the following test we attempt to evaluate the sensitivity (loss of stability) of th
method top-enrichment in zones with low regularity. In this case, fhéistribution is
obtained by forcingp-enrichment where low regularity is detected (opposed to the usu
procedure). Figure 15 shows a close-up view at the corx@0) of p distribution (top)
and the corresponding pointwise error (bottom). From this experiment it appears that
method can accommodapeenrichments even in zones with low regularity without stability
problems.

The next numerical experiment does not include automatic setting of the polynorn
approximation. With the help of analytical studies, we prespecify the polynomial orc
afterh refinements age = [2 + 7(r2/2)°3], wherer represents the radius of the element’s
baricenter, and]is the integer part. Figure 16 showdistribution anch refinement, and
Fig. 17 shows pointwise error. The convergence rate for this case is exponential, as sh
in Fig. 18, in the curve labelédp sqrt

Finally, we compare convergence rates using uniform and adaptive refineme
Figure 18 shows the convergence rate using unifprmith global uniform refinements
(curves labeleg = n), and usinchp-adaptation (labeled-p cony. The convergence rate
of uniformh refinements is exactly equal to the theoretical valué’3 in the H! seminorm,
and the convergence rates of tr@daptation is close to the theoretical maximum whict
is N~ in the H! seminorm. The exponential convergence rates showh-@sqr) are
obtained by setting the polynomial order as described before.

In summary, numerical experiments confirm the robustness of the method under many
ferent conditions. For the class of problems considered, the method appears to be stable
for arbitrary distributions of spectral orders and very different element sizes and aspectra

6. CONCLUDING COMMENTS

As a brief summary of the major observations of this study, we list the following:

o Diffusion dominated problems can be solved using piecewise discontinuous be
functions, without using auxiliary variables such as fluxes in mixed methods. The disc
tinuous Galerkin method developed herein involves imposing weak continuity requireme
on interelement boundaries; both solution values and fluxes are discontinuous across:
interfaces.
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e The method resembles hybrid and interior penalty methods, but no Lagrange multi
or penalty parameter appears in the formulation.

e The method is robust, exhibiting only a small loss of accurady trin which stretch-
ing and distortion of elements results in a suboptimal rat@-acbnvergence; numerical
experiments suggest that fps > 2 the inf-sup parametes, ~ O(p~?) for 2-D cases and
yh is constant for 1-D problems.

e The method is not stable fgi, < 1.

e The behavior of the method I? is different for odd or even order polynomial approx:-
imations; for regular mesh refinements in 2-D, tiferate of convergence is experimentally
found to beO(hP+1) for p odd andO(hP) for p even,p> 2.

e The conditions under which the method is stable and convergent are studied he
with corresponding priori error estimates, and tests confirm that the method can exh
high rates oh-, p-, andhp-version convergence.

e Coupled with the classical discontinuous Galerkin formulation for transport domina
problems, this formulation is applicable to a wide range of problems, from convecti
dominated to diffusion-dominated cases [14].

e Theformulation renders a numerical approximation which is elementwise conserve
and, as such, is, to the best of our knowledge, the first high-order finite element me
ever developed with this property.

e The associated bilinear form renders a positive definite and well-conditioned ma
thus allowing the use of standard iterative methods for Inigimd distorted elements.

o This formulation should be particularly convenient for time-dependent problems,
cause the global mass matrixidkck diagonal with uncoupledblocks (see [14]).
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