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A theory of a posteriori estimation of modeling errors in local quantities of in-
terest in the analysis of heterogeneous elastic solids is presented. These quantities
may. for example. represent averaged stresses on the surface of inclusions or molli-
fications of pointwise stresses or displacements or, in general. local features of the
'"line-scalc" solution characterized hy continuous linear functionals. Thcsc estima-
tors are used to construct goal-oriented adaptive procedures in which models of the
microstructure are adapted to deliver local features to a preset level of accuracy. Algo-
rithms for implementing these procedures are discussed and preliminary numerical
results are given. The analysis is restricted to linear. static. heterogeneous. elastic
rnaterials. © 2110U Al'otkmil" Pre::."
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ESTIMATION OF LOCAL MODELING ERROR

I. INTRODliCTION

The idea of automatically adapting characteristics of mathematical and computational
models of heterogeneous media to ohtain results of a specified level of accuracy was ad-
vanced in recent work on hiC'/'(/rchica! modelillg [8. 12]. In these papers, a posteriori bounds
on the error in solutions to elastostatics problems induced by replacing fine-scale microme-
chanical properties by coarser scale or effective properties were derived in global energy
norms. These error estimates were then used as a basis for an adaptive modelillg process in
which only enough nne-scale information sufficient to deliver results of a preset accuracy.
measured in energy norms, is used to characterize the model. The resulting adaptive process
can lead to significant computational savings. making possible the analysis of mierome-
chanieal effects in some cases that arc intractable by traditional approaches. Preliminary
results on extensions of these adaptive approaches to a class of models depicting material
damage were discussed in 17].

It is clear that adaptive procedures based on energy-norm estimates may be insensitive to
very localized features of the fine-scale solution. Modeling error in characterizing average
stresses on interfaces or on surfaces of inclusions. for example. may not he detected by
energy-norm estimates unless virtually all of the fine-scale information is used in defining
the computational/mathematical model. To efficiently control the accuracy of models of
such local features. local estimates of modeling error are required.

In the present paper. we extend the theory of a posteriori modeling error estimation
for heterogeneous materials to "quantities of interest," by which we mean local features
of the response. In our theOly. these quantities of interest could represent. for example.
average stresses on material interfaces. boundary displacements. or mollilied pointwise
displacements. strains, or stresses. We remark that many candidates for local quantities of
interest are. in fact. quantities that one actually measures in assessing mechanical response-
strains at points as averaged relative displacements over a strain gauge. local stresses as
forces distributed over interior surfaces. etc. More is said ahout such quantities of interest
in Sections 3 and 5. Mathematically. a quantity of interest is any feature of the fine-scale
solution that can be characterized as a COntillltOUslinear functional on the space of functions
to which the fine-scale solution belongs. We establish computable upper and lower bounds
and sharp estimates of the C1TorS ill such quantities.

With local error estimates avai]ablc. we develop goal-oriellfed adaptil'e procedures, in
which the model is automatically adapted to dcliver local quantities of intercst to within a pre-
set level of accuracy. These procedures are reminiscent of recently developed goal-oriented
adaptive procedures for controlling numerical approximation error in linear functionals [91·
]n the present investigation. we present an adaptive procedure that. in principle. utilizes only
information on fine-scale structures in a neighborhood of the local feature of interest suffi-
cient to produce results of preset level of accuracy: information outside this neighborhood
need only retlect the response of models defined using cffective. homogenized propel1ies
of the material.

Some basic features and assumptions underlying the approaches described here should
be noted:

I. By an exact. fine-scale model. prohlem. or solution. we mean the exact solution u to a
weak boundary value problem in elastllstatics in which the elastic coefficients are character-
ized by a possibly rapidly varying elasticity tensor E = E(x) \vhich is known a priori. The
modeling error e is the function detlned as the difference between u and any coarse-scale
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solution u to an elastostatics prohlem detined on the same domain. suhjl:cted to the same
external forces as the tine-scale problem. but with a different elasticity tensor E as coeffi-
cients in the problem: e = u - U. The function U. for example. could be the "homogenized
solution" uo. the solution of the problem in which effective properties. characterized by a

constant or piecewise constant "homogenized" elasticity tensor Ell. are used.
2. In applications of our theory and algorithms. the coarse-scale solutions are gener-

ally computed using various numerical methods. such as finite clements. But estimation
of numerical elTor is not considered in this paper; the techniques developed in 11, 91 can
be used to control approximation error. Our concern here is lIIodr:Ii/lg ('1'/"01' in the sense
discussed above. and this error can have properties and behavior quite different from those

of numerical approximation error.
3. In theOl'Y, the tensor field E(x) deflnes at almost every point x in the body an array

