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We present an extension of the discontinuous Galerkin method which is applica-
ble to the numerical solution of diffusion problems. The method involves a weak
imposition of continuity conditions on the solution values and on fluxes across inter-
element boundaries. Within each element, arbitrary spectral approximations can be
constructed with different ordersp in each element. We demonstrate that the method
is elementwise conservative, a property uncharacteristic of high-order finite elements.

For clarity, we focus on a model class of linear second-order boundary value
problems, and we developa priori error estimates, convergence proofs, and stability
estimates. The results of numerical experiments onh- and p-convergence rates for
representative two-dimensional problems suggest that the method is robust and ca-
pable of delivering exponential rates of convergence.c© 1998 Academic Press

Key Words:discontinuous galerkin; finite elements.

1. INTRODUCTION

This paper presents a new type of discontinuous Galerkin method (DGM) that is appli-
cable to a broad class of partial differential equations. In particular, this paper addresses
the treatment of diffusion operators by finite element techniques in which both the approxi-
mate solution and the approximate fluxes can experience discontinuities across interelement
boundaries. Among features of the method and aspects of the study presented here are the
following:

• a priori error estimates are derived so that the parameters affecting the rate of conver-
gence and limitations of the method are established;

• the method is suited for adaptive control of error and can deliver high-order accuracy
where the solution is smooth;

• the method is robust and exhibits elementwise conservative approximations;
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492 ODEN, BABUŠKA, AND BAUMANN

• adaptive versions of the method allow for near optimal meshes to be generated;
• the cost of solution and implementation is acceptable.

The use of discontinuous finite element methods for second- and fourth-order elliptic prob-
lems dates back to the early 1960s, when hybrid methods were developed by Pian an his
collaborators. The mathematical analysis of hybrid methods was done by Babuˇska [7],
Babuškaet al.[9, 10], and others. In 1971, Nitsche [38] introduced the concept of replacing
the boundary multipliers with the normal fluxes and added stabilization terms to produce
optimal convergence rates. Similar approaches can be traced back to the work of Percell and
Wheeler [40], Wheeler [42], and Arnold [3]. A different approach was thep-formulation
of Delves and Hall [25], who developed the so-called global element method (GEM);
applications of the latter were presented by Hendry and Delves in [26]. The GEM consists
essentially in the classical hybrid formulation for a Poisson problem with the Lagrange
multiplier eliminated in terms of the dependent variables; namely, the Lagrange multiplier
is replaced by the average flux across interelement boundaries. A major disadvantage of
the GEM is that the matrix associated with space discretizations of diffusion operators
is indefinite, and thus the method is unable to solve time-dependent diffusion problems;
being indefinite, the linear systems associated with steady state diffusion problems need
special iterative schemes. Moreover, the conditions under which the method is stable and
convergent are not known. The interior penalty formulations of Wheeler [42] and Arnold
[3] utilize the bilinear form of the GEM augmented with a penalty term which includes
the jumps of the solution across elements. The disadvantages of the last approach include
the dependence of stability and convergence rates on the penalty parameter, the loss of the
conservation property at element level, and a bad conditioning of the matrices. The DGM
for diffusion operators developed in this study is a modification of the GEM, which is free
of the above deficiencies. More details on these formulations and the relative merits of each
one will be presented in Section 3.1.

The first study of discontinuous finite element methods for linear hyperbolic problems in
two dimensions was presented by Lesaint and Raviart in 1974 [31] (see also [30, 32]), who
deriveda priori error estimates for special cases. Johnson and Pitk¨aranta [28] and Johnson
[27] presented optimal error estimates using mesh-dependent norms. Among the applica-
tions of the discontinuous Galerkin method to nonlinear first-order systems of equations,
Cockburn and Shu [19–22] developed the TVB Runge–Kutta projection applied to general
conservation laws, Allmaras [1] solved the Euler equations using piecewise constant and
piecewise linear representations of the field variables, Lowrie [37] developed space-time
discontinuous Galerkin methods for nonlinear acoustic waves, Bey and Oden [15] presented
solutions to the Euler equations, and Atkins and Shu [4] presented a quadrature-free imple-
mentation for the Euler equations. Other applications of discontinuous Galerkin methods
to first-order systems can be found in [16, 29].

The underlying reason for developing a method based on discontinuous approximations
for diffusion operators is to solve convection–diffusion problems. Solutions to convection–
diffusion systems of equations using discontinuous Galerkin approximations have been
obtained with mixed formulations, introducing auxiliary variables to cast the governing
equations as a first-order system of equations. A disadvantage of this approach is that
for a problem inRd, for each variable subject to a second-order differential operator,d
more variables and equations are introduced. This methodology was used by Dawson [24],
Arbogast and Wheeler [2], and also by Bassi and Rebay [12, 13] for the solution of the
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Navier–Stokes equations, Lomtevet al.[33–36] and Warburtonet al.[41] solved the Navier–
Stokes equations discretizing the Euler fluxes with the DGM and using a mixed formulation
for the viscous fluxes. A similar approach was followed by Cockburn and Shu in the
development of the local discontinuous Galerkin method [23]; see also short-course notes
by Cockburn [18].

In the present investigation, a discontinuous Galerkin method for second-order systems
of partial differential equations is presented in which the solution and its derivatives are dis-
continuous across element boundaries. The resulting scheme is elementwise conservative,
a property not common to finite element methods, particularly high-order methods. The
formulation supportsh-, p-, and hp-version approximations and can produce sequences
of approximate solutions that are exponentially convergent in standard norms. We explore
the stability of the method for one- and two-dimensional model problems and we present
a priori error estimates. Optimal orderh- and p-convergence in theH1 norm is observed
in one- and two-dimensional applications.

Following this Introduction, various mathematical preliminaries and notations are pre-
sented in Section 2. Section 3 presents a variational formulation of a general linear diffusion
problem in a functional setting that admits discontinuities in fluxes and values of the solu-
tion across subdomains. Here properties of this weak formulation are presented, laying the
groundwork for discontinuous Galerkin approximations that are taken up in Section 4. In
Section 4, the discontinuous Galerkin method for diffusion problems is presented. A study
of the stability of the method is presented anda priori error estimates are derived. These
theoretical results are then confirmed with numerical experiments. The results of several
applications of the method to two-dimensional model problems are recorded and discussed.
It is shown, among other features, that exponential rates of convergence can be attained.

2. PRELIMINARIES AND NOTATIONS

2.1. Model Problems

Our goal in this investigation is to develop and analyze one of the main components of
a new family of computational methods for a broad class of flow simulations. In this paper
we analyze the diffusion operator. Model problems in this class are those characterizing
diffusion phenomena of a scalar-valued fieldu; the classical equation governing such steady
state phenomena in a bounded Lipschitz domainÄ ⊂Rd, d = 1, 2, or 3, is

−∇ · (A∇u) = S in Ä, (1)

whereS∈ L2(Ä), andA ∈ (L∞(Ä))d×d is a diffusivity matrix characterized as

A(x) = AT (x),

α1aTa ≥ aTA(x)a ≥ α0aTa, α1 ≥ α0 > 0, ∀a ∈ Rd,
(2)

a.e.x in Ä.
The boundary∂Ä consists of two disjoint parts,0D on which Dirichlet conditions are

imposed, and0N on which Neumann conditions are imposed:0D ∩ 0N = ∅, 0D ∪ 0N = ∂Ä,



                

494 ODEN, BABUŠKA, AND BAUMANN

andmeas0D > 0. whereas boundary conditions are

u = f on0D

(A∇u) · n = g on0N.
(3)

Unfortunately, the classical statement (1)–(2) of these model problems rarely makes sense
from a mathematical point of view. In realistic domainsÄ and for general data(A, S, f, g),
the regularity of the solutionu may be too low to allow a pointwise interpretation of the
solution of these equations. For this reason, weak forms of the model problem must be
considered in an appropriate functional setting.

2.2. Functional Settings

As noted previously,Ä ⊂Rd, d = 1, 2, or 3,denotes a bounded Lipschitz domain. For
classes of functions defined onÄ, we shall employ standard Sobolev space notations; thus,
Hm(Ä) is the Hilbert space of functions defined onÄ with generalized derivatives of order
≤ m in L2(Ä). The standard norm onHm(Ä) is denoted‖u‖Hm(Ä) or simply‖u‖m, and the
seminorm onHm(Ä) is denoted|u|m. SpacesHs(Ä), for s> 0 not an integer, are defined
by interpolation. The closure ofC∞

0 (Ä) in Hm(Ä) is Hm
0 (Ä), and H−m(Ä) denotes the

dual of Hm
0 (Ä).

2.3. Standard Weak Formulation and Galerkin Approximation

A classical weak formulation of problem (1)–(3) is stated as follows:
Findu ∈ V(Ä) such that

B(u, v) = L(v) ∀v ∈ V(Ä); (4)

here

V(Ä) = {
v ∈ H1(Ä) : γ0v|0D = 0

}
,

B(u, v) =
∫

Ä

∇v · A∇u dx, L(v) =
∫

Ä

vS dx +
∫

0N

vg ds− B(ū, v),

and ū ∈ H1(Ä) is such thatγ0ū|0D = f, γ0 being the trace operator. A weak solution of
problem (1)–(3) isu + ū.

The existence of solutions to (4) can be established using the classical generalized Lax–
Milgram theorem [5, 39].

A Galerkin approximation of (4) consists of constructing families of closed (gener-
ally finite-dimensional) subspaces,Vh ⊂ V , and seeking solutionsuh ∈ Vh to the following
problems:
Finduh ∈ Vh such that

B(uh, vh) = L(vh) ∀vh ∈ Vh. (5)

Let us assume that the conditions of the generalized Lax–Milgram theorem hold. It follows
that (5) is solvable if there existγh > 0 such that

inf
u∈Vh

‖u‖Vh =1

sup
v∈Vh

‖v‖Vh ≤1

|B(u, v)| ≥ γh, (6)
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and

sup
u∈Vh

|B(u, v)| > 0, v 6= 0, v ∈ V. (7)

A straightforward calculation reveals that the erroru − uh in the approximation (5) of (4)
satisfies the estimate

‖u − uh‖V ≤
(

1 + M

γh

)
inf

w∈Vh

‖u − w‖V , (8)

whereM is the continuity constant defined as

B(u, v) ≤ M‖u‖V‖v‖V , ∀u, v ∈ V.

Proofs of the generalized Lax–Milgram theorem and of the estimate (8) can be found in
[5, 39].

2.4. Families of Regular Partitions

Since our discontinuous approximations are to be ultimately defined on partitions of the
domainÄ, we now establish notations and conventions for families of regular partitions
[17]. Let P = {Ph(Ä)}h>0 be a family of regular partitions ofÄ ⊂Rd into N

.= N(Ph)

subdomainsÄe (see Fig. 1), such that forPh ∈P,

Ǟ =
N(Ph)⋃
e=1

Ǟe, andÄe ∩ Ä f = ∅ for e 6= f. (9)

Let us define theinterelement boundaryby

0int =
⋃

Ä f ,Äe∈Ph

(∂Ä f ∩ ∂Äe). (10)

On0int, we definen = ne on (∂Äe ∩ ∂Ä f ) ⊂ 0int for indicese, f such thate> f .

FIG. 1. Notation: subdomains and boundaries after discretization.
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2.5. Broken Spaces

We define the so-calledbroken spaceson the partitionPh(Ä),

Hm(Ph) = {
v ∈ L2(Ä) : v|Äe ∈ Hm(Äe) ∀Äe ∈ Ph(Ä)

}
, (11)

if v ∈ Hm(Äe), the extension ofv to the boundary∂Äe, indicated by the trace opera-
tion γ0v, is such thatγ0v ∈ Hm−1/2(∂Äe), m> 1/2. The trace of the normal derivative
γ1v ∈ Hm−3/2(∂Äe), m> 3/2, which will be written as∇v · n|∂Äe, is interpreted as a gen-
eralized flux at the element boundary∂Äe.

With this notation, forv|Äe ∈ H3/2+ε(Äe) andv|Ä f ∈ H3/2+ε(Ä f ), we introduce thejump
operator [·] defined on0ef = Ǟe ∩ Ǟ f 6= ∅ as

[γ0v] = (γ0v)|∂Äe∩0ef − (γ0v)|∂Ä f ∩0ef , e> f, (12)

and theaverageoperator〈·〉 for the normal flux is defined for(A∇v) · n ∈ L2(0ef ) as

〈(A∇v) · n〉 = 1

2

(
((A∇v) · n)|∂Äe∩0ef + ((A∇v) · n)|∂Ä f ∩0ef

)
, e> f, (13)

whereA is the diffusivity. Note thatn represents the outward normal from the element with
higher index.

2.6. Polynomial Approximations on Partitions

For future reference, we record a local approximation property of polynomial finite
element approximations. LetÄ̂ be a regular master element inRd, and let{FÄe} be a family
of invertible maps fromÄ̂ ontoÄe (see Fig. 2).

For every elementÄe ∈Ph, the finite-dimensional space of real-valued shape functions
P̂ ⊂ Hm(Ä̂) is taken to be the spacePpe(Ä̂) of polynomials of degree≤ pe defined onÄ̂.

FIG. 2. MappingsÄ̂ → Äe and discontinuous approximation.
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Then we define

Ppe(Äe) = {
ψ | ψ = ψ̂ ◦ F−1

Äe
, ψ̂ ∈ P̂ = Ppe(Ä̂)

}
. (14)

Using the spacesPpe(Äe), we can define

Vp(Ph) =
N(Ph)∏
e=1

Ppe(Äe), (15)

N(Ph) being the number of elements in partitionPh.
The approximation properties ofVp(Ph) will be estimated using standard local approxi-

mation estimates (see [6]). Letu ∈ Hs(Äe); there exist a constantC depending ons and on
the angle condition ofÄe, but independent ofu, he = diam(Äe), andpe, and a polynomial
up of degreepe, such that for any 0≤ r ≤ s the following estimate holds:

‖u − up‖r,Äe ≤ C
hµ−r

e

ps−r
e

‖u‖s,Äe, s ≥ 0; (16)

here‖·‖r,Äe denotes the usual Sobolev norm, andµ = min(pe + 1, s).
The following local inverse inequalities for a generic elementÄe are valid foru ∈ Ppe(Äe)

and pe > 0 (see [8, 14]):

|u|20,∂Äe
≤ Ch−1

e p2
e‖u‖2

0,∂Äe
,

∣∣∣∣∂u

∂n

∣∣∣∣2

0,∂Äe

≤ Ch−1
e p2

e|u|21,Äe
. (17)

3. A WEAK FORMULATION OF DIFFUSION PROBLEMS

IN BROKEN SOBOLEV SPACES

We focus on a model linear diffusion problem in a bounded domain; given data(Ä, ∂Ä,

S, f, g), we wish to find a functionu such that

−∇ · (A∇u) = S in Ä

u = f on0D

(A∇u) · n = g on0N,

(18)

whereA ∈ (L∞(Ä))d×d is a diffusivity matrix satisfying the conditions stated in (2).
The weak formulation of (18) that forms the basis of our discontinuous Galerkin method

is defined on a broken spaceV(Ph),Ph being a member of a family of regular partitions of
Ä. In particular,V(Ph) is a Hilbert space on the partitionPh, which is the completion of
H3/2+ε(Ph), ε > 0, with respect to the mesh-dependent norm

‖v‖2
V = |v|21,Ph

+ |v|20,0Ph
, (19)

where

|v|21,Ph
= Bh(v, v), Bh(u, v) =

∑
Äe∈Ph

∫
Äe

∇v · A∇u dx, (20)
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|v|20,0Ph
= ∣∣h−αγ0v

∣∣2
0,0D

+ |hα(A∇v) · n|20,0D
+ ∣∣h−α[γ0v]

∣∣2
0,0int

+ |hα〈(A∇v) · n〉|20,0int
, (21)

and

|v|20,0 =
∫

0

v2 ds, for 0 ∈ {0D, 0N, 0int}.

In (21), the value ofh is he/(2α1) on 0D, and the average(he + h f )/(2α1) on that part
of 0int shared by two generic elementsÄe andÄ f , the constantα1 being defined in (2).
A complete characterization of the spaceV(Ph) for the one-dimensional case is described
in [14].

We should note that the termsh±α, with α = 1/2, are introduced to minimize the mesh-
dependence of an otherwise strongly mesh-dependent norm. The inner product associated
with ‖·‖V is the symmetric bilinear form

(u, v)V := Bh(u, v) +
∫

0D

(
h−2αγ0v γ0u + h2α(A∇v) · n (A∇u) · n

)
ds

+
∫

0int

(
h2α〈(A∇v) · n〉〈(A∇u) · n〉 + h−2α[γ0v][γ0u]

)
ds. (22)

Next, we introduce the bilinear formB±: V(Ph) × V(Ph) →R, defined by

B±(u, v) = Bh(u, v) +
∫

0D

(±(A∇v) · n u − v(A∇u) · n) ds

+
∫

0int

(±〈(A∇v) · n〉[u] − 〈(A∇u) · n〉[v]) ds, (23)

and the linear formL±: V(Ph) →R, defined by

L±(v) =
∑

Äe∈Ph

{∫
Äe

vS dx
}

±
∫

0D

(A∇v) · n f ds+
∫

0N

vq ds. (24)

In (23), we denote by〈(A∇v) · n〉 the limits of the sequences of averaged fluxes〈(A∇vk) · n〉
on0int. With these conventions and notations in place, we consider the following weak or
variational boundary-value problem:
Findu ∈ V(Ph) such that

B+(u, v) = L+(v) ∀v ∈ V(Ph). (25)

That (25) indeed corresponds to our model diffusion problem is verified in the following
theorem:

THEOREM3.1. Suppose S, f , and g are smooth(continuous) and that the solution u to
(18) exists and(A∇u) ∈ H1(Ph). Then u is a solution of(25). Conversely, any sufficiently
smooth solution of(25) is also a solution of(18).

Proof. This follows from standard arguments and use of Green’s formula. For details,
see [14].j



              

DISCONTINUOUS GALERKIN METHOD 499

Remark 3.1. Let us note that

B+(v, v) = Bh(v, v) ≥ 0, ∀v ∈ V(Ph); (26)

the above inequality only indicates that the bilinear form is positive semidefinite. As shown
later, the variational formulation is stable, i.e., it has no zero eigenvalues; thereforeB+(·, ·)
is positive definite. It is the skew-symmetric part ofB+(·, ·) that renders it positive definite.

3.1. The Global Element Method and Interior Penalty Formulations

The global element method [25, 26] consists in the classical hybrid formulation for a
Poisson problem with the Lagrange multiplier eliminated in terms of the dependent vari-
ables; namely, the Lagrange multiplier is replaced by the average flux across interelement
boundaries. The GEM can be written as follows:
Findu ∈ V(Ph) such that

B−(u, v) = L−(v) ∀v ∈ V(Ph). (27)

A significant disadvantage of this method is that the matrix associated with the above bilin-
ear form is indefinite (the real parts of the eigenvalues are not all positive), which prevents
the solution of time-dependent diffusion problems and also the utilization of many iterative
schemes for the solution of steady problems. The reason is that for advancing in time the
solution to time-dependent diffusion problems, the real part of the eigenvalues of the space
discretization needs to have the appropriate sign; otherwise the problem is unconditionally
unstable.

Given that the goal of this investigation is to obtain a solver for convection–diffusion
equations within the usual CFD settings, it is of paramount importance to generate a nu-
merical technique which can handle these equations using pseudo-time-marching schemes.
The main disadvantage of the GEM is its inability to generate systems of equations which
are amenable to the aforementioned solution techniques. Other than this disadvantage the
GEM performs better than the technique that we advocate when the error is measured in the
L2 norm (optimal for anyp); this is not the case with the technique that we advocate, which
loses one order for even powersp when the error is measured in theL2 norm (optimal for
any p in the H1 norm). The GEM has the advantage of producing symmetric systems of
equations, but this advantage is not of interest for convection–diffusion problems, which
are intrinsically asymmetric (non-self-adjoint) problems.

The method of Nitsche [38] and the interior penalty formulations of Wheeler [42] and
Arnold [3] are very similar; they are based on the solution of the following problem:
Findu ∈ V(Ph) such that

B−(u, v) +
∫

0D

σvu ds+
∫

0int

σ [v][u] ds = L−(v) +
∫

0D

σv f ds ∀v ∈ V(Ph); (28)

hereσ = K h−1 is the penalty function. The value ofK is critical because if it is too small
this technique is the same as the GEM, which has the problem of indefinite systems. In
our experience, the parameterK is problem dependent and has to be chosen very carefully;
otherwise the rate of convergence is not optimal. Other disadvantages include the loss of the
conservation property, and a bad conditioning of the matrices. This technique also produces
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symmetric systems of equations, but as explained above, this in not an advantage for the
type of problems that we are planning to solve.

The DGM developed in this study does not present the deficiencies pointed out before,
and we believe it is much better suited to the solution of CFD problems.

4. THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION PROBLEMS

The variational formulation (25) will now be used as a basis for the construction of dis-
continuous Galerkin approximations of the model diffusion problem. In the discontinuous
Galerkin method, the partitions of the solution domain, on which problem (18) is posed, are
now finite elements, across common boundaries of which the test functions can experience
jumps. The Galerkin approximation is thus defined on a subspaceVp(Ph) of the Hilbert
spaceV(Ph) introduced in Section 2. Thus, the general setting of the approximation result
(8) is applicable and can be used to derivea priori error estimates for the method.

Let us now consider the finite-dimensional subspaceVp(Ph) ⊂ V(Ph) defined in Sec-
tion 2.6 as

Vp(Ph) =
N(Ph)∏
e=1

Ppe(Äe). (29)

Our discontinuous Galerkin approximation (25) inVp(Ph) is
Finduh ∈ Vp(Ph) such that

B+(uh, vh) = L+(vh) ∀vh ∈ Vp(Ph), (30)

whereB+(·, ·) andL+(·) are defined in (23) and (24), respectively.
An immediate observation is that the discrete scheme defined by (30) is conservative.

This is the subject of the following section.

4.1. Strong Conservation at Element Level

A solution is said to beglobally conservativeif the balance of thespecies(the solutionu)
is satisfied on the solution domain as a whole, andlocally conservativeif a partition of
the solution domain exists such that the balance is satisfied within each subdomain of this
partition.

Considering a generic elementÄe ∈Ph, when the test functionvh is a piecewise con-
stant (unit) function with local support on elementÄe, from (30)–(23)–(24) we obtain the
approximation

−
∫

∂Äe∩0D

(A∇uh) · n ds−
∫

∂Äe∩0int

〈(A∇uh) · ne〉 ds =
∫

Äe

S dx +
∫

∂Äe∩0N

g ds, (31)

which means that conservation at element level is ensured when the flux across∂Äe is
defined as the average flux〈(A∇vh) · ne〉.

4.2. Numerical Evaluation of the Inf-Sup Condition

In order to apply the generalized Lax–Milgram theorem [5, 39] and the estimate (8),
we must know the continuity and inf-sup parameters. The continuity condition holds with
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FIG. 3. Subdomain for successive global refinements.

M = 1, i.e.,

|B+(u, v)| ≤ ‖u‖V‖v‖V , (32)

where‖·‖V is the associated norm defined in (19). To verify this, we multiply the integrands
appearing on0int and0D in the definition ofB+(·, ·) byhαh−α, and use standard inequalities
[14] to show that

|B+(u, v)| ≤ |u|1|v|1 +
(∣∣h−αγ0u

∣∣2
0,0D

+ |hα(A∇u) · n|20,0D
+ ∣∣h−α[γ0u]

∣∣2
0,0int

+ |hα〈(A∇u) · n〉|20,0int

)1/2(∣∣h−αγ0v
∣∣2
0,0D

+ |hα(A∇v) · n|20,0D

+ ∣∣h−α[γ0v]
∣∣2
0,0int

+ |hα〈(A∇v) · n〉|20,0int

)1/2

≤ (|u|1|v|1 + |u|0,0Ph
|v|0,0Ph

)
,

Thus, using (19), we obtain

|B+(u, v)| ≤ ‖u‖V‖v‖V . (33)

The behavior of the discrete inf-sup parameterγh appearing in (8) as a function of mesh
parametersh andp is of paramount importance in determining the stability of the DGM. A
straightforward calculation ofγh for representative cases can be done using the eigenvalue
problem described below.

THEOREM 4.1. Let Hh be an n-dimensional Hilbert space, and CHh ∈Rn ×Rn the
symmetric positive definite matrix associated with the inner product inHh. Let B:Hh ×
Hh →R be a generic bilinear form, andB ∈Rn ×Rn the associated matrix; then the inf-sup
condition associated with B(·, ·) can be evaluated using the eigenvalue problem

BTC−1
Hh

Bu = λmin CHhu, (34)

from which we obtain the inf-sup constantγh = √
λmin.

Proof. Given thatCHh is symmetric and positive definite, it can be factored into lower/
upper triangular formCHh = UT

Hh
UHh . Then, the norm inHh is related to the Euclidean

norm‖·‖ in Rn as

‖v‖2
Hh

= vTCHhv = vTUT
Hh

UHhv = ∥∥UHhv
∥∥2

, v ∈ Rn.
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FIG. 4. L-shaped domain—nomenclature.

FIG. 5. Two-dimensional stability analysis: domains.
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FIG. 6. Inf-sup values for a mesh with 64 elements. Top: uniformp. Bottom: random distribution ofp.



        

504 ODEN, BABUŠKA, AND BAUMANN

FIG. 7. V-norm of the error and convergence rate with uniform meshes:−∂2u/∂x2 = S, S= (4π)2 sin(4πx).

FIG. 8. V-norm of the error and convergence rate with nonuniform meshes:−∂2u/∂x2 = S, S=
(4π)2sin(4πx), δh = ±20%.

FIG. 9. L2-norm of the error and convergence rate with uniform meshes:−∂2u/∂x2 = S, S= (2π)2 sin(2πx).
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FIG. 10. L2-norm of the error and convergence rate with nonuniform meshes:−∂2u/∂x2 = S, S=
(6π)2sin(6πx), δh = ±20%.

FIG. 11. h and p convergence rates in theH 1 seminorm:−∂2u/∂x2 = S, S= (3π)2 sin(3πx).

FIG. 12. Distorted domain:−1ψ = S, S= −1(exp(−(x2 + y2))).
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FIG. 13. L-shaped domain. Top: Mesh and polynomial basis afterh-p adaptation. Bottom: close-up view
×20 at the corner.
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FIG. 14. Pointwise error: close-up view (×20 at the corner).
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Let us now consider the equalities

max
v∈Hh

|B(u, v)|
‖v‖Hh

= max
v∈Rn

|(v, Bu)|∣∣UHhv
∣∣ = max

w∈Rn

∣∣(w, U−T
Hh

Bu
)∣∣

‖w‖ = ∥∥U−T
Hh

Bu
∥∥;

using this result, we can write the discrete inf-sup constantγh as

γh = min
u∈Hh

max
v∈Hh

|B(u, v)|
‖u‖Hh‖v‖Hh

= min
u∈Rn

∥∥U−T
Hh

Bu
∥∥∥∥UHhu
∥∥ = min

x∈Rn

∥∥U−T
Hh

BU−1
Hh

x
∥∥

‖x‖ , (35)

andγh can be evaluated by solving the eigenvalue problem (34).j

4.2.1. One-Dimensional Study

We consider the simple Dirichlet problem−u′′ = f on(0, 1), with homogeneous bound-
ary conditions. The following analytical result is proven in [14]:

THEOREM4.2. In the space Vp(Ph), if pe ≥ 3, 1≤ e≤ N(Ph), the bilinear form B+(u, v)

defined in(23) satisfies

inf
u∈Vp

sup
v∈Vp

|B+(u, v)|
‖u‖V‖v‖V

≥
(
1 − 1

2λo
)

(1 + √
λo + 1)

,

where1.23< λo < 1.24 independently of the discretization parameters pe and he.

Remark. Theorem 4.2 was proven for polynomial basis functions of degree≥3. Numer-
ical experiments indicate, however, that the method is stable and convergent for polynomial
basis functions of degree≥2. Note that the method is not stable forpe ≤ 1.

Using (34), we evaluateγh for various meshesPh and uniformp, pe = p. For uniform
meshes,γh = 1/3 for p= 2, and it changes from 0.5031 to 0.5025 whenp changes from 3
to 8. For nonuniform meshes, both for the case of an arbitrary distribution of nodes in which
the worst aspect ratio between adjacent elements is 1/4 and for a geometric distribution of
mesh points such thathmin/hmax= 10−7, the values ofγh are very close to those obtained
with uniform meshes, the difference being of the order of 1%.

In conclusion, the calculatedγh is independent of the mesh size and is independent ofp
for p≥ 3.

The asymptotic values obtained are higher than the analytic value because the latter is
only a lower bound of the exact inf-sup constant.

Thea priori error estimate for this case is given by the following theorem:

THEOREM4.3. Let the solution u to(18) ∈ Hs(Ph(Ä)), with s> 3/2. If the approxima-
tion estimate(16) hold for the spaces Vp(Ph), then the error of the approximate solution
uDG can be bounded as

‖u − uDG‖2
V ≤ C

∑
Äe∈Ph

(
hµe−1−ε

e

ps−3/2−ε
e

‖u‖s,Äe

)2

, (36)

whereµe = min(pe + 1, s), ε → 0+, and the constant C depends on s and on the angle
condition ofÄe, but it is independent of u, he, and pe.
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Proof: See proof of Theorem 4.4 withκ = 0. j

4.2.2. Two-Dimensional Analysis

A two-dimensional study of the behavior of the inf-sup parameterγh for the discrete case
is carried out for meshes with different numbersN(Ph) of elements, different degrees of
skewness, aspect ratios, and for uniform and nonuniformpe. These experiments are done
for a model Dirichlet problems, for Laplace’s equation on a parallelogram. Figure 5 shows
some of the subdomains on which the value of the inf-sup parameterγh is computed.

First the inf-sup parameterγh is evaluated for meshes with uniformp, pe = p, 1≤ e ≤
N(Ph). The numerical estimates indicate that the inf-sup parameterγh is asymptotically
independent ofh, but depends onp. Figure 6 (top) shows the inf-sup dependence onp for
meshes with 64 elements; uniform degreep; aspect ratios 1:1, 1:2, 1:4, 1:8; and skewness
of 90◦ and 30◦. The asymptotic dependence onp (within the range of interest) is∼p−1 for
all the meshes with skewness of 90◦, and∼p−1.5 for those with skewness of 30◦.

Next, the inf-sup parameterγh is evaluated for meshes with a random distribution ofpe.
The distribution starts withpe = pmax for element number 1, and for the remaining elements
the order is chosen randomly between 2 andpmax. The numerical estimates indicate that
the inf-sup parameterγh is not very sensitive to abrupt changes inp. In fact, for orthogonal
meshes, the inf-sup parameterγh is approximately 5% larger for most of the meshes where
at least one element haspe < pmax. For skewed meshes in a few cases the inf-sup parameter
γh is less than 1% smaller than the corresponding value whenpe = pmax for all the elements,
and in many cases it is larger. Figure 6 (bottom) shows the inf-sup dependence onp for
meshes with 64 elements; random distribution ofpe; aspect ratios 1:1, 1:2, 1:4, 1:8; and
skewness of 90◦ and 30◦. The asymptotic dependence onp (within the range of interest) is
again∼p−1 for all the meshes with skewness of 90◦, and∼p−1.5 for those with skewness
of 30◦.

From the above studies it is clear that the inf-sup parameterγh is asymptotically indepen-
dent ofh but depends onp. The dependence onp is not significant for practical calculations,
since the loss ofO(p) accuracy can be offset by the better approximation achieved (O(hp))
using highp for cases with high regularity. By assuming thatγh = O(p−κ

max), κ ≥ 0, an es-
timate of the global rates of convergence of the DGM can be easily estimated. We have:

THEOREM4.4. Let the solution u to(18) ∈ Hs(Ph(Ä)), with s> 3/2, and assume that
the value of the inf-sup parameter isγh = Cp p−κ

max with κ ≥ 0. If the approximation estimate
(16) hold for the spaces Vp(Ph), then the error of the approximate solution uDG can be
bounded as

‖u − uDG‖2
V ≤ Cp2κ

max

∑
Äe∈Ph

(
hµe−1−ε

e

ps−3/2−ε
e

‖u‖s,Äe

)2

, (37)

whereµe = min(pe + 1, s), ε → 0+, and the constant C depends on s and on the angle
condition ofÄe, but it is independent of u, he, and pe.

Proof. Let us first bound‖u‖V as

‖u‖2
V ≤ C

∑
Äe∈Ph

(|u|21,Äe
+ h−1‖u‖2

1/2+ε,Äe
+ h‖u‖2

3/2+ε,Äe

)
, (38)
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FIG. 15. Stability test: (×20 at the corner ) Top:p-enrichment at the singularity. Bottom: Pointwise error and
mesh.
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FIG. 16. Top: Mesh and polynomial basis afterh-p adaptation. Bottom:×20 at the corner.
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and using the approximation estimate presented in (16), there exists a local polynomial
approximationup of u ∈ Hs(Ph(Ä)) in the norm‖·‖V such that

‖u − up‖2
V ≤ C

∑
Äe∈Ph

(
hµe−1−ε

e

ps−3/2−ε
e

‖u‖s,Äe

)2

, s > 3/2, µe = min(pe + 1, s), ε → 0+.

Finally, using the continuity and inf-sup parameters, and assuming that the exact solution
u ∈ Hs(Ph), we arrive at thea priori error estimate

‖u − uDG‖2
V ≤

(
1 + M

γh

)2

inf
wp ∈ Vp

‖u − wp‖2
V ≤ Cp2κ

max

∑
Äe∈Ph

(
hµe−1−ε

e

ps−3/2−ε
e

‖u‖s,Äe

)2

,

wheres> 3/2, µe = min(pe + 1, s), andC depends ons but is independent ofu, he, and
pe. j

Remark 4.1. The error estimate (37) is a bound for the worst possible case, including all
possible data. For a wide range of data, however, the error estimate (37) may be pessimistic,
and the actual rate of convergence can be larger than that suggested by the above bound.

The value of the parameterκ depends onpe and ond. Ford = 1, κ = 0 regardless ofpe,
as long aspe ≥ 2, whereas ford = 2 the value depends on the mesh regularity; numerical
evidence suggests that for the cases consideredκ ≈ 1.0− 1.5, again forpe ≥ 2, as otherwise
the method is unstable.

5. NUMERICAL EXPERIMENTS

We shall now examine experimentally the performance of the DGM for several repre-
sentative examples.

5.1. Two-Point BV Problems

We will first analyze test cases of the type−d2u

dx2
= S on [0, 1]

u(x) = 0 atx = 0 andx = 1.

(39)

First we consider problem (39) withS= (4π)2 sin(4πx), for which the exact solution
is uexact(x) = sin(4πx). Figure 7 shows error in the norm‖·‖V andh convergence rate
for uniform meshes. Figure 8 shows error andh convergence rate for nonuniform meshes
obtained by successive refinements of an initial grid with a subsequent random displacement
of value±0.20h to each interior node. These figures show an asymptotic convergence rate
of orderO(hp) in agreement with Theorem 4.3. Note: Theh convergence rate is given by

CRh = log(e2h/eh)

log(2)
, eh = ‖uh − uex‖V .

The next test cases measure the error in theL2-norm. Problem (39) is solved withS= (2π)2

sin(2πx) on uniform meshes; Fig. 9 shows error in theL2-norm andh convergence rate.
These figures indicate an asymptotic convergence rate of orderO(hp+1) for p odd and
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O(hp) for p even. This test did not involvep> 7 because after the first mesh refinement the
error was‖e‖ < 10−13. Next, problem (39) is solved on a nonuniform grid(±0.20h) with
S= (6π)2 sin(6πx). Figure 10 shows error andh convergence rate; it is clear from these
figures that the asymptotic convergence rate does not deteriorate for nonuniform grids. The
numerical convergence rates agree with the upper bound of orderO(hp) obtained in [11].

The following test case deals withh and p convergence rates in theH1 seminorm. This
test case is the solution to problem (39) withS= (3π)2 sin(3πx), for which the exact
solution isuexact(x) = 1+ sin(3πx).

We definep-convergence rate(CRp) as

CRp = log(ep/ep+1)

log(1 + 1/p)
, ep = |u − uex|1, p ≥ 2,

Figure 11 showsh and p convergence rates in theH1 seminorm. These figures indicate
that theh convergence rate isoptimal, i.e.,O(hp). The behavior of thep-convergence rate
can be estimated by considering that if theoptimalerror in|·|1 is ep ≈ hp/(p!), thenCRp ≈
p log((p+ 1)/h), which is the same as the asymptotic convergence rate shown in Fig. 11.

5.2. 2-D Experiments

The first test case is the solution to the Poisson problem

−1u = 4(1 − x2 − y2) exp(−(x2 + y2)) in Ä

u(x, y) = exp(−(x2 + y2)) on ∂Ä,

whereÄ is the subdomain shown in Fig. 3. Theh convergence rate is evaluated by successive
global refinements of the domain.

Figure 12 shows theL2-norm of the error and the convergence rate. It is clear from these
figures that a convergence rate of orderO(hp+1) is obtained forp odd. Forp even, however,
results indicate that for lowp theh convergence rate tends toO(hp), but for highp it tends
to O(hp+1).

The second test case involvesh-p adaptation for a case with low regularity, which is a
Dirichlet problem defined on the L-shaped domain shown in Fig. 4, with boundary values
given byu = r 2/3 sin(2θ/3), which is a solution to Laplace’s equation.

The p adaptation process is implemented as follows: for every elementÄe that is refined,
the values of the indicators|[(A∇u) · n]|0,∂Äe and|[u]|0,∂Äe are stored afteru is computed. If
the characteristic size of the elementhnew in the current adaptation cycle is smaller than the
previous valuehold (inherited from the parent element), and if the following equations hold

log((|[(A∇u) · n]|0,∂Äe)old/(|[(A∇u) · n]|0,∂Äe)new)

log(hold/hnew)
< C

(
Neig
min
e=1

(pe) − 1/2

)
,

log((|[u]|0,∂Äe)old/(|[u]|0,∂Äe)new)

log(hold/hnew)
< C

(
Neig
min
e=1

(pe) + 1/2

)
,

whereC is a tolerance of value 0.85, then the orderp is reduced. The above equations
are based on the optimal convergence rate for norms on the boundary of elements with
polynomial degreepe. Neig refers to all the neighbors of the element under consideration.
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FIG. 17. Top: Pointwise error. Bottom:×20 at the corner.
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FIG. 18. L-Shape domain: Convergence rates using global and adaptive refinements. Top:L2 norm. Bottom:
H 1 seminorm.
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The error indicators|[(A∇u · n]|0,∂Äe/meas(∂Äe) and |[u]|0,∂Äe/meas(∂Äe) are used
for h refinement. The max and min values of these indicators over the partitionPh(Ä) are
computed, and if the value of any of the two indicators associated with an element is within
a given (specified) percentage (usually 30% of the max value, then the element is refined.

The above procedure to refine the mesh and to decrease the order of the polynomial
approximation is used until the values of the error indicators are below a prespecified value
for every element in the mesh.

In the following test case theh-p adaptive process is initiated with a mesh consisting
of three square elements of size 1× 1 and polynomial basis of order 9. The purpose of
this test is to show that the singularity at the corner is detected by theh-convergence rate
information. Figure 13 shows the resultingp distribution andh refinement after five cycles.
Note that the low regularity of the solution is detected because the orderp is minimum (i.e.,
p= 2 for stability reasons) for all the elements close to the corner singularity. Figure 14
shows a close-up view of pointwise error at the corner.

In the following test we attempt to evaluate the sensitivity (loss of stability) of the
method top-enrichment in zones with low regularity. In this case, thep distribution is
obtained by forcingp-enrichment where low regularity is detected (opposed to the usual
procedure). Figure 15 shows a close-up view at the corner (×20) of p distribution (top)
and the corresponding pointwise error (bottom). From this experiment it appears that the
method can accommodatep-enrichments even in zones with low regularity without stability
problems.

The next numerical experiment does not include automatic setting of the polynomial
approximation. With the help of analytical studies, we prespecify the polynomial order
afterh refinements aspe = [2 + 7(r 2

e/2)0.3], wherere represents the radius of the element’s
baricenter, and [·] is the integer part. Figure 16 showsp distribution andh refinement, and
Fig. 17 shows pointwise error. The convergence rate for this case is exponential, as shown
in Fig. 18, in the curve labeledh-p sqrt.

Finally, we compare convergence rates using uniform and adaptive refinements.
Figure 18 shows the convergence rate using uniformp with global uniform refinements
(curves labeledp= n), and usinghp-adaptation (labeledh-p conv). The convergence rate
of uniformh refinements is exactly equal to the theoretical valueN−1/3 in theH1 seminorm,
and the convergence rates of theh-adaptation is close to the theoretical maximum which
is N−1 in the H1 seminorm. The exponential convergence rates shown (ash-p sqrt) are
obtained by setting the polynomial order as described before.

In summary, numerical experiments confirm the robustness of the method under many dif-
ferent conditions. For the class of problems considered, the method appears to be stable even
for arbitrary distributions of spectral orders and very different element sizes and aspect ratios.

6. CONCLUDING COMMENTS

As a brief summary of the major observations of this study, we list the following:

• Diffusion dominated problems can be solved using piecewise discontinuous basis
functions, without using auxiliary variables such as fluxes in mixed methods. The discon-
tinuous Galerkin method developed herein involves imposing weak continuity requirements
on interelement boundaries; both solution values and fluxes are discontinuous across these
interfaces.
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• The method resembles hybrid and interior penalty methods, but no Lagrange multiplier
or penalty parameter appears in the formulation.

• The method is robust, exhibiting only a small loss of accuracy inH1 in which stretch-
ing and distortion of elements results in a suboptimal rate ofp-convergence; numerical
experiments suggest that forpe ≥ 2 the inf-sup parameterγh ≈ O(p−1) for 2-D cases and
γh is constant for 1-D problems.

• The method is not stable forpe ≤ 1.
• The behavior of the method inL2 is different for odd or even order polynomial approx-

imations; for regular mesh refinements in 2-D, theL2-rate of convergence is experimentally
found to beO(hp+1) for p odd andO(hp) for p even,p≥ 2.

• The conditions under which the method is stable and convergent are studied herein,
with correspondinga priori error estimates, and tests confirm that the method can exhibit
high rates ofh-, p-, andhp-version convergence.

• Coupled with the classical discontinuous Galerkin formulation for transport dominated
problems, this formulation is applicable to a wide range of problems, from convection-
dominated to diffusion-dominated cases [14].

• The formulation renders a numerical approximation which is elementwise conservative
and, as such, is, to the best of our knowledge, the first high-order finite element method
ever developed with this property.

• The associated bilinear form renders a positive definite and well-conditioned matrix,
thus allowing the use of standard iterative methods for highp and distorted elements.

• This formulation should be particularly convenient for time-dependent problems, be-
cause the global mass matrix isblock diagonal, with uncoupledblocks (see [14]).
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