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A theory of a posteriori estimation of modeling errors in local quantities of in-
terest in the analysis of helerogencous elastic solids is presented. These quantitics
may., for example. represent averaged stresses on the surface of inclusions or molli-
fications of pointwise stresses or displacements or, in general, local features of the
“fine-scale” solution characterized by continuous linear functionals. These estima-
tors are used to construct goal-oriented adaptive procedures in which models of the
microstructure are adapted to deliver local features to a preset level of accuracy. Algo-
rithms for implementing these procedures are discussed and preliminary numerical
results are given. The analysis is restricted to linear, static. heterogeneous. elastic
materials. @ 2000 Avademic Press
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1. INTRODUCTION

The idea of automatically adapting characteristics of mathematical and computational
models ol heterogeneous media to obtain results of a specified level of accuracy was ad-
vanced in recent work on hierarchical modeling (8. 12). [n these papers, a posteriori bounds
on the error in solutions to elastostatics problems induced by replacing fine-scale microme-
chanical properties by coarser scale or effective properties were derived in global energy
norms. These error estimates were then used as a basis for an aduptive modeling process in
which only enough fine-scale information sufficient to deliver results of a preset accuracy,
measured in energy norms, is used to characterize the model. The resulting adaptive process
can lead to significant computational savings. making possible the analysis of microme-
chanical effects in some cases that are intractable by traditional approaches. Preliminary
results on extensions of these adaptive approaches to a class of models depicting material
damage were discussed in [7].

It is clear that adaptive procedures based on energy-norm estimates may be insensitive to
very localized features of the fine-scale solution. Modeling error in characterizing average
stresses on interfaces or on surfaces of inclusions. for example. may not be detected by
energy-norm estimates unless virtually all of the fine-scale information is used in defining
the computational/mathematical model. To efficiently control the accuracy of models ol
such local features, local estimates of modeling error are required.

In the present paper, we extend the theory of a posteriori modeling error estimation
for heterogeneous materials to “quantities of interest,” by which we mean local features
of the response. In our theory. these quantities of interest could represent, for example,
average stresses on material interfaces. boundary displacements, or mollified pointwise
displacements, strains, or stresses. We remark that many candidates for local quantities of
interest are. in fact, quantities that one actually measures in assessing mechanical response—
strains at points as averaged relative displacements over a strain gauge. local stresses as
forces distributed over interior surfaces. etc. More is said about such guantities of interest
in Sections 3 and 5. Mathematically, a quantity of interest is any feature ol the fine-scale
solution that can be characterized as a continuous linear functional on the space of functions
to which the fine-scale solution belongs. We establish computable upper and lower bounds
and sharp estimates of the errors in such quantities.

With local error estimates available, we develop goal-eriented adaptive procedures, in
which the model is automatically adapted to deliver local quantities of interest to within a pre-
set level of accuracy. These procedures are reminiscent of recently developed goal-oriented
adaptive procedures for controlling numerical approximation error in linear functionals [9].
In the present investigation, we present an adaptive procedure that. in principle. utilizes only
information on fine-scale structures in a neighborhood of the local feature of interest sutfi-
cient to produce results of preset level of accuracy: information outside this neighborhood
need only reflect the response of models defined using effective. homogenized properties
of the material.

Some basic features and assumptions underlying the approaches described here should
be noted:

l. By anexact. fine-scale model. problem. or solution. we mean the exact solution u to a
weak boundary value problem in elastostatics in which the elastic coefficients are character-
ized by a possibly rapidly varying elasticity tensor E = E(x) which is known a priori. The
modeling error e is the function defined us the difference between u and any coarse-scale
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solution @ 0 an elastostatics problem defined on the same domain. subjected to the same
external forces as the fine-scale problem. but with a different elasticity tensor E as coeffi-
cients in the problem: € = u — 0. The function @i. for example. could be the “homogenized
solution™ u’. the solution of the problem in which effective properties. characterized by a
constant or piecewise constant “homogenized™ elasticity tensor E", are used.

2. In applications of our theory and algorithms. the coarse-scale solutions are gener-
ally computed using various numerical methods. such as finite ¢lements. But estimation
of numerical error is not considered in this paper: the techniques developed in |1, 9] can
be used to control approximation error. Our concern here is modeling error in the sense
discussed above, and this error can have properties and behavior quile different from those
of numerical approximation error.

3. In theory, the tensor field E(x) defines at almost every point x in the body an array
(Eijx(x)) with the standard ellipticity and symmetry properties. In our applications, E is
generally piecewise constant, representing a so-called n-phase material with n isotropic
phases, n > |. For a large class ol such materials. it is possible to represent the function
E characterizing the fine-scale microstructure with sufficient accuracy using actual X-ray
computed tomography (CT) imaging procedures with the overall model adaptivity package
to characterize K. The important details of this feature of adaptive modeling are the subject
of a companion paper [11]. As will be seen later in this paper, only CT data sufticient to de-
fine E = E(x) in local neighborhoods of features of interest are needed: the enormous data
storage requirements of a global characterization of E called for in earlier global approaches
are, in general. not needed in the goal-oriented adaptivity approaches advocated here.

4. Itis important to emphasize that our goal is nof to estimate eftective properties of het-
erogeneous materials. Indeed. the familiar process of homogenization of fine-scale features
of the coefticients is here only a mathematical artifact embedded in a broader computational
strategy. Our error estimates and adaptive procedures apply Lo modeling errors in any kine-
matically admissible function. independent of the coefficients. so long as the underlying
problem is well posed. Nevertheless, the choice of approximations or regularizations of E
will obviously ualTect modeling error and rates of convergence of the adaptive process to
models delivering results with the target accuracies.

5. Extensions of our adaptive procedures to nonlinear problems are possible, although
such extensions are not considered here. These extensions could involve incorporating the
goal-oriented adaptive process as an inner loop in a broader iterative process. assuming
that the regularized problem remains well defined. In effect. such extensions amount to
redefining the level of sophistication of the model used as a datum for error estimation.

In the next section, we describe the model class of problems and liy down notations and
preliminaries. We then establish a series of results on local estimates of errors in quantities
of interest. including upper and lower bounds on errors. This is followed by the description
of a goal-oriented adaptive modeling algorithm. An analysis of the algorithm and results
of preliminary numerical implementations are then presented. The detailed description of
a computational environment designed o automate such procedures and the interface with
imaging and visualization modules is the subject of forthcoming work | 11].

2. NOTATIONS AND PRELIMINARIES

We consider an open bounded 2 ¢ RY. N = 1.2, or 3, with boundary 3. In general,
Q can be multiconnected and very irregular, but for present purposes. it suffices to lake €
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to be Lipschitz with piecewise smooth boundaries. We denote by H"(€2). m > 0. the space
of functions with distributional derivatives of order <m in L2(§2) and we use the notation
H"(2) & (H"(Q))" and L2 (Q) & (L2(Q)".

The closure of © is the region occupied by a linearly elastic material body in static
equilibrium under the action of body forces f € L2(2) and surface tractions t € L2(T",),
with I'; C dQ. The displacements u of the body are prescribed us zero on I, = JQ\T,.
The space of admissible functions V(£2) is therefore defined as

V(Q)E {v:ve H(Q). v, = 0). (1)

the boundary values being understood in the sense of traces of H' functions. In general,
we will assume that meas I',, > 0: otherwise. our development is only altered by replacing
V() with V(2)\R(£2). R(£2) being the linear space of infinitesimal rigid motions of the
body.

The total potential energy of the body is characterized by the functional

J: V- R
or | (2)
T & 53{\'. v) — F(v).
where B(-. -) is the symmetric, positive-definite. bilinear form,
B:V(Q) xV(Q) =R
del . {3)
B(u.v) = [V\- : EVu dx.
Ja
and F(-) is the linear functional.
F:V()y—-R
(4

]—"(v}'jér/f-vdx-i- [ t vds.
Jo Jr,

It is also convenient 1o introduce the weighted inner product ((-. -))}g on (LQ{Q))N;x
(L2(2))" defined by

(A By & [ A - EBdx 5)
FAY]

tor tensor fields A, B. Then. B(u, ¥v) = ((Vv, Vu))g and
(Vv V) = Bv. v) = IV} g (6)

where ||| g.q, i$ the energy nornr ot v.

In (3). E € (L(2))¥ " is the uniformly elliptic tensor of elasticities which satisfies
the standard symmetry conditions: Ejjz(X) = E jigy(X) = Ejju(x) = Ey;j(x). for a.e. X in
Q. 1<, j k.l <N.The notation (:) denotes contraction of second-order tensors (Vv :
EVu = v ;Ejug . summing on i, j ok Lov ;o= 8v /v iug = duy f0.x). There, also.
dx = dx)dyy - - dyy is the volume measure and ds the surface element.
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The material characterized by K is ussumed to have a complex. not necessarily periodic
microstructure so that E is a highly oscillatory function of position x over £2.

2.1. The Fine-Scale Problem

Under the stated assumptions, the displacement field u € V(£2) that exists when the body
is in static equilibrium under the action of external forces (f. t) is the unique admissible
displacement that minimizes 7 over V() and is the unique solution to the following weak
boundary value problem:

Find u € V(£2) such that

(7
B(u.v) = F(v) VYveVQ).

We shall refer 1o (7) as the fine-scale problem since it involves all the fine-scale features
of the material, and to its solution u as the fine-scale solution. In the sense of distributions,
(7) is equivalent to the elliptic system,

-V.o=f
o = Ee
2e = Vu+ Vu' (8)

u=~0onl,

o-n=tonl,.

where n is the unit outward normal to d$2, and o and € are the stress and strain tensor fields,
respectively.

2.2. The Regularized Problem

Various regularizations of problem (9) are obtained by replacing E with a regularized
clasticity tensor. For example. if the microstructure is assumed to be periodic. it is common
practice 1o replace E with a homogenized elasticity tensor E°. defining effective proper-
ties of the material, usually a constant tensor. For details on homogenization of periodic
composites, see [4. 10]. Another approach used to regularize heterogeneous materials as-
sumes the existence of a representative volume element (RVE): sce. for example. [3]. Our
approach. however. does not rely on the existence of an RVE for a given heterogeneous
material. Without restricting ourselves to a constant function, we ussume that the elasticity
tensor E is replaced by a suitable approximation E? that satisfies the uniform ellipticity and
symmetry conditions. We then can consider the regularized or homogenized problem,

Find u’ € V(Q) such that

.
Bu". v) = F(v) Vve V(Q), ©)

where now
B, v) & / Vv : "W dx. (10)
Ja

and F(-) is again given by (4). The unique solution u’ to (9) is called the regularized or
homogenized solution.



ESTIMATION OF LOCAL MODELING ERROR 27

2.3. Review of Energy Estimates of the Modeling Error

The modeling error is defined as the difference between the fine-scale solution and the
regularized solution

y det’
e]é 1

u—u". (1)

We now review (wo results of the estimation of this error in the energy norm. For this
purpose. we define

Zy = (1 - E7'EY). (12)

where 1 is the identity tensor. Next. for g € ¥V, we define the associated linear residnal
Junctional Ry : V() — R,

Ra(v) = - / Vv :EILZWVgdx. ve V(). (13)
Ja

THEOREM 2.1.  Let w and u® be the solutions to problems (7) and (9). respectively. Then
the following holds.

0 ]
(Im’ =< Hl! “.’:‘IQ) = HU —u ”J:'(ﬂl =< Cupp- (14)
where

def [Ryo (“U ]

low = Tl Cupp o ((z)Vll“-InVU”)):é::- (15)

For proofs, see [12] and [6]. Both assertions follow from the fact that the modeling error
¢ is governed by

Be®. v) = Rp(¥). Vv e V(). (16)

Using the above result, it is possible to estimate the energy norm of the difference between
the fine-scale solution u and any admissible function z € V(£2).

COROLLARY 2.1. Let w and u" be the solutions to problems (7) and (9), respectively.
and ler z € V(Q\{0}. Then.

le)\\' E " [ B 2” Ei12) E E{fpp" (]7]

where

o 1F) - Bl -
i, & PO BN e T @ - T + L, (18)

2]l £

with J as defined in (2).
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Proof. The proof for the assertion lu — zl| g < fjpp can be found in |8]. For the lower
bound. we have

Bu—1zv)=F(v)—B(z.v) YveV(Q). (19)

Then. it is straightforward to show that

F(¥) — Bz, v) .
lu—zlgy = sup I—-J—-il, (20)
veVISNO) Ivile

and by picking v = z. we obtain

|F(z) — Bz, 2)|

(21
Izl &2 )

lu =zl =
which concludes the proof. ®

3. MODELING ERROR IN LOCAL QUANTITIES OF INTEREST

As mentioned in the Introduction, global estimates of modeling error. such as the energy
estimate presented in Theorem 2.1. can be insensitive to local quantities of interest such
as interfacial stresses. To address this problem. we now present a theory for the estimation
of modeling error in quantities of interest that can be characterized as continuous linear
functionals on the space ol admissible functions V(£2). This theory represents a significant
departure from more traditional theories of error estimation in that it allows the estimation
of modeling error in virtually any quantity of interest to the analyst, such as (mollified)
pointwise values of stresses and displacements. boundary displacements, and averaged
stresses. Concrete examples of such quantities of interest will be given in the section on
numerical experiments.

The goal in this section is to obtain bounds on the quantity L(u) — L(u®) = L(e").
where L € V'(2) is a continuous linear functional. We first present a result on obtaining
upper and lower bounds on L(e"). Next, we show how Lhis theory can be extended to
obtain bounds on the error in arbitrary admissible functions z € V(£2), i.e., bounds on the
quantity L(u) — L(z) = L(u — z), where # is not necessarily the solution to an elastostatics
problem posed on the domain §2. The motivation behind this is that the modeling error in
local quantities of interest can often be reduced by adding perturbations to the regularized
solution such that the sum is still an admissible function,

Some comments on why “quantities of interest™ are characterized as “continuous linear
functions™ are appropriate. It is understood that important local features of the microme-
chanical response are obliterated by homogenization but may be the precise quantities of
interest in determining the performance of the material—stresses at material interfaces.
relative displacements of inclusions. etc. As will be demonstrated in the next section, the
extraction of errors in local [eatures of the response is accomplished by setting up an aux-
iliary (adjoint) problem for an influence function w in which the data in the problem (the
“right-hand side”) are a customized functional characterizing the particular feature of in-
terest. The characterizing functional L must be linear and continuous, or else the auxiliary
problem could be meaningless. For example, it would be inappropriate to identify a stress
ordisplacement at a point X in §2 as a quantity of interest as the “stress could be infinite™ and
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FIG. 1. Schematic of the composite body considered. Dashed lines indicate the partitioning of the domain
into cells.

point displacements are underfined in V(£2). Instead, we construct averaged or mollified
functions so that the influence function that corresponds to the particular feature of interest
is a well-defined admissible function in V(£2). Thus, for example, L could represent average
stress components over a small surface area. We give more examples later in Section 5.

3.1. Upper and Lower Bounds on Modeling Errors in Local Quantities of Interest

Let L be a continuous linear functional on V(Q), L € V'(Q). As a first step, we first pose
the following global adjoint fine-scale problem:

Find w € V() such that

(22)
Bv.w)=L(v) VveV(Q).

The solution w to the adjoint fine-scale problem is referred to as the fine-scale influence
function. The regularized version of this problem is referred to as the adjoint regularized
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FIG. 2.  Distribution of the quantity ¢; ., normalized with respect to the maximum.
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FIG. 3. Plots of the (a) £,, and (b) £2: components of the strain tensor £(w") for the quantity of interest L.

problem and reads

Find w" € V() such that

) 0 (23)
B'(v,w") = L(v) VYve V().

The solution to this problem will be referred o as the regularized influence function.
In what follows, we sometimes refer to the problems (7) and (9) as the primal fine-scale
problem and primal regularized problem, respectively. It is obvious that, under the stated
assumptions on E and E°, the functions w and w" exist and are uniquely defined.

It immediately follows that the modeling error in the influence function

_q def ;
e =Ew—w (24)
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satisfies (recall (16))
B(v.&") = Rw(v) Vve V(). (25)

We also note that & satisfies the following relationship (analogous to (14)):

’Eluw = "éﬁuﬁlm = flw — “’OHEIQJ = Eupp- (26)
where
= ef Rw“(wu] = ef I}
Diow = !—ﬂ—' Zupp = (Lo w0 TyWw)) 2. (27)
(AL (20T

We now state the main result of the estimation of modeling error in quantities of interest:

THEOREM 3.1.  Ler u” and w° be the solutions to problems (9) and (23), respectively.
Then,

Mow < L(€°) < 1upp. (28)
where
o }1(:;;“.)3 - ﬁ(n;,,,,)? + Ruo(w0), (29)
.- }1(11[.*,,1,)2 - é(n.:,wf + Ryuo(w'). (30)
with arbitrary s € R,
My & \[5203, £ 2TV, Ty VW) +5722, @31

and

) 40
£ der [Ryweas o (u” + 6% wY))

- (32
i u® +6%w" 50 )
where Lypp and Lupp are defined by (15) and (27), respectively. and 6% is given by
. B wORe(su’ £ 57 'w?) — Bu”. u”)Rye(su? £ 57 'w") 33)

- Bu®, w)Ryo(su® £ 5~ 1w0) — B(w?, wO)R o (su” £+ 5~Iwh)’

Proof. The outline of the proof is given below: see [6] for details. The error in the
quantity of interest can be decomposed as

L") = B(e®, w) = B(e”. &") + B(e®. w') = Bse". s7'&) + Rpw(w"),  (34)

where s € R is an, as yet, unspecified positive scaling factor. Now, using a simple property
of an inner product, we rewrite the expression (34) as

| I
L") = z||se“ +s57'& L — ‘—lllse“ —s7'@ 1} q, + Ruo(W). (35)
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The first two terms on the right-hand side of (35) can be bounded above by noting that
the quantity se” + s~'e” satisties

B(-"E” + 5718, V) = Rz (¥) Yy e V(Q), (36)
and hence
lse® 57" e < nip- 37)

with

o r 12
nE, & {] T,V(su’ + 57 'w")  EZ,V(su" + s"w”}dx}
Q

(38)
sy 12
= {Szf;'l?pp + 2((IUVU“. I[]V“'II)}E + .\'—zi;l?Pp} / .
To obtain a lower bound on the quantity se” + s~'&", we note that
=1= |R\ gyt -"("'JI
lse" £ 57"l eey = IRar g srwlle 2 ———— (39)

VIl &g

for any v € V(Q)\{0}. A linear combination of u® and w” of the form v = u + 6*w",
6% € R, is then used in the above expression to obtain the best possible lower bound. The
value 8% is found by a simple extremization process. The third term R, (w) depends only
on known quantities. =

It can be shown that the optimal value of the scaling factor s is given by

s = /I Ecy /€% o

However. since & und e” are not known exactly, we use

—_—

st = \/S;upnffunp-

Also. in our numerical experiments, we employ the following estimares of the modeling
error in the quantity of interest:

1 I
L(e") =~ Nest.upp ) Z(’?.‘H]p)? - Z{’]Jppjz + Ryo (“‘n}- (40)
and
def 1 [
L(€%) & Negtiow = Z(J}ﬁ',“.)? - ;('huw)z + R (w). 41)

An important feature of the theorem above is that the elasticity tensor E” need not be a
constant function: it need only satisfy the uniform ellipticity and symmetry conditions.
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FIG. 4. Plots of the (a) £,, and (b) £5; components of the strain tensor £(w") for the quantity of interest L.

3.2. Modeling Error in Quantities of Interest for Admissible Functions

We now demonstrate how to obtain bounds on the quantity L(u — z) for admissible
functions z € V(§2). z = 0, where L € V'(2) denotes a quantity of interest. We first define,

for s € Y, the functional 7= : V() — R,

e |
TEW) E B, v) - 6F£57'L)W), ve V(). 42)

It is easy to see that:

e The functional J* has a unique minimizer X;* that satisfies

Bixt v)=G6F£s"'L)v), YveV(Q). (43)
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FIG. 5. Plots of the (a) £, and (b) £z components of the strain tensor £(w") for the quantity of interest L.

Moreaver,

xf =su+s'w, (44)

where u is the unique solution to (7) and w is the unique solution to (22).
e Ifv e V(Q), v #0, then, in the spirit of Corollary 2.1, we have

Miow (V) < Il (s £57'W) = Vilg@) = IxF — Vlle@) <m0, (45)

where

def

Tapp ) = /2(T(V) — TE(su0 £ 571w0)) + (0,2, (46)
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and

det (fi_lL] ) —B ¥, ¥
.y & 6F £57 D) = Bov v
¥l e

(47)

where J}fw is as defined in (31).
These preliminaries bring us to the following result:

THEOREM 3.2.  Leru” and wl be the solutions to problems (9) and (23). respectively. Let
7€ V(Q).z # 0, and denote the quantity of interest by L € V(). Moreover, ler s € RY.
Then, the quantity L(u — z) can be bounded above and helow,

Mow(2) = L(u —7) < 1ypp(Z) (48)
with
Now (Z) = %(;];w(.\'z +s5'wh)? — &[r;gpp(sz — s "W+ Fw0) — Bz. wY).  (49)
and
Hupp (2) = %(ul',';,p(.\'z + 57 'wh)? — i(n,;w(sz — 57w+ Fw") — B(z. wY), (50)
and :}fpp{v] and r}ﬁ’,“.(i-‘l. v € V(Q), are defined in (46) and (47). respectively.
Proof. We recall that L(v) = B(v, w) ¥Yv € V(). Therefore.

Lu—2)=8Bu-1zw)
=Bu—zw—w")+Bu-zw

= Bisu—1z). 57" (w = w")) + Bu. w") — B(z. w") (51)

and since the energy norm ||-|| gq, is derived from the bilinear form B(:, -),

Lu—17)= %ll.\‘[ll — )+ 5w —w))ia - élls(u -2 —s7'w=wIliq
+ B(u. w') — B(z. w°)
= :]1 [(su+s~'w) — (sz + -\'_l“'“HI:':;(Q, — %Il(.m —s57'w) — (52— .f'w“)”i-(m
+ F(w) — Bz w"). (52)

Since the terms F(w") and B(z. w") can be computed exactly, we need only bound the
terms [[(su £ 5~ 'w) — (sz £ s~ 'W")|| ). From (45), we have

nE 2257w < [GutsT'w) - szt sT'W) e < :}ip(.\'z:bs_'w"). (53)

which concludes the proof. =

Note that the optimal value of the scaling factor s is now given by

o = [Iw — “'OHE(QI A gl-'_ﬂ (54)
o=zl V &
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Later. we will also use the following estimates of the quantity L(u — z):

L(u——z}*?ﬁmmm!ﬁfﬁtuﬁpmzﬁ-x‘ﬂﬁﬁll—-%(nQPGZ-—s"W"DE
+ F(w') — B(z. w"). (55)
and
L—17) % o = &(m_:w{j‘iﬂ + s~ 'wl))? - }4(31[,\v (sz — s~ 'w")?

+ F(w")y — B(z. w"). (56)

Remark. The definitions of the functionals L can, in some cases, be extended to non-
linear quantities of interest through linearization. For example, if one is interested in the
squared root-mean-square norm (the L? norm squared) of u over a subdomain w C €, then
the nonlinear quantity of interest is

N(u) = / u-udx. (57)
o
The modeling error in this quantity of interest is

N(u) — N

Il

/(u cn—u? udx
_ j (W + ¢ - O + €% — u° - u®) dx

=2[u"-eﬂc?‘x+ / e - e dx

[

(H
~ 2/ u”- e dx. (58)
Then the linearized quantity of interest is given by L(v) =2 | u”. vdx.

4. GOAL-ORIENTED ADAPTIVE MODELING

One way to overcome the loss of fine-scale information due to regularization techniques
is to use the regularized solution as a starting point in a procedure that adaptively improves
the quality of the solution. Such procedures are common in the context of finite elements
where a coarse mesh solution is used us a starting point and is adaptively improved upon by
refining the mesh. Here, we are concerned with adapting the model of the microstructure
itself. We begin this section by describing a goal-oriented strategy for model adaptation for
a given quantity of interest. We then present an algorithm based on this strategy.

4.1. Adaptive Modeling Strategy

Our strategy for adapting the material model based on modeling error in a quantity of
interest L. € V'(£2) consists of:

1. Solution of the regularized problems (9) and (23) for u® and w", respectively.
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FIG. 6. Distribution of the quantities (a) & ., and (b) £, normalized with respect to the maximum, for the

quantity of mterest L.

2. Estimation of the modeling error L(u—u") in the quantity of interest using
Theorem 3.1,

3. If required, enhancement of the regularized solution u’ by taking into account the
fine-scale material features over a “region of influence.”

Let us elaborate further on the third part of our strategy. Suppose €2, C €2 is determined
to be (in a fashion to be described shortly) the region where the finescale elasticity tensor
E most influences the quantity of interest L. We propose solving a problem on §2; with the
regularized solution u® providing the boundary conditions. More precisely, define

d def

r, ¥aQ,nr,, ro, €ae\r,. (59)
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FIG. 7. Distribution of the quantities (a) £, ., and (b) A, normalized with respect to the maximum. for the
quantity of interest L.

Define the local function space on €2; as
V(QL) = [v e V(). v =00n Q2\Q, vy, =0). (60)
Next, an extension operator & : V(£2, ) — V(2) is introduced, defined by
v € V(8), & (vp) = vsuchthat v|g, = v, v|ga, =0. (61)

The restriction of the regularized solution u" to the domain of influence €2, is defined as
u® u del un|
Ly =

problem:

@, - Then g is sought as the solution to the following weak boundary value

Find @i, € {u} } + V(£2,) such that
| (62)
Bp(o,,vp)=Fp(ve) Yvp e V().
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where the bilinear and linear forms are defined as

Bulii,. vi) % [ Vv, : EViy dx. (63)
Jo,

and
Fr(¥s) o f-vpdx+ / t-v, ds, (64)
S . l‘;_.

respectively. Thus, @i is a perturbation on €; that takes into account the fine-scale mi-
crostructure. Moreover, it equals the primal regularized solution u® on the Ty, portion of its
boundary. Using the extension operator introduced earlier, we arrive at a locally enhanced
function i1 € V() defined as

€00+ & (o, —u?). (65)

We now make two observations:

e The locally enhanced solution @t € V() is an admissible function and satisfies the
kinematic constraint @t|r, = 0. even though it is not the solution to a global problem posed
on 2.

o The modeling error in the quantity of interest L corresponding to the perturbed solu-
tion is L(u) — L(@i)) = L(u — @i). This quantity can be bounded above and below using
Theorem 3.2.

We now propose a technique to determine the “domain of influence™ €2, . We consider a
nonoverlapping partition P of the domain  into cells @, | <k < N(P). where N(P) is
the total number of cells in the partition. Define

3

Ck,upp (-Iéf { [ L'Vll" N EInVUD d‘} .
Jeoy

. (66)
Ek.upp d-i—l {j I{]V“'D E FL)V““ dX} ‘ g
)y
and note that
N(P) N{P)
2 2 y2 =2

cllpp = Z Ck,npp' Eupp = Z Ck.uppl‘ (67)

k=1 k=1

where &, and Eupp were introduced in (15) and (27). respectively. Next, note that the proof
of Theorem 3.1 (see [6]) is based on the decomposition

L") = B(e", &%) + B(e®, w"). (68)

which implies that

|L{L‘“)| = IS d‘i‘l Cupp‘fupp + Cupp||“'“||.'£(s2|- (69)



40 ODEN AND VEMAGANTI

This suggests that the cells & in which the quantity

B = Sk uppGiupp + Seamp W 20, (70)

exceeds a tolerance can be picked to constitute the domain of influence ;.

4.2. The Goal-Oriented Adaptive Local Solution Algorithm (GOALS)

We begin by considering quantities of interest ol the type

L(v)= /!{v)dx, w C 82, (71)

o W

where / is a linear map: [ : V(Q) — L/ .(R2). Our algorithm can be easily modified to

accommodate quantities of interest of other types. The GOALS algorithm can now be
stated as follows;

Step 1: Initialization.  Given the initial data €, I",,. T';, E. f. and t, construct a nonover-
lapping partition of the domain P = {®&;}, k = 1.2... N(P). Specily error tolerance pa-
rameters atoL and dtor. 0 < dtoL < .

Step 2: Regularization.  Compute the homogenized elasticity tensor E. Solve the primal
regularized problem (9) for u” and the adjoint regularized problem (23) for w'.

Step 3. Modeling error estimation.  Compute error indicators &;. &i. and B for | <k <
N (P). using (66) and (70). Estimate the modeling error in the quantity of interest using
Theorem 3.1. Denote this estimate by 5.y

Step 4. Tolerance test.  1f tjeg < @01, x L(u"), STOP.
Step 5: Doniain of influence.  Determine initial guess for “domain of influence™ £, as
all the cells that intersect e, the region over which the quantity of interest is defined:

QU =Ues0; TE(:0;Nw#N. (72)

Compute the quantities &, £p. and 8,

f}_ ‘lér {Z ‘:J'.J_upp} : El‘- déf {Zfﬁupp} L ﬁf_ lléf 93 EL + é'.[. “w””e‘i‘[QL]- {??)

red ke
Step 6. Update domain of influence. Determine the “bad neighbors™ of Q.. i.e.. if
Bi > dtoL x B mark ®; as bad and update €2 :

Q< ;. U {bad neighbors}. (74)

Update the quantities & . o, and 8.

Step 7: Solution of local problem.  Solve local problem (62) on 2, for ii; . Construct
the locally enhanced solution tt € V(£2) using (65).

Step 8 Estimate modeling error. Estimate the modeling error L(u — @i} using
Theorem 3.2 and denote the estimate by 9. If 5oy < aror x L(i1). STOP. Else. GOTO
Step 6.
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FIG. 8. Distribution of the quantities (a) g, ,, and (b) £ normalized with respect to the maximum, for the

quantity of interest L.

In many applications, the decay of local effects may be very fast, meaning that £2; is often
small in comparison with £2. However, cases can be anticipated, such as composites with
fiber reinforcements, where decay rates are small and relatively large domains of influence
may be needed to attain the target accuracies,

5. NUMERICAL EXPERIMENTS

5.1. Model Problem Description

Consider a partially loaded 2-phase composite material in which the matrix materials and
the cylindrical inclusions are both isotropic. The volume fraction of the inclusions is taken
to be 0.3 and they are randomly dispersed in the matrix material as shown in Fig. 1. The
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material properties are taken to be (£ = 100.0 MPa, v = 0.2) for the matrix material and
(£ = 1000.0 MPa, v = 0.2) for the inclusions, where £ is the Young's modulus and v is
the Poisson’s ratio. Plane strain conditions are assumed to hold.

The domain is partitioned into N (P) = 42 cells as indicated by the dashed lines in Fig. |
(Step 1 of the GOALS algorithm). Because of the lack of microstructural periodicity, the
homogenized properties of the domain are taken to be the average of the Hashin-Shtrikman
upper and lower bounds [3] (Step 2).

To evaluate the accuracy and effectivity of various bounds, we compute numerical ap-
proximations of reference fine-scale solutions u and w, since these are not known exactly.
To reduce the influence of approximation error on the results, it is important that the nu-
merical approximations to the fine-scale functions, as well as those to the homogenized
functions u” and w', be computed with very high accuracy. Toward this end, we perform
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all computations using the /i-p adaptive finite-clement code ProPHLEX [2]. Sample /-p
meshes are shown later in this section.

3.2, Domains of Influence

Evidently, the amount of microscale information necessary (o accurately predict a quantity
of interest depends on the quantity of interest itself. A qualitative approach to determining
the domain of influence of a quantity of interest is now described. Consider the following
quantities of interest:

1 " | ) ar ov
Li(v)= — U||(¥']d,\£——-“—/ (C|#+C3—-I-2-)n’x.
[y S, [l o, ay dy

Lo I f 8w
L(v) = I/ £12(V) dX = / %2 dx. (15)
2| S

12 ws| J,. d¥

L4(v) =j ke (X2 Xg)ua(X) dx.

The first quantity of interest L | represents the oy, component of the stress tensor averaged
over the inclusion w,. shown in Fig. 1. with appropriate material constants Cy and C». The
second guantity of interest La represents the £22 component of the strain tensor averaged
over the inclusion ws.

The third quantity of interest is a mollification ol the ¥y component of the displacement
vector over the inclusion w,. The use of mollification is necessitated by the fact that one
cannot refer to the point-wise values of functions in V(£2). The mollifier kernel £, (- xq) is
an infinitely smooth function and its support is a ball of radius € centered at xq (denoted
B (xp)). We choose Xy and € so that w» = B.(x;)). The mollifier kernel has the following
properties [5]:

e It has continuous derivatives of all orders on RY.
o ko(x:xg) = 0tor|x — xg|l = € and L (x: xp) > 0 for |x — x¢] < €.
. fﬂ.:n.n'{"(’“ Xoldx = 1.

First. the primal homogenized solution u” is computed by solving (9). The modeling error
indicators for the primal problem. & upp. are then computed using (66). These quantities are
shown in Fig. 2.

Next, the homogenized influence lunctions w" corresponding to the three quantities of
interest defined above are computed by solving (9). In Figs. 3. 4. and 5. we show the £, and
£2» components of the strain tensor g(w") for the quantities L. L, and L1, respectively.
Recall that it is the strain tensor of w” that appears in the various expressions for the modeling
error in a quantity of interest. It is seen that. in the case of L, and L. the components of
e(w?) are small everywhere except in a small neighborhood of the region of interest. For
the quantity of interest L3, the strains are nonzero over a larger portion ol the domain €2.

The modeling error indicators for the adjoint problems. Eﬁ'-unp and S are computed using
(66) and (70). The indicator f; roughly represents the magnitude of the contribution (or the
influence) of a cell to the modeling error in the quantity of interest, and its distribution over
€ provides a qualitative description of the domain of influence of the quantity of interest.

The quantities E’--urip and B, tor L, L. Ly are shown in Figs. 6-8. A major difference
between the distribution of the primal and the adjoint error indicators is that the primal
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FIG. 10, The hi-p meshes for the sequence of domains of influence and the resulting modeling errors in the
quantity of interest L.: (a) Y, (b) @], (¢} Q;, and (d) ©].

indicators are global in nature, whereas the adjoint indicators for L, and L» are markedly
local. Note that the domain of influence of the quantity of interest L3 is much larger
than it is for L and L,. This indicates that more fine-scale information is required to
accurately predict local displacements than is required to predict local stresses or strains,
Also, for the quantity of interest L3, the computation of the indicators was repeated with
€, the mollification kernel radius, reduced by half. The change in the distribution of the
normalized error indicators was found to be negligible, suggesting that the nonlocality of
the distribution of these error indicators is quite insensitive to €.

5.3. Error Estimation and Adaptive Modeling

Here, the adaptive modeling strategy proposed earlier is used to determine a material
model that accurately predicts the quantity of interest

Li(v) = |]| 0'“(\!'10'!— I/( ,%+Czﬁ%)dx (76)
w3l S,
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TABLEI
Effectivity Indices of the Estimates
Associated with the Primal Problem

Error estimate Effectivity index
——ﬁ'; 1.08S
e = vl 5iq,

o 0.494

Iy — "0,

where w; 1s the region occupied by the inclusion indicated in Fig. 1. This quantity of interest
is the average of the o) component of the stress tensor on the inclusion ws (with appropriate
material constants Cy and C»).

After the homogenized influence function w? is computed. the modeling error indicators
&1 upp- and By are computed using (66) and (70). In Fig. 9 we show the normalized quantities
&,..pp. and B;. | < & < 42. Again. note the highly local nature of the error indicators fk_l.pp
and B;.

To assess the quality of the error bounds and estimates computed in this step of the
GOALS algorithm, we use the notion of an effectivity index. For a given error estimate, the
effectivity index is defined as the ratio of the estimated error to the true error. In our case.
we compute the “true error” using the reference solutions u and w. The closer the effectivity
index is to unity. the better the quality of the estimate. Thus. the effectivity index of the upper
bound on the homogenization error §,pp introduced in (13) is &ypp/llu — u’ Il £¢52)- First. the
effectivity indices of the estimates corresponding to the primal problem are shown Table 1.
We see that the upper bound &y is very close to true homogenization error flu — ' £
whereas the lower bound is ineflicient.

The effectivity indices of the estimates associated with the adjoint problem are next shown
in Table II. For the adjoint problem. both the upper and lower bounds on |w — w"|| g,
are seen o be accurate. The bounds 1yp, and Mgy on the modeling error in the quantity
of interest are far from unity as expected: for a detailed analysis of the accuracy of these

TABLE 11
Effectivity Indices of the Estimates As-
sociated with the Adjoint Problem Corre-
sponding to the Quantity of Interest I.

Error estimate Effectivity index
——-E_E!— 1.123
Iw — W'l
i 0.994
Iw — w'liea.
e ~162.7
LieM

e 161.4
Lie")
sl U?{J()
Lie")
A ~2.028

Lie")




46 ODEN AND VEMAGANTI

bounds. see |6]. We see that the estimate 1.5 10w alone has a reasonable effectivity index.
In our experience. this estimate has performed consistently and can be used to drive the
adaptive process.

The relative modeling error in the quantity of interest L. defined as Ly(u — u®)/L4(u),
is found to be 74.3%. To reduce this error. we adapt the material model as follows. The cell
containing the inclusion ws is chosen as an initial guess for the domain of influence QY (with
the superscript indicating that this is the initial guess for the domain of influence). Note that
this is the cell with the largest error indicator B;. The local problem (62) is solved on this
cell using a well-resolved /-p adaptive mesh. and the enhanced solution ii is constructed.
The error in the quantity of interest is reduced and we find Ly(u — )/L (n) = 35.2%.

The material model is further adapted by adding neighboring cells to Qf . The resulting
regions and the associated errors are shown in IFig. 10. In each case. we solve a local problem,
as described above, and construct the enhanced solution (). Figure 10 shows that to reduce
the modeling error to below 5% (which is considered “engineering tolerance™), it would
suffice to stop the adaptive algorithm after computing the enhanced solution (@) on 7 .

6. SUMMARY AND CONCLUSIONS

The concept of adaptive modeling of materials makes no assumptions about the exis-
tence of representative volume elements (RVEs) or the periodicity of microstructure. as is
usual in the traditional analysis ol composites. Using regularization as part of a larger al-
gorithm. adaptive modeling attempts to deliver material models that satisty preset accuracy
requirements.

In this work. we present a new theory for the goal-oriented adaptive modeling of hetero-
geneous materials and an algorithm for adapting material models based on our theory of
local modeling error estimation. Preliminary numerical examples demonstrate the advan-
tages that such modeling techniques have over traditional methods. Extensive numerical
experiments, details of a parallel computational infrastructure for the adaptive modeling
of heterogeneous materials. incorporation of imaging technology into such analyses. and
extensions 10 nonlinear problems are subjects to be addressed in future work.
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