(Eijkl(x» with the standard ellipticity and symmetry properties. In our applications. E is
generally piecewise constant. representing a so-called /I-phase material with 11 isotropic
phases, /I > I. For a large class of such materials. it is possible to represent the function
E characterizing the line-s<.:ale microstructure with sufficient accuracy using actual X-ray
computed tomography (CT) imaging procedures with the overall model adaptivity package
to characterize E. The imp0l1ant details of this feature of adaptive modeling are the subject
of a companion paper r III. As will be seen later in this paper. only CT data suflicientto de-
fine E = E(x) in 100;al neighborhoods of features of interest are needed: the enormous clata
storage requirements of a global characterization ofE called for in earlicr global approaches

are. in general. not needed in the goal-oriented adaptivity approaches advocated here.
4. It is important to emphasize that our goal is /lot to estimate ef'fe<.:live properties ofhet-

erogeneotls materials. Indeed. the familiar process of homogenization of fine-scale features
of the coefficients is hcre only a mathematical artifact embedded in a broader computational
strategy. Our error estimates and adaptive procedures apply to modeling errors in any kine-
matically admissible function. independent of the coefficients. so long as the underlying
problem is well posed. Nevertheless. the choice of approximations or regularizations of E
will obviously arrect model ing error and rates of convergence of the adaptive process to

models delivering results with the target accuracies.
5, Extensions of our adaptive procedures to nonlinear problems are possible, although

such extensions are not considered here. These extensions could involve incorporating the
goal-oriented adaptive process as an inner loop in a broader iterative process. assuming
that the regularized problem remains \....ell defined. In effect. such extensions amount to
recleHning the level of sophistication of the model used as a datum for error estimation.

In the next section, we describe the model class of problems and lay down notations and
preliminaries, We then establish a series of results on local estimates of errors in quantities
of interest. including upper and lower bounds on eITors. This is followed by the description
of a goal-oriented adaptive modeling algorithm. An analysis of the algorithm and results
of preliminary numerical implementations are then presented. The detailed description of
a computational environmcnt designed to automate such procedures and the interface with
imaging and visualization modules is the subject of forthcoming work 1111.

2. NOTATIONS AND PRELIMINARIES

We consider an open bounded Q C JRN. N = 1,2, or 3. with boundary 3Q, In general,
Q can be l11uJticonne<.:ted and very irregular. but for present purposcs. it suffices to take Q



ESTIMATION OF LOCAL rvl0DELlNG ERROR 25

to be Lipschitz with piecewisc smooth boundarics. We denote by 1-/111(0.)./11 ~ O.the space
of functions with distributional derivatives of ordcr sm in L 2(0.) and we use the notation
Hili(0.) ~ (H"1(Q»N and (}(0.) ~. (L2(Q»N.

The c10surc of 0. is the region occupied by a linearly elastic material body in static
equilibrium under thc action of body forces f E L2(0.) and surface tractions t E L2(Tr).
with rr C aQ. The displacements u of the body are prescribed as zero on fll = (/0.\fr.

The space of admissible functions V(Q) is therefore defined as

del'
\1(0.) = Iv: v E H1(Q). vir = OJ.

"
(1)

the boundary values being understood in the sense of traces of HI functions. In general,
we will assume that meas fll > 0; otherwise. our development is only altered by replacing
\1(0.) with V(Q)\R(0.). R(Q) being the linear space of infinitesimalligid motions of the
body.

The total potential energy of the body is characterized by the functional

:J : Y(Q) ~ lR

def I
~7(v) = '2B(v. v) - F(v).

where B(- .. ) is the symmetric. positive-definite. bilinear form.

B: \'(0.) x \'(0.) ~ lR

def IB(u. v) = in Vv : EVu £Ix.

and F(-) is the linear functional.

F: VtQ) ~ lR

i· fr'd fF(v)~ f·vdx+ t·vds.
n . r,

(2)

(3)

(4)

It is also convenient to introduce the weighted inner product «', '»E on (L2(0.»N:X
(L 2(0.) ),V2 dell ned by

def l«A. B»E = A: EBdx
·n

for tensor fields A. n. Then. B(u, v) = «Vv, VU)l!:' and

(5)

(6)

where II· lIE, <1, is thc energy I/OI'II/ of v.
In (3). E E (L OC(0.»N'XN' is the uniformly elliptic tensor of elasticities which satisfies

the standard symmetry conditiuns: Eijk/(X) = Ejik/(X) = Ei)lk(X) = Eklij(x). for a.e. x in
Q. lSi, j. k. / S N. The notation (:) denotes contraction of second-order tensors (Vv :
EVu = vijEijk/Uk.!, summing on i, j. k, /. Vi.) = aVija.\'{ "k.! = audaxl)' There, also.
clx = dXI dX2 ... dXN is the volume measure and cis the surface element.
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The material characterized by E is assumed to have a complex. not necessarily periodic

microstructure so that E is a highly oscillatory function of position x over Q.

