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Abstract 

A method to estimate and control pointwise errors in finite element approximations of elliptic problems is presented as an application of 
the more general theory of goal-oriented error estimation. In the latter, the accuracy of numerical approximations is assessed in terms of 
measures that are of practical interest to engineers rather than the classical global energy norm. Goal-oriented error estimation requires the 
solution of a problem dual to the original problem and the computation of several global error estimates. The performance of the method is 
carefully tested in the particular case of estimation and control of pointwise errors on a one-dimensional problem. 0 1999 Elsevier 
Science S. A. All rights reserved. 

1. Introduction 

A posteriori error estimation in finite element analysis has proven to be essential towards the design of 
reliable adaptive methods to improve the efficiency of simulations. However, the effort so far has focused on the 
development of techniques to estimate the error in the classical global energy norm based on residual methods 
(see [l-3,7,6,19]) or on recovery methods (see [20,21]). Although these techniques have been shown to be 
reliable and robust in many applications, the error measured in the energy norm brings very little relevant 
information to the engineers about accuracy, especially when simulations are run with a specific goal in mind, 
like evaluating the temperature or the stress at a given critical point in the domain. 

In recent years, alternative methods have been proposed to estimate and control the numerical error with 
respect to measures other than the usual energy norm (see [9,8,18,15,17,4]). These measures are expressed in 
terms of a linear functional of the solution and generally represent a physical quantity of practical interest to 
engineers and designers. This new approach in a posteriori error estimation is referred to here as goal-oriented 
error estimation. In this paper, the theory of goal-oriented error estimation is presented in a simple, general and 
rigorous way for the case of elliptic problems. It involves the computation of an i@uence function for each 
quantity of interest. The influence function, obtained as the solution of a dual problem, indicates how the 
residual, i.e. the source of errors, influences the error in the particular measure. We also show how to estimate 
lower and upper bounds of the error in the goal using global energy error estimates. 

In goal-oriented error estimation, the user has a lot of freedom in defining the quantity of interest. There are 
actually many choices depending on the specific goal, so we decide here to concentrate on pointwise error 
estimation. One of the major issues that needs to be addressed is that the solution and/or its derivatives may not 
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be continuous for certain applications so that these quantities may not be defined at certain points of the 
computational domain. We propose to circumvent this particular problem by defining a linear functional using 
the mollijcation technique. Mollification can be viewed as an averaging of the solution over a small 
neighborhood of the point of interest. 

Following the introduction, we present a model problem and some relevant notations in Section 2. We provide 
in Section 3 a detailed account on global error estimation with respect to the energy norm. We actually describe 
how to derive lower and upper bounds of the error as these will be employed in goal-oriented error estimation. 
The presentation of the goal-oriented error estimation theory follows in Section 4, along with its application to 
the case of pointwise error estimation. We propose, in Section 5, an adaptation strategy for finite element meshes 
aimed at controlling and reducing pointwise errors. Finally, the method is applied to a one dimensional example 
with the numerical results recounted in Section 6, followed by a summary of our major conclusions. 

2. Preliminaries 

For the presentation of the theory, we consider an abstract model problem. Let R denote an open bounded 
domain of lRd, with boundary X2. V is assumed to be a Hilbert space of functions defined on a. The model 
problem consists of finding a function u E V which satisfies: 

B(u,u)=F(u), VUEV. (2.1) 

Here, B(*, *) designates a symmetric positive-definite bilinear form on V X V, and thus defines an inner product 
on V. The associated norm, commonly called the energy norm, is denoted ll.lle. The loading F is an element of 
the dual space V’. We note that the boundary conditions satisfied by u on dR are implicitly included in the 
definitions of the space Vor the loading F. Then, from the Lax-Milgram theorem, we know that such a problem 
admits a unique solution u E V. 

In order to approximate the solution U, one may construct a finite element space VhSp C V of hierarchical 
piecewise polynomial functions, where h and p refer to the size and maximal degree of the shape functions for 
each element, respectively (see e.g. [lo]). The mesh, formed by the union of all elements, is assumed to coincide 
exactly with the domain a. By the classical Galerkin method, one obtains a finite element solution uh p E Vh’p 
by solving the finite system of equations: 

B(“h.p’ u) = F(u), I’ u E Vh.” . (2.2) 

The numerical error in the finite element solution uh,P is simply e = u - u~,~. It belongs to the space V and, 
replacing u by uh,P + e in (2. l), is shown to be governed by the equation: 

B(e, u) = L%?~,,(u) , V u E V , (2.3) 

where ,%I p is called the residual: 

g;,,(u) = F(u) - B(&,v u) 3 u E v . (2.4) 

The residual is a linear functional in V’ defined in terms of the loading F and the finite element solution u~,~. It 
can be interpreted as the source of the errors. One immediately notices that 9%;,,(u) = 0, tl u E V*‘“, which 
yields the well-known orthogonality property for the error: 

B(e,u)=O, VVEV~‘~. (2.5) 

The orthogonality property simply means that the finite element solution uh,P is the best approximation in Vh,p 
of the exact solution u with respect to the energy norm ]/.lle. The goal in a posteriori error estimation is to 
postprocess the residual in order to derive, in an inexpensive manner, relevant measures of the error e. 
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3. Global error estimation 

In this section, we present the methodology to calculate lower and upper bounds on the error in the energy 
norm by the residual approach. First, we define the norm of the residual in the dual space V’ as 

(3.1) 

which allows us to establish the following equality 

II4 = Il~;,,ll* . (3.2) 

Therefore, it suffices to compute the norm of the residual to obtain the error in the energy norm. By applying the 
Riesz Representation theorem, we know that there exists a unique function p E V which satisfies l\%~,J, = llq11, 
and: 

B(qP,v)=9;,,(v), VVEV. (3.3) 

Obviously, because of the uniqueness of the solution to (2.3), the function 40 is simply the error e. However, we 
intentionally retain the notation p since the functions q and e are not necessarily identical in the case of more 
complicated problems, for instance the Stokes problem (see [13]). Note that the problem for 40 is infinite 
dimensional, which implies that only approximations of p, and a fortiori of the norm of the residual, can be 
sought. In order to derive lower and upper bounds on Ilellr, the basic approach would be to construct two 
adequate spaces V- and V+, V- c V c V+, so that 

sup 
“em\(O) 

‘“l$v” c Ipi?yJ* s sup ‘“li;‘v)l 
e UEV+\{O) e 

(3.4) 

provided that one can find a proper extention of .9?:., to the space V+. The space V is an infinite dimensional 
space, so it is actually impossible to construct a space V+ of finite dimension that contains V. Nevertheless, one 
can compute a true upper bound with respect to a finite element approximation of the norm of the residual. 

3.1. Approximation of the norm of the residual 

Let V”,” C V be a finite element space in which one seeks an approximation 40 of (p satisfying: 

B(cp,v)=9;,,(v), vvEvh’p. (3.5) 

The energy norm of $ is then given by: 

llG4l= sup 
I~;,,wl 

“EVh.P\{O} IM . 
(3.6) 

Combining (3.3) and (3.5), one observes that 

B(p - sp, 6) = 0. 

In other words, J, is the orthogonal projection of rp onto the finite element space f”‘” with respect to the inner 
product B(*, *). It immediately follows that 

lld = lb - @II: + 114% . (3.7) 

Assuming there exists v E f”,” such that 9?:,,(v) ~0, implying ll@ll, #O, then from (3.7), one can find U, 
O<(+< 1, such that 

lb - 4% = &4I, . (3.8) 

In other words, the constant u determines the relative error in the numerical approximation @. Then, using (3.8) 
in (3.7), one obtains 
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11~115 = ~211~11: + 114,’ 
(1 - “2kJl15 = 11~11: 

that is 

11441, = ~IIPII, = ~ll%.,II* ’ (3.9) 

This result reveals that even a crude approximation + of cp still provides an acceptable estimate of I]~~,,][*. 
Indeed, even a relative error u = 30% would allow to estimate l]~~,,ll, with an effectivity greater than 95%. 
Supposing that one can find a good approximation 40 of 9, in the sense that u is ‘sufficiently small’, then V- and 
V+ should satisfy V- C vh.p C V+ in order to obtain: 

I~;,,(~)l 
sup s 11~11, c sup 

I%,,(v)l 
UEVm\{O) lI4L ” EV, \{O) IMI, . 

(3.10) 

3.2. Lower bounds 

In the previous section, we assumed that the enriched finite element space V - h,p is chosen so that the action of 
!?&?i,, is different from 0 on at least one element of q”,“. Because the residual is identically 0 on Vh’p when u is 
the solution of the finite element problem (2.2), we want Vh’p $ vh’p. Let v”‘” be constructed by enriching Vh’p 
with elements of a finite element space W that satisfies 

w + {Ol, w n Vh,” = (0) , Q”.” = w + Vh.p . 

Here, we also take advantage of the residual vanishing on Vh,* by considering the function I++ E W such that 

B($,v)=~;,,(v), VVEW. (3.11) 

Following Bank [5], one recognizes that the strengthened Cuuchy-Schwartz inequality holds with respect to 
the spaces Vh,p and W, in the sense that, for all v E Vh,p and w E W there exists a constant y, 0 c y < 1, such 
that 

IWJ~ 41 =s rll4l,ll4l, . (3.12) 

This follows from the property W rl Vh,p = (0). Eq. (3.12), along with Young’s inequality, implies that 

lb + 4: = 1141~ + =w? w) + llwll,’ 
2 II415 - 2rll4,ll4 + ll45 
2 11~11~ - 11413 - Y21141: + ll4: 
2 (1 - Y2~l141s 7 

thus 

lb + 4I,47ll4, . (3.13) 

Then, the accuracy of the approximation $ of 40 can be quantified as follows: 

THEOREM 3.1. Let (p E c h,p and $ E W be the solutions of (3.5) and (3.11), respectively, where f h*p and W 
are de$ned above. Then, there exists a constant y such that 0 s y < 1 and 

vF-7Molle s IMI, s 11~11, . (3.14) 

PROOF. The upper bound is readily obtained since W C fh,p. In order to prove the lower bound, we set 
$ = v* + w*, where v* and w* are elements of Vh,p and W, respectively. Now, from (3.5) 

11+x = mqo9 40) = .@)hu.p(a = ~z,“,,(v*) + ~;,,(w*>~ (3.15) 

Since v* E Vh,p, gi,,(v*) = 0 and from (3.11), 2i,,(w*) = B($, w*). Therefore, 
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(3.16) 11~11: = B(b4 w*> s II4Mw*II, . 
Using the strengthened Cauchy-Schwartz inequality, there exists y, 0 c y < 1, such that 

lllpll5 =2 & IIQ4lell~* + w*lle = & II*Il,II4! ? 

that is, 

6-%4l, ss Ml, . 

(3.17) 

(3.18) 

The lower bound is proved. 0 

It immediately follows from (3.14) and (3.9) that 

vu - du - Y2N’pll, =G IMI, c lIPlIe . (3.19) 

The above inequalities reveal that the approximation ]]+]I, is always a lower bound of 1]@1], and ll~pll,. The 
accuracy, however, depends on the unknown constants u and y. The former is related to the ‘richness’ of the 
space V h,p, or W, in the sense that (T tends to zero as more and more degrees of freedom are added to the space 
V - h’p. On the other hand, the constant y represents a measure of the angle between the spaces W and Vhxp. For 
example, in the case where W is orthogonal to Vhzp with respect to the inner product B(*, a), the constant y is 
simply equal to zero. Consequently, its value is directly dependent on the choice of the basis functions used to 
construct W and Vh,p. 

The choice of the space W is clearly not unique and is governed by the trade-of between cost and accuracy. 
Indeed, for high accuracy, it is desirable that W contain a lot of degrees of freedom, but this in turn would result 
in a prohibitively expensive problem (3.11). Some of the choices for constructing W are 

(1) In the h-approach, one divides each element of the mesh into subelements of the same p order. The basis 
functions introduced by these smaller elements, less the basis functions of Vh’p, make up the space W. 
This approach is used by Huerta et al. [I 11. 

(2) In the p-approach, the space W is conveniently constructed from layers of piecewise polynomial basis 
functions involving polynomials of degree between p + 1 and p + q, q > 1. These basis functions are 
commonly called bubble functions or simply bubbles. The distribution of q over the elements is usually 
chosen to be uniform, i.e. q = 1 or 2, but we advocate an adaptive search for q. In two-dimensional 
problems for example, the space W can consist, as a first guess, of ‘edge’ bubbles of degree q = 1. Then, 
it can be successively enriched with ‘interior’ and ‘edge’ bubbles of higher degree in the elements where 
we have large contributions to the previous global estimates. Such an approach has been successfully 
used in [13] for the Stokes problem. 

Here, we favor the p-approach to construct the space W. And, in order to solve the global problem (3.11) in 
an inexpensive manner, we use the Conjugate-Gradient method performing only a few iterations. The error 
estimator is then denoted: 

(3.20) 

In what follows, we show how the lower bound estimate r&,, can be improved, by analyzing the difference 
(+ - @) E fh‘p, which satisfies 

B( cj3 - I), u) = 9?;,,(u) - B(t), IJ) , v u E f”,” . 

Then, using Eqs. (3.11) and (3.5), we have B(Q, I& = %i,,($) = B($, @), so that 

(3.21) 

llG43 = II413 + II+ - (Lll3 . (3.22) 

It immediately follows from Eq. (3.11) that B;,,(u) - B($, u) = 0 for all u E W, this suggests that one can find 
an approximation f$ E Vhxp of ($ - +) satisfying 

B(& u) = L%;,,(u) - B(l), u) , v u E Vh,p ) (3.23) 
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which simplifies to 

B(c#J,u)=-B(t),,), VUEVh,p, (3.24) 

since L%;,,(u) = 0, for all u E Vh,p. As before, we can relate the approximation 4 to the function $ - $: 

THEOREM 3.2. Let 4, Q and 4 be the solutions of (3.5), (3.11) and (3.24). Then, there exists a constant y, 
0 S y < 1 such that 

Ih-G% - 41, sz 11411, =s II+ - d. . (3.25) 

PROOF. The proof is similar to the proof of Theorem 3.1. (We remark that the constant y is not necessarily the 
same as in Theorem 3.1). 0 

From this theorem, it follows that 

Mll: + (1 - r’>llG - a: sG Ml, + 114415 s IMI: + II@ - 41: 9 
which implies, using (3.22) and (3.9), that: 

Ih - du - Y2Mlr 4iimz sz IIPII, . 
Again, this new global error estimator 

(3.26) 

(3.27) 

cow =Vll~ll: + 11441~ (3.28) 

provides a lower bound on llppll,. Th e cost of obtaining 4 is limited to one forward and one backward 
substitution when problem (2.2) is solved using a direct method. Moreover, observing that there exists yPO,, 
0 S yPO, < 1, such that 

B(h $4 = -r,,,ll44l,llsll, 
we have, replacing u by 4 in (3.24), 

(3.29) 

11411: = B(47 4) = -w4 $1 = r,,i lld4l,ll~ll, 
so that 

(3.30) 

Y _ lldlc 
p0’ llt41e * 

(3.31) 

The ratio y rO, provides us with valuable information regarding the quality of the error estimators vEub and 
u qlow. Indeed, it can be interpreted as an indicator of how much ‘energy’ is transmitted from the bubble functions 

in W (small scales) to the basis functions in Vh,” (large scales). Since the propagation of information is enhanced 
among the large scales, the quantity yPO, measures how the error is ‘polluted’ away from the sources of error. It 
is therefore called pollution factor. We have observed in numerical experiments that the smaller ypO, is, the better 
the quality of the error estimators. 

3.3. Upper bounds 

We have seen earlier that to construct an upper bound of II~plle (resp. ](@]I,), it is necessary to define a space 
larger than V (resp. ch’“). We provide here a brief summary of the methodology proposed by Ainsworth and 
Oden [2]. 

First, for each element of the mesh L?,, one defines the local space V(&) (in the case V= HA(@) 

V(fi,> = {u E H’(f&); u = 0 on dL? n a&}. (3.32) 

Then, we assemble the broken space V( @‘), V C V( .GP’), associated with the mesh (or partition) LPh, as: 
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v Ph) = G v<f&> , 

319 

where llK denotes the product over all the elements of the mesh. Meanwhile, the residual %!i,P is extended to 
the linear functional & i,P : V( k?) + II& 

~;.,<a = c ~;,,,,(&) + ml, vu EV(Ph) ? (3.33) 
K 

where 

3i,p,K(vI~) =FK(vI~) -BK(Uh,plK~vI~). (3.34) 

Here, FK(uIK) and B,(ul,, uIK) represent the restrictions of F(u) and B(u, u) to element OK of the mesh. 
Moreover, in (3.33), r denotes a linear functional defined on V( Yh) which vanishes on V so that 

c2;,,(u)=~;,,(u>, VUEV. 

The functional r contains information about interelement boundaries. It is defined such that the global problem 
(3.3) is decoupled into a series of elementwise subproblems, while retaining the upper bound on ]I+& 
Moreover, it is chosen so that the local subproblems are all solvable, in the sense that the interelement fluxes are 
in equilibrium with respect to the data of each local residual problem. Then for each element fiK E .Yh, we solve 
for the function (pK E V(OK) which satisfies the local problem: 

&(%PK, u> = g;,p,,(u) + P aR g,$ ds 9 v u E v<aK> 7 K 
where g, denotes the equilibrated flux for each element. At this point, one emphasizes that neither the definition 
of r nor the construction of the interelement fluxes is unique. Some equilibration methods have been proposed 
by Ladeveze and Leguillon [ 121 and Ainsworth and Oden [1,2]. Then Ainsworth and Oden have shown that: 

Ild c F IIPAIL . (3.36) 

However, because the spaces V(fI,) have infinite dimension, the local problems (3.35) can only be, at best, 
approximated. Starting from the space Vh,p it is straightforward to construct the corresponding local finite 
element spaces ~“~“(0,) for each element of the mesh. Then, in the same manner as before, we compute the 
functions eK E v”*“(fl,) as finite element approximations of (3.35). It follows as well that 

Finally, the new error estimator nip,: 

(3.37) 

(3.38) 

provides an upper bound to the quantity ]]@I], (but not necessarily to ll~pl],). 

4. Goal-oriented error estimation 

The object of goal-oriented error estimation is to provide engineers with a tool that can assess the accuracy of 
finite element solutions in specific measures other than the classical energy norm. We present here the general 
theory when the measure is given by a linear function of the solution, and apply it to the particular case of 
pointwise error estimation. 

4.1. General theory 

Let,us suppose that we are interested in estimating the error with respect to the measure L, where L denotes a 
linear functional defined on the space V. Then, the error E in the quantity L(u,,,) reads, due to the linearity of L: 
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E = L(u) - L(u,,,) = L(u - u/J = L(e) . (4.1) 

In consequence, the objective is to relate the quantity L(e) to the source of error %t,,; in other words, we aim at 
finding a continuous linear function w, if it exists, such that 

L(e) = 4zi.J . (4.2) 

The function w is called the injuence function (analogous to Green’s functions) with respect to the linear 
functional L as it indicates the influence of the residual on L(e). It naturally belongs to the bidual of V. Since V is 
a Hilbert space, it is also a reflexive space, so that (4.2) becomes 

L(e) = 532 iI,,(~) , (4.3) 

where w is identified with an element of I? Using relation (2.3), one gets 

L(e) = B(e, w) . (4.4) 

Therefore, the equality above is necessarily satisfied whenever w E V is the solution of 

B(u, w) = L(v), v u E v . (4.5) 

This auxiliary problem is often referred to as the dual problem. From the Lax-Milgram theorem, the influence 
function w exists and is unique in V. This problem is infinite dimensional in V, so one can at best find an 
approximation w~,~, for instance, in the finite element space Vh,p, such that 

B(u, q&J = L(u) , v u E VhXP . (4.6) 

First, we observe that the cost to solve for w~,~ is almost negligible, as the finite system of equations, thanks to 
the symmetry of B(., .), has already been factorized once to calculate u,,~. Thus, the cost reduces to one 
backward and one forward substitution. Unfortunately, IYO~,~ E V’,” does not provide any valuable information on 
L(e), since from (2.5), 

Bk q&p) = g~,p(wk,p> = 0. (4.7) 

Nevertheless, using both (4.7) and (4.3), one gets 

L(~) = s;,,(o) - $?$?;,,(W,,,) = .%;,,b - @k.p) = gtP(E) = B(e’ ’ (4.9) 

where EEV, E=W--CCCJ~~, denotes the error in the influence function and is the solution of ( 

B(u, E) = .%;,,p(u), Vu E V . (4.9) 

Here, the linear functional %?I,, is the residual with respect to the error E. 
So far, we have been able to show the following relationships for L(e), derived from (4.8) and (4.9), 

L(e) = .%?~,p(~) = B(e, ~2) = 92;,,(e) . (4.10) 

A new relation, inferred from a property of the inner product B(., *) [4], is given by 

(4.11) 

where s defines an arbitrary scaling factor. The value of s is selected so that the quantities llselle and IIEIsII, have 
the same amplitudes, i.e. ((se\\, = I(EIs(\,, which implies that 

(4.12) 

This particular choice of s represents a minimizer for the quantities [[se + E/$ and llse - ~/sllf. 
The relationship (4.11) tells us that the error quantity L(e) is expressed as the difference of the energy norms 

of two linear combinations of e and E. We have described, in the last section, reliable techniques to obtain lower 
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and upper bounds of the errors in the energy norm. Let vi,, T,&,, ~7;~ and rliPP be global error estimates such 
that: 

It immediately follows, using (4.1 l), that 

(4.13) 

(4.14) 

(4.15) 

which provides a lower bound and an upper bound for the error quantity L(e). 
In addition to the lower and upper bounds above, we also compute estimates ~7~ of the quantity L(e) either by 

using the upper bounds T,T&, and v&: 

or by using the lower bounds T,J,~, and qiw: 

or by using the averages: 

In all cases, we observe that 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

REMARK 1. In order to calculate the bounds v,iw, ~7,&,, r],, and v&,, we actually compute the approximations 
*‘9 4’ and +i with respect to the error e, solving (3.11), (3.24) and (3.35), respectively, and the 
approximations GE, 4” and 4p i with respect to E, solving the same problems as before using the residual CZIP 
instead of .%.i p , . We then calculate the upper estimates ~7:,,, and ~7&, 

Gp =@iz (4.20) 

G, =@iz (4.21) 

in order to obtain an approximation S of the scaling factor s: 

(4.22) 

Moreover, since all the problems involved in computing JI”, +‘, (p> and +,“, +“, 4% are linear, it suffices to 
compute the linear combinations of these functions to obtain the global quantities: 

v,;, =j/pl+v - s-‘t#q: + Ilsc$’ - F-‘qq: (4.23) 

v:,, =~l.qcv + s - ‘@II: + IIs& + s -‘#qf (4.24) 

rl ,, = (4.25) 
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(4.26) 

REMARK 2. We note that the approach of Paraschivoiu and Patera [16], applied to symmetric positive-definite 
problems, would amount to considering bounds of the form: 

(4.27) 

These bounds are less expensive to obtain, since only the estimates v,, and T&, are needed. On the other hand, 
they are obviously less sharp than those in (4.15). However, the effectivity indices they present in numerical 
experiments are very close to one, since these are determined with respect to the quantity of interest L(u) (and 
not L(e)), for which they compute the bounds: 

where u refers to the finite element solution on a very fine mesh. 

4.2. Pointwise error estimation 

In this section, we consider the particular case of pointwise error estimation. We suppose that the ma$i goal of 
our numerical simulations is to obtain an ‘accurate’ value of the solution u at a given point x0 E 0. From a 
mathematical point of view, it is known, in the case where u E V= H’(n), that the solution may not be 
continuous when the geometrical dimension d is equal to or higher than two, which implies that u(xO) may not 
be defined. We appeal here to the use of mollijcation (see [ 14, Chtp. 21) in order to circumvent this issue, which 
allows us to introduce the following quantity of interest 

where the mollifiers k, form a family of infinitely smooth functions in (--co, “)d characterized by the parameter 
E. 

This approach is also well suited to estimate the pointwise error in the first derivatives of the solution, since 
pointwise derivatives are generally not defined at the element interfaces for the finite element solution 
Uh p E VhSP. Supposing we are interested in the partial derivative of u with respect to the variable x, we may 
consider the following quantity of interest: 

The mollifying process can be viewed as an averaging of the quantity u or dul&x over a small neighborhood of 
the point x0. 

It is customary (see [14, Chap. 21) to choose the mollifiers k, of the form: 

1 

2 

k,(x) = 
Cexp- l 2Ib,2 ifIxl<e (4.31) 
0 if b]Z=e 

where the constant C, which depends on d, E and x,,, is selected to satisfy 

I a 
k,(x -x0) dr = 1 . (4.32) 

Examples of mollifying functions k, are shown in Fig. 1 for various values of E with d = 1. 
In the following discussion, the quantity of interest L,(*;x,) is taken to be the linear functional defined in 

(4.29). From the property (4.32) of mollifiers, we distinguish between the following two cases, depending on the 
location of x0 inside fin: 
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Fig. 1. Mollifiers k,(x) for E = 1.0, 0.5, 0.25, 0.125 in dimension d = 1. 
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(1) The point x0 is an ‘interior’ point, in the sense that the support of the mollifier, supp k,(x -x0), lies 
inside 0. In this case, property (4.32) implies that the quantity L,(u; x0) is equal to u(x,,) for every value 
of E whenever the function is constant or linear on LX Moreover, provided that u is continuous in the 
neighborhood of x0, L,(u; x,,) converges to u(xO) as E tends to zero. Also, the value of the constant C is 
the same for all interior points of 0 and thus needs to be evaluated only once. Indeed, when d = 1, we 
have 

I I 
X0+* 

k,(x - x0) dx = R X”+E k,(x-x,)dr=cCI_-+,‘exp(-~)~=l 

A numerical integration of the last integral provides the value 0.4440 so that C = 2.2523~~‘. If d = 2, we 
obtain C = 2.1436~~~. 

(2) The point x0 is a point close to the boundary in the sense that (supp k,(x - x,))\(supp k,(x - x0> fl0) f- 
8. This time, the quantity L,(u;x,) is equal to u(xO) when u is constant, but not necessarily equal when it 
is a linear function. Nevertheless, L,(u;x,) still converges to u(xJ as E tends to zero whenever u is 
continuous in a neighborhood of x0. On the other hand, the value of the constant C varies with the 
distance of x0 from the boundary ati. 

REMARK 3. Because of the second case above, we decide to approximate the constant C by integrating (4.32) 
numerically using the finite element method. 

REMARK 4. From a numerical point of view, it is convenient to define quantity of interest L in the form of an 
integral, since integration is at the heart of all finite element codes. However, integration is generally carried out 
using classical Gauss quadrature rules, and accuracy is directly correlated to the number of Gaussian points used 
in each element. Therefore, it appears necessary to limit the size of the support of k,(x -x0), equal to 26, with 
respect to the mesh size h of the element containing the point x,. Therefore, one requires that 

2E 
KC-- 

h 

or E 3 hK/2, where K is a given fractional number. In order to attain an acceptable accuracy for L while 
avoiding too many Gaussian points, we suggest the value K = l/4. 

Finally, we introduce the effectivity index A8 in order to evaluate the accuracy of L,(e;x,) with respect to 
e(x,) (whenever e(x,) is defined and not equal to 0): 

L&i x0) 
hE = e(x,) ’ 

(4.34) 
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where the subscript in A, is used to emphasize that the effectivity index is dependent on the value of E. A similar 
analysis holds for the estimation of error in the first derivative of the solution. 

5. Strategy towards pointwise error control 

The strategy employed to control the pointwise error L,(e;x,) at a point x0, with Lc given in (4.29) or in 
(4.30), consists of two steps: 

(1) Compute the finite element solution u~,~, and the error estimate vL of (4.16) for LJe; x0). Check whether 
the relative error is smaller than a preset tolerance Co’. 

(2) If the tolerance is not achieved, adapt the finite element mesh in order to reduce the effects of the sources 
of errors. 

The relative error is commonly defined as ere, = IL,(e; x,)ll(L,( u; x,)1. Since both the exact solution and error 
are unknown, we use the available approximations instead. Then, the mesh needs to be adapted whenever 

Adaptation of the mesh is accomplished by refining the elements which contribute to L,(e;x,) the most. Using 
relation (4.10), one immediately observes that 

(5.2) 

Let 71’ = lIelIe and 7”’ = [IE[/, b e any of the global estimators presented in Section 3. We decompose these into 
elementwise quantities 

Then, an element L& of the mesh is refined if 

(5.3) 

(5.4) 

Here, C adp is a user-defined parameter ranging between 0 and 1. 

6. Numerical example 

Here, we apply the theoretical results presented in the previous sections to a one-dimensional problem. The 
problem consists of solving for the smooth solution u, defined on the unit interval 0 = (0, l), which satisfies the 
ordinary differential equation: 

-$(a(x$) +b(x)u=f(x), VxE(0, l), 

subject to the boundary conditions: 

du 
u(0) = 0, a(l)-&l)=O. 

The coefficients a and b are given by 

(6.1) 

(6.2) 

a(x) = 1 + 9 exp - (xo~~~2 

b(x) = 1 

and f is such that the exact solution u E V= {u E H’(0, 1); u(O) = 0} reads 
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Fig. 2. Graph of exact solution U(X) given in (6.3). Fig. 3. Graph of coefficient a(x). 

(6.3) 

The graphs of the solution u(x) and of the data a(x) are shown in Figs. 2 and 3. 
In the first series of experiments, we briefly study the quality of the global error estimators v:ub, vyOw and 

v:rP. The unit interval is discretized into a uniform mesh with mesh size h = 1 lN,, where N, denotes the number 
of elements. The polynomial degree p for the approximations u,, p is also chosen uniform over the mesh. 
Moreover, we uniformly set q = 2 so that the bubble functions of W’are the basis functions of degree p + 1 and 
p + 2. As usual, we measure the quality of the estimators by effectivity indices 

(6.4) 

where r]“ denotes one of the estimators. The effectivity indices are shown in Fig. 4 in the case the solution u,,~ 
is computed with p = 1 and in Fig. 6 with p = 2. We show the associated pollution factor yP,,, in Fig. 5 and Fig. 
7, respectively. 

In both cases, we observe that the upper bound estimate viPP is more accurate than the lower bound estimate 
vy,,, but the latter also becomes very accurate as the pollution factor r,,, gets closer to zero. Not surprisingly, 
the value of r,,, decreases as the number of degrees of freedom is increased and becomes very small in the 
asymptotic range. This can be attributed to the localization of the effects of the residual in the asymptotic range. 

The second set of experiments is devoted to the study of pointwise error estimation. We therefore utilize the 
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Fig. 4. Effectivity indices for the error estimates &, (I), vfh, (2) 
and 77ipp and vzpp (3) in the case p = 1. (3) m the case p = 1 
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Fig. 5. Pollution factor y,,, in the case p = 1. 
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Fig. 6. Effectivity indices for the error estimates & (I), vaW (2) 
and qzpp (3) in the case p = 2. 
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Fig. 7. Pollution factor my,,,, in the case p = 2. 
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linear functional L,(*; x0) defined in (4.29) for pointwise values of u at the point x0 in [O, 11, and the functional 
&(a; x0) defined in (4.30) for the pointwise derivatives at x0. Beforehand, we plot in Figs. 8 and 9 examples of 
influence functions w computed with respect to the pointwise values u(x,,) and duld&,), respectively, at the 
locations x0 = 0.2, 0.5 and 0.8. 

We now explore the influence of the parameter E with respect to the mesh size h on the effectivity index A, 
defined in (4.34). In order to do so, we construct uniform meshes of mesh size h for which we can compute the 
exact quantities L,(e; x0) and e(x,). We then determine E in such a way that the parameter K 

takes on the values 1, l/2, l/4 and l/8. We remark here that the integration of L,(e; x0) is performed using 
fifteen Gaussian points and that the solutions u,,~ are piecewise linear, i.e. p = 1. The effectivity indices for 
n, = 0.3333 and x0 = 0.6 are shown in Figs. 10 and 11, respectively. In the first case, we observe that the graph 
of the effectivity index converges to the line v = 1 for all meshes as K takes on successive values of 1, l/2 and 
l/4. Then, when K is equal to l/8, the index deteriorates (the graph moves away from q = 1) because the 
number of integration points that fall inside the support of k, becomes too small. For the case x0 = 0.6, we 
notice the same tendency. However, the effectivity index exhibits a sawtooth behavior as the mesh is refined. In 
the following experiments, we will use E = h/8, corresponding to K = l/4, where h is the size of the element 
containing x0. 
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Fig. 10. Effectivity indices A, obtained on uniform meshes using 
K = 1, l/2, l/4, l/8 for the quantity ~(0.3333). 

Fig. Il. Effectivity indices AC obtained on uniform meshes using 
K = 1, l/2, l/4, l/8 for the quantity ~(0.6). 

We now proceed by estimating the pointwise error in the solution u,,~ at the points x,, = 0.3333 and 
x,, = 0.8750. We select the first point because it is in the neighborhood of the point where the solution u reaches 
its maximum on the interval (0, l), and the second point because it lies in the region where the error is mainly 
composed of ‘pollution’ error due to the stiffness of the coefficient a(x) at x = 0.5 and to the natural boundary 
condition at x = 1. The finite element solutions are computed with p = 1 and the errors estimated with q = 2. We 
then calculate effectivity indices for the lower and upper bounds (4.15) and for the estimate qL (4.16) with 
respect to L,(e;x,). These effectivity indices versus the number of degrees of freedom are shown for 
x0 = 0.3333 in Figs. 12 and 13 in the cases of uniform and adaptive mesh refinement, respectively. We note that 
the adaptive meshes are constructed according to the strategy described in Section 5 using Cadp = 0.2. In both 
cases, the effectivity index for the estimate vr. remains close to one when the number of degrees of freedom 
becomes large enough. On the other hand, the effectivity indices for the bounds provide more accurate results in 
the case of uniform refinement. However, we observe in Fig. 14 that the relative error is smaller by several 
orders of magnitude for the adaptive refinement. This reveals that refinement needs to be essentially local to 
control the pointwise error at x0 = 0.3333. Values of the effectivity index A, are shown in Fig. 15. 

We repeat the experiments for the case x,, = 0.8750 and the same set of results are shown in Figs. 16-19. This 
time however, we observe that the relative error in the case of adaptive refinement is only smaller by one order 
of magnitude than that obtained by uniform refinement. This implies that more elements far from the point 
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Fig. 12. Effectivity indices of the estimates and bounds for the Fig. 13. Effectivity indices of the estimates and bounds for the 
quantity ~(0.3333) with uniform refinement. quantity ~(0.3333) with adaptive refinement. 
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Fig. 14. Comparison of the evolution of the relative error using 
uniform and adaptive refinement for ~(0.3333). 

Fig. 15. Effectivity indices A, for the quantity ~(0.3333) 
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quantity ~(0.8750) with uniform refinement. quantity ~(0.8750) with adaptive refinement. 
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Fig. 18. Comparison of the evolution of the relative error using 
uniform and adaptive refinement for ~(0.8750). 

1.40 

1.30 

g 1.20 

z 1.10 
Ii 1.00 

‘2 0.90 
= 0.80 

0.70 

0.60 

g 1.20 
5 
s 1.00 
2 
:$ 0.80 

$ 0.60 

0.40 

0.20 

: : : :::::: : :::::: 
: : ““’ ““’ : :: ., : :: ., 

: ‘:‘j : ‘:‘j 
::: ::: 

:.:.a . . . . . . . . . . . . . . :.:a . . . . . . . . . . . . . . :. :. .:..l.:.:.i... .:..l.:.:.i... .._._. _ . ..._’ __..,., :I:j .._._. _ . ..._’ __..,., :I:j 

1 e+Ol 1 e+O2 1 e+03 
Number of degrees of freedom 

Fig. 19. Effectivity indices A, for the quantity ~(0.8750). 
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Fig. 20. Effectivity indices of the estimates and bounds for the 
quantity duld.r(O) with uniform refinement. 

Fig. 21. Effectivity index of the estimate rl, for the quantity 
duldx(0) with adaptive refinement. 

x0 = 0.8750 need to be refined in order to control the pointwise error, which confirms that the pollution 
component of the error is predominant in e(0.8750). 

The goal of the next set of experiments is to evaluate the accuracy of the pointwise derivative dulcb at the 
boundary point x0 = 0. We recall that the quantity of interest reads in this case: 

(6.5) 

This time, the effectivity indices of the estimate vL and of the lower and upper bounds, shown in Fig. 20 when 
the mesh is uniformly refined, are still very accurate. However, when the mesh is adaptively refined, the 
effectivity indices of the bounds, shown in Fig. 22, vary between - 1 and +3, while the effectivity index for the 
estimate vL remains very close to 1 as shown in Fig. 21. This is partially explained by the fact that the quantities 

+ - 
?L’ rllow. rlupp and dppp~ in the case of adaptive refinement, become much larger than the quantity L,(e;) itself. 
Since the lower bounds VI,,, vi, and upper bounds viPP, ~& are obtained by two different methods, the 
differences (vi,)’ - (~&2 and (v,‘,,)* - (vi,)* may take on large values. On the other hand, the estimate 
vL = (77&,)*/4 - (77,,)*/4 may benefit from the cancellation of similar defects in the estimates. Additional 
investigation is needed to understand this phenomenon. It is worth noting though the excellent performance of 
the adaptive strategy towards the control of the pointwise error de/&(O) in view of Fig. 23. 
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Fig. 23. Comparison of the evolution of the relative error using 
uniform and adaptive refinement for duldx(0). 
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Fig. 24. Effectivity indices A, for the quantity du/dx(O). 

Conclusions 

We have presented a general theory for goal-oriented error estimation in the case of elliptic problems. We 
have shown that the method delivers not only an estimate of the error measured in terms of a specific quantity of 
interest but also lower and upper bounds which provide an interval of confidence for the estimate itself. The 
methodology has been successfully applied to estimate pointwise errors in the finite element solution of a 
one-dimensional elliptic problem. It also allows one to optimize the number of degrees of freedom employed 
with respect to specific goals, the goal here being the control of the error at a given point of the computational 
domain. In view of these promising results, the authors plan to investigate the performance of the method on 
two-dimensional problems, to analyze the behavior for various linear functionals of general interest, and to 
extend the methodology to other classes of problems. 
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