2.1. The Fine-Scale Pmhlc/II

Under the stated assumptions. the displacement field u E V (Q) that exists whcn the body
is in static equilibrium under the action of external forces (I'. t) is the unique admissible
displacement that minimizes J over V(!J) and is the unique solution to the following weak

boundary valuc problem:

Find 1I E V(Q) such that

B(lI. v) = F(v) "Iv E V(Q).
(7)

We shall refer to (7) as the fine-scale {J/'Ohlemsince it involves all the fine-scale features

or the material, and to its solution u as the fine-scale solution. In the sense of distributions.
(7) is equivalent to the ell iptic system,

-V·(T=f
(T = Ee

2e = VlI + VlIT

u = II on 1'"

(T·n=tonr,.

(8)

where n is thc unit outward nOlll1al to ilQ. and (T and e are the stress and strain lensor fields.
respectively.

2.2. The Regularized Pmhtem

Various regularizations of problem (9) are obtained by replacing E with a regularized
elasticity tensor. For example. if the microstructure is assumed to bc peliodic. it is common
practice to rcplace E with a homogenized elasticity lensor EO. defining effecti).'e proper-
lies of the material. usually a constant tensor. For details on homogenization of periodic
composites, see [4. 101. Another approach used to regularize heterogeneous materials as-

sumes the existence of a representative volume element (RVE): sec. for example. [3]. Our
approach. however. does not rely on the existence of an RVE for a given heterogeneous
material, Without restricting ourselves to a constant function. we assume thaI the elasticity
tensor E is replaced by a suitable approximation EO that satisfies the uniform ellipticity and
symmetry conditions. We then can consider the reglliarized or hO/llogenized {Jmhlem.

where now

Find lIo E V(Q) such that

SO(uu, \,) = F(v) "Iv E V(Q),

BO(uO. v)~· l Vv : EOVuo dx,.IQ

(9)

(10)

and F(-) is again given by (4). The unique solution UO to (9) is called the reglliarized or
homogenized solution.
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2.3. Review of Ellergy ESTimates (~rIlle Modeling Error

27

The modeling error is detined as the difference belween the fine-scale solution and the
regularized solution

(II)

We now review lwo results of the estimation of this eHar in the energy norm. For this
purpose. we define

(12)

where I is the identity tensor. Next. for g E V. we define the associated linear residual
.tilllctirJ/1al Rg : V(Q) ~ lit

Rg(\') = - r Vv: EIoVgdx. \. E V(Q) ..In (13)

THEOREM 2.1. Let u and liD he Ille solmiolls 10 prohlems (7) ([nd (9). respeclively. Thel/
Ihelollowing holds.

( 14)

where

(15)

For proofs. see r 121and [6]. Both assertions follow from the fact that the model ing error
ell is governed by

( 16)

Using the above result. it is possible to estimate the energy norm of the difference between
the fine-scale solution II and any admissible function Z E V(Q).

COROLLARY 2.1. LeI u and Ull he the solutiollS to prohlems (7) and (9). respectively.
alld leI Z E V(Q)\IO}. Theil.

( 17)

where

VI'ilhJ as defined ill (2).
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Proof The proof for the assertion Ilu - zllt/lm ~ ~1~PPcan be found in IRI. For the lower
hound. we have

B(u - z. v) = F(v) - 8(z, v) V V E V(Q).

Then. it is straightforward to show that

(19)

Ilu - zllw'l) = sup
\·eVlr.!)\IOI

and by picking v = z. we obtain

IF(v) - 8(z, v)1

IIvIIE(Q)
(20)

Ilu _ zlll'(Q) ~ IF(z) - B(z. z)1
IIzIIE(Q,

which concludes the proof. •

3. :VlODELlNG ERROR IN LOCAL QUAI\'TITIES OF INTEREST

(21 )

As mentioned in the Introduction. global estimates of modeling error. such as the energy
estimate presented in Theorem 2.1. can be insensitive to local quantities of interest such
as interfacial stresses. To address this problem. we now present a theory for the estimation
of modeling error in quantities of interest that can be characterized as continuous linear
functionals on the space of admissible functions V(Q). This theory represents a significant
departure from more traditional theories of error estimation in that it allows the estimation
of modeling crror in virtually any quantity of intcrest to thc analyst, such as (mollified)
pointwise values of stresses and displacements. boundary displacements. and averaged
stresses. Concrete examples of such quantities of interest will be given in the section on
numerical experiments,

The goal in this section is to obtain bounds on the quantity L(u) - L(uo) = L(eo),
where LEV' (n) is a colltinuous linear functional. We first prescnt a result on obtaining
upper and lower hounds on L(eo). Next. we show how this theory can be extended to
obtain bounds on the error in arhitrary admissihle functions z E V(Q). i.e., bounds on the
quantity L (u) - L (z) = L (u - z). where z is not necessarily the solution to an elastostatics
problem posed on the domain Q. The motivation behind this is that the modeling error in
local quantities of interest can often be reduced by adding perturbations to the regularized
solution such that the sum is still an admissible function.

Some comments on why "quantities of interest" are characterized as "continuous linear
functions" are appropriate. It is understood that important local features of the microme-
chanical response nrc obliterated by homogenization but may be the prccise quantitics of
interest in determining the performance of the material-stresses at material interfaces.
relative displacements of inclusions. etc, As will he demonstrated in the next section. the
extraction of ClTors in local features of the response is accomplished by setting up an aux-
iliary (adjoint) problem for an influence function w in which the data in the problem (the
"right-hand side") are a customized functional characterizing the particular feature of in-
terest. The characterizing functional L must be linear and continuous. or else the auxiliary
problem could bc meaningless. For example, it would be inappropriate to identify a stress
or displacement at a point x in Q as a quantity of interest as the '"stress could be infinite" and
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FIG. 1. Schematic of the composite hody considered. Dashed lines indicate the panilioning of lhe domain
into cells.

point displacements are underlined in V(Q). Instead, we construct averaged or mollified
functions so that the influence function that corresponds to the particular feature of interest
is a well-defi.ned admissible function in V(Q). Thus, for example, L could represent average
stress components over a small surface area. We give more examples later in Section 5,

3.1. Upper and Lower Bounds on Modeling Errors in Local Qllantilies of Interest

Let L be a continuous linear functional on V(Q), LEV' (Q). As a first step, we first pose
the following global adjoin/ fine-scale prohlem:

Find W E V(Q) such that
B(v, w) = L(v) "Iv E V(Q),

(22)

The solution W to the adjoint fine-scale problem is referred to as the fine-scale il!//llenee
jime/ion. The regularized version of this problem is referred 10 as the mfjoint regularized

V8
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FIG. 2. Distribution of tbe quantity (Curr normalized with respect to the maximum.
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FIG.3. Plols of Ihc (a) e" and (b) e" cornponcllls of the strain lcnsor o(wo) for the quamity of interest L ,.

prohlem and reads

find WO E V (Q) such that

SO(v, wO) = L(v) Vv E V(Q).
(23)

The solution to this problem will be referred to as the regularized i'1flllence juncfion.
In what follows, we sometimes refer to the problems (7) and (9) as the primal fine-scale
prohlem and primal regularized problem, respectively. 11 is obvious that, under the stated
assumptions on E and EO. the functions wand WO exist and are uniquely deflned.

It immediately follows that the modeling error in the influence function

(24)
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satisfies (recall (16))

We also note that eO satisfies the following relationship (analogous to (14»:

where

- del' IR"u(wO)I. i- ~. «IoV WOo IoVwO»lf2,)' - • ~upp
.,Io\\, - IlwOIlE(Q)

31

(25)

(26)

(27)

We now state the main result of the estimation of modeling error in quantities of interest:

THEOREM 3.\. Let ull and wO be the solll7ions to problems (9) and (23), respectil'ely.
Theil.

where

~I + 2 1_, °
'llo\\' - 4(lllu\\,) - 4(llupp)- + Rull(w ).

~I + 2 1 - 2 ()
Ilupp - 4(llupp) - 4(lJlow) + Rull(w ),

with arhitrary s E jR+.

alld

where {upp alld {upp are defined by ( 15) and (27), respectively, alld e± is givell by

(28)

(29)

(30)

(31 )

(32)

Proof The outline of the proof is given below: see [6] for details. The error in the
quantity of interest can be decomposed as

where S E jR+ is an. as yet, unspecified positive scaling factor. Now, using a simple property
of an inner product, we rewrite the expression (34) as
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The first two terms on the right-hand side of (35) can be bounded above by noting that
the quantity sen ± .1'-1 eO satisfies

and hence

lI~eo ± s-leOIlW2J :S 11~pp'

with

To obtain a lower bound on the quantity seo ± s-leO, we note that

(36)

(37)

(38)

(39)

for any v E V(Q)\lO}. A linear combination of UO and WO of the form v = Uo + e±wo,
e± E IIt is then used in the above expression to obtain the best possible lower bound. The
value e± is found by a simple extremization process. The third term RII,) (wo) depends only
on known quantities. •

It can be shown that the optimal value of the scaling factor s is given by

However. since eO and ell are not known exactly. we use

Also. in our numerical experiments. we employ the following estimllTes of the modeling
error in the quantity of interest:

and

LO"" defl +2 1_2 ()
(e ) "" I)esl.low = 4(1)10\\,) - 4(I)tnw) + Ru"(w ).

(40)

(41)

An important feature of the theorem above is that the elasticity tensor Ell need not be a
constant function; it need only satisfy the uniform ellipticity and symmetry conditions.
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FIG. 4. Plots of the (a) Cll and (b) C22 components of the strain tensor c(wll) for the quantity of interest L2•

3.2. Modeling Error in Qual/lities of Interest/o/' Admissible Funcliol/s

We now demonstrate how to obtain bounds on the quantity L(u - z) for admissible
functions Z E V (Q), 7. #- 0, where LEV' (Q) denotes a quantity of interest. We first define,
for s E JR+, the functional .:J,± : V (Q) -'> JR •

... dcf 1 1.:J,~(v) = -B(v. v) - (sF ± s- L)(v), v E V(Q).
2

It is easy to see that:

• The functional .:J,,± has a unique minimizer X,± that satisfies

B(X;, v) = (sF ± s-I L)(v). "Iv E V(Q).

(42)

(43)
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Moreover.

x.~== su ± S-IW, (44)

where u is the unique solution to (7) and w is the unique solution to (22) .
• If v E V (r.!). v =1= O. then. in the spirit of Corollary 2.1. we have

(45)

where

(46)
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± ,del I(sF ± .1'-1 L)(v) - B(v. v)1
17Iow(') = Ilvlll'm,

35

(47)

where /7~pp is as deflned in (31).

These preliminaries bring us to the following result:

THEOREM 3.2. Let UO alld WO be Ihl' .I'olllTio!1S10 proh/ellls (9) and (23). /'e.l'fJeClively. Let
z E V(Sl), z i= 0, alld del/ote the qualllity ()f'imeresl hy L E V'(Sl). Mo/'co\'('/', lets E Ift+
Then, the quamily L (u - z) call he hounded ah01'e and helow.

/7Iow(z) ~ L(u - z) ~ /llIpp(Z)

wilh

(4~)

and

and /7~pp(V) al/d /1~w(V). v E V(Sl), (I/,e defined in (46) (lnd (47), /'e.l'fJectil'ely.

Proof We recall that L(v) = B(v. w) \Iv E V(Sl), Therefore.

L(u - z) = B(u - z, w)

= B(u - z. w - Wll) + B(u - z, wo)

= B(s(u - z) •.1.-1 (w - wo)) + B(u. wo) - B(z. ",u) (51)

and since the energy norm 11·11"'(\1) is derived from the bilinear form B(·, '),

L(u - z) = ~IIs(u - z) + S-I (w - wO)IILn) - ~ IIs(u - z) - S-I (w - w()II~,Q)

+ B(u. wo) - B(z. ",0)

I I= 411 (su + .1'-1 w) - (sz + .1.-
1 Wo) 117,'(\1) - 411(.I'U - .1.-

1 w) - (.IZ - S-I W°>ll~(Q1

+ F(wO) - B(z, wO). (52)

Since the terms F(wo) and B(z, wO) can be computed exactly, we need only bound the
terms lI(.w ± ,I'-IW) - (sz ± s-lwo)IIE<l1)' From (45). we have

which concludes the proof. _

Note that the optimal value of the scaling factor s is now given by

s* - (54)
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Later. we will also use the following estimates or the quantity L (u - z):

L(u - z) ~ 11~sl.lIpp ~. ~(11~pp(SZ + .\.-IWO))2 - ~(II~)p(SZ - s-IW
O

))2

+ F(wll) - 8('1.. wo). (55)

and

. .. ~, ~. I + , _ I ,0 2 I -.. .-I ,0 2
L(U-Z)~II~'1.Iow-4('1Iow(SZ+S u)) -4(I1tow(.IZ-S u))

+ F(wO) - 8('1.. wo). (56)

Remark. The definitions of the functionals L can. in some cases, be extended to non-
linear quantities of interest through linearization. For example. if one is interested in the
squared root-mean-square norm (the L 2 norm squared) of u over a subdomain w C S1,then
the nonlinear quantity of interest is

JV(u) = I' u . u dx .
• <t'

The modeling error in this quantity of interest is

JV(u) - N(uo) = L (ll . tl - UO . uO) dx

= l«UO + eO) . (uo + eO) - Uo . uO) dx
w

= 21.' UO . eO dx + 1.' eO . eO dx
<t' W

~ 21.' U
O

. eO dx.
'"

Then the linearized quantity of interest is given by L(v) = 2 L UO . \' dx.

4. GOAL-OlUENTEU ADAPTIVE MODELING

(57)

(58)

One way to overcome the loss or fine-scale information due to regularization techniques
is to use the regularized solution as a starting point in a procedure that adaptively improves
the quality of the solution. Such procedures are common in the context of finite elements
where a coarse mesh solution is used as a starting point and is adaptively improved upon by
relining the mesh. Here, we are concerned with adapting the model of the microstructure
itself. We begin this section by describing a goal-oriented strategy for model adaptation for
a given quantity of interest. We then present an algorithm based on this strategy.

4.1. Adaptive Modeling Strategy

Our strategy for adapting the material model based on modeling error in a quantity of
interest LEV' (S1) consists of:

I. Solution of the regularized problems (9) and (23) for UO and wO, respectively.
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FIG. 6. Distribution of the quantities (a) ~1."PP and (b) fl.. nornlalized with respect 10 the maximum. for the
quantilY of interest L ,.

2. Estimation of the modeling en-or L (u - uO) in the quantity of interest lISlIlg
Theorem 3.1.

3. If required. enhancement of the regularized solution uD by taking into account the
fine-scale material features over a "region of inlluence."

Let LIS elaborate further on the third part of our strategy. Suppose nL C n is determined
to be (in a fashion to be described shortly) the region where the finescale elasticity tensor
E most influences the quantity of interest L. We propose solving a problem on nL with the
regularized solution UO providing the boundary conditions. More precisely, detlne

r ~.an nr r ~ an \r .L, L t. L" L L, (59)
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FIG. 7. Dislribulion of Ihe qU:lnlilies (:I) (,""" and (b) fl.. normalized with respect to Ihe maximum. for Ihe
quantity or intcrcsl L2•

Define the local function space on Q,. as

V(Qd = [v E V(Q). v = 0 on Q\Q/., vlt',,, = 0].

Next, an extension operator [/. : V(Qd -+ Vest) is introduced, defined by

(60)

(61 )

The restriction of the regularized solution UO to the domain of influence QL is defined as
u2 : u7. ~. UO In,.· Then iiI. is sought as the solution to the following weak boundary value
problem:

Find ii,_ E {un + V(QLl such that

Bdii/.. vLl = FdvtJ V VI. E V(QJJ.
(62)
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where the bilinear and linear forms are defined as

and

39

(63)

(64)

respectively. Thus. UL is a perturbation on QL that takes into account the fine-scale mi-
crostructure. Moreover. it equals the primal regularized solution UO on the rL" portion of its
boundary. Using the extension operator introduced earlier. we arrive at a locally enhanced
function ii E V (Q) defined as

_del' 0+,,(- 0)U = tI '-'L tiL - Ut. .

We now make two observations:

(65)

• The locally enhanced solution U E V(Q) is an admissible function and satisfies the
kinematic constraint iilr" = 0, even though it is not the solution to a global problem posed
on Q.

• The modeling error in the quantity of interest L corresponding to the perturbed solu-
tion is L(u) - L(u) = L(u - ii). This quantity can be bounded above and below using
Theorem 3.2.

We now propose a technique to determine the "domain of influence" Qt.. We consider a
nonoverlapping partition P of the domain Q into cells 8t. I ::: k ::: N (P). where N (P) is
the total number of cells in the partition. Define

and note that

del' { /' 0, o} ~~k.llPP = IoVu: hIoVu dx. (-),

- dd {j' o· }!~k,llPP = Io Vw : EIo VwO dx
(-),

(66)

(67)

where supp and (uPI' were introduced in ( 15) and (27). respectively. Next. note that the proof
of Theorem 3.1 (see [6]) is based on the decomposition

which implies that

(J . del' - II .n IIIL(c )1::: /3 = ~lIpp{lIPP + ~uPP \\ E(m·

(68)

(69)
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This suggests that the cells k in which the quantity

(70)

exceeds a tolerance can be picked to constitute the domain of influence S'2L.

4.2. The Goal-Oriented Adaptive Local Solution Algorithm (GOALS)

We begin by considering quantities of interest of the type

L(y) = j'/(V)dX, (V c S'2,
'. CtJ

(71 )

where I is a linear map: I : V(S'2) -+ LLc(S'2). Our algorithm can be easily modified [0

accommodate quantities of interest of other types. The GOALS algorithm can now be
stated as follows:

Step 1: 1nitializalioll. Given the initial data S'2. r/l' ft. E. f. and 1. construct a nonover-
lapping partition of the domain P = I C;:h}, k = 1.2 ... N (P>. Specify error tolerance pa-
rameters O'TOL and OmL. 0 < OTOL < I.

Step 2: Neglliarization. Compute the homogenized elasticity tensor EO. Solve the primal
regularized problem (9) for UO and the adjoint regularized problem (23) for ",II.

Step 3: Modeling error eSlimation. Compute error indicators l;A. ~A' and th for I ::S k ::S
N (P). using (66) and (70). Estimate the modeling error in the quantity of interest using
Theorem 3.1. Denote this estimate by 'leSI'

Step 4: Tolerance tesl. If I)est ::S O'TOL x L (u°), STOP.

Step 5: Domain of inj/llence. Determine initial guess for "domain of inlluence" S'2L as
all the cells that intersect (v. the region over which the quantity of interest is defined:

(72)

Compute the quantities l;L. ~L' and fh:

(73)

Step 6.' Update domain (If'inflllence. Determine the "bad neighbors" of S'2L; i.e .. it'
f3i > OTOL X f3L, mark Hi as bad and update S'2L:

S'2L +- Qt. U lbad neighbors I, (74)

Update the quantities l;L. ~L. and fh.

Step 7: Solution (llIoca1 problem. Solve local problem (62) on S'2L for iiI.. Construct
the locally enhanced solution ii E V(S'2) using (65)

Step 8.' ESlilllate l/1odeling ('I'ror. Estimate the modeling error L(lI - i'i) using
Theorem 3.2 and denote the estimate by '1eq. If I)"st ::S O'TOL X L (ii). STOP. Else. GOTO
Step 6.
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FIG. 8. Distribution of the quantities (al {'."rl' and (bl #,. normalized with respecl to the maximum. for the
quantily of illlercst L,.

In many applications, the decay of local effects may be very fasl, meaning that QL is often
small in comparison with Q. However, cases can be anticipated. such as composites with
fiber reinforcements, where decay rates are small and relatively large domains of inl1uence
may be needed to attain the target accuracies,

5. NUMERICAL EXPERIMENTS

5.1. lv/odel Problem Descriplioll

Consider a partially loaded 2-phase composite material in which the matrix materials and
the cylindrical inclusions are both isotropic. The volume fraction of the inclusions is taken
10 be 0.3 and they are randomly dispersed in the matrix material as shown in Fig. I. The
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FIG. 9. Dislribution of the qualllities (a) ("'PI' and (b) {J,. normalized wilh respect to the maximum. for the
quantity of interest L•.

material properties are taken to be (E = 100.0 M Pa, v = 0,2) for the matrix material and
(E = 1000.0 MPa, v = 0.2) for the inclusions, where E is the Young's modulus and v is
the Poisson's ratio. Plane strain conditions are assumed to hold.

The domain is partitioned into N (P) = 42 cells as indicated by the dashed lines in Fig. I
(Step I of the GOALS algorithm). Because of the lack of microstructural periodicity. the
homogenized properties of the domain are taken to be the average of the Hashin-Shtrikman
upper and lower bounds 131 (Step 2).

To evaluate the accuracy and effectivity of various bounds, we compute numerical ap-
proximations of reference fine-scale solutions u and w, since these are not known exactly.
To reduce the influence of approximation error on the results, it is important that the nu-
merical approximations to the fine-scale functions. as well as those to the homogenized
functions UO and wO, be computed with very high accuracy. Toward this end. we perform
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all computations using the h-p adaptive finite-elemem code ProPHLEX 12J. Sample h-p
meshes are shown later in this section.

5.2. DO/llains of Ii!!fucncl'

Evidently, the amount of microscale information necessary to accurately predict a quantity
of interest depends on the quantity of interest itself. A qualitative approach to determining
the domain of influence of a quantity of illlerest is now described. Consider the following
quantities of interest:

(75)

The first quantity of interest L, represents the 0'11 component of the stress tensor averaged
over the inclusion (v,_ shown in Fig. I. with appropriate material constants CI and C2, The

second quantity of interest L2 represents the E22 component of the strain tensor averaged
over the inclusion (J)2.

The third quantity of interest is a 1II01liJiclIlion of the y component of the displacement
vector over the inclusion W2. The use of mollification is necessitated by the fact that one
cannot refer to the point-wise values of functions in V(Q). The 11101lifierkernel kJ: xo) is
an infinitely smooth function and its support is a ball of radius E centered at Xo (denoted
Bf(xo»). We choose Xo and E so that W2 = Bf(xlI). The mollifier kernel has the following
properties [5]:

• It has continuous derivatives of all orders on 1Ft" .
• kf(x: XII) = 0 for Ix - xol ~ E and kf(x: xo) > 0 for Ix - xol < E.

• (t'( ·.lk,(x.XII)dx=1.. J. x,)

First. the primal homogenized solution ull is Cllmputed by solving (9). The modeling error

indicators for the primal problem. l;k.upp. are then computed usi ng (66). These quantities are
shown in Fig. 2 .

Next. the homogenized influence functions wI! cOlTesponding to the three quantities of

interest defined above are computed by solving (9). In Figs. 3. 4. and 5. we show the Ell and
e22 components of the strain tensor e(wll) for the quantities L I· L2• and L1, respectively.
Recall that it is the strain tensor of wO that appears in the various expressions for the modeling
enor in a quantity of interest. It is seen that. in the case of L I and L2. the components of
E(WO) are small everywhere except in a small neighborhood of the region of interest. For
the quantity of interest L3. the strains are nonzero over a hU'gcr portion of the domain Q.

The modeling error indicators for the adjoint prohlems, ~k.upp and tho arc computed using
(66) and (70). The indicator fh roughly represents the magnitude of the contribwion (or the
inl1uence) of a cell to the modeling error in the quantity of interest. and its distribution over
Q provides a qualitative description of the domain of influence of the quantity of interest.

The quantities ~Lupp and fik for L I, L2• L,1 are shown in Figs, 6-8. A major difference
between the distrihution of the primal and the adjoint elTOl' indicators is that the primal
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(b) L.1(u - ii)fL,j(u) = 0.103

FIG. 10. The II-p meshes for the sequence of domains of influence and the resulting modeling errors in the
quantity of inIe rest L4: (a) Q~. (b) Q).. (c) Q;.. and (d) Q;..

indicators are global in nature. whereas the adjoint indicators for L I and L2 are markedly
local. Note that the domain of influence of the quantity of interest L3 is much larger
than it is for L I and L2• This indicates that more fine-scale information is required to
accurately predict local displacements than is required to predict local stresses or strains.
Also, for the quantity of interest L3, the computation of the indicators was repeated with
E. the mollification kernel radius. reduced by half. The change in the distribution of the
normalized error indicators was found to be negligible, suggesting that the nonlocality of
the distribution of these error indicators is quite insensitive to E,

5.3. Error Estimation and Adaptil'e Mode/ing

Here, the adaptive modeling strategy proposed earlier is used to determine a material
model that accurately predicts the quantity of interest

(76)
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TABLE I
Effectivity Indices of the Estimates

Associated with thc Primall'roblem

45

Error cst imale

{urr

lIu - 11"11£<(1,
(l.l"

1111 - II"IIE,<>;

EflcCli\'ity index

I.OR5

0494

where (OJ is the region occupied by the inclusion indicated in Fig. I. This quantity of interest
is the average of the (TIl component of the stress tensor on the inclusion W3 (with appropriate
material constants CI and C2).

After the homogenized influence function ",0 is computed. the modeling etl'or indicators
{LllPP' and fJk are computed using (66) and (70). In Fig. 9 we shO\v the normalized quantities
{k.upp. and fJk. I :S k :S 42. Again. note the highly local nature of the error indicators {k.upp

and fJk.
To assess the quality of the error bounds and estimates computed in this step of the

GOALS algorithm. we use the notion of an effeclivitv index. For a given error estimate. the
effectivity index is defined as the ratio of the estimated error to the true error. In our case.
we compute the "true error" using the reference solutions u and w. The closer the effectivity
index is to unity. the better the quality of the estimate. Thus. the effectivity index of the upper
bound on the homogenization error {upI' introduced in ( 15) is (upp/ IIu - UOII E(Q). First. the
effectivity indices of the estimates corresponding to the primal problem are shown Table I.
We see that the upper bound (llpp is very close to true homogenization error lIu - uOII£(QI'
whereas the lower bound is inefficient.

The effectivity indices of the estimates associated with the adjoint problem are next shown
in Table [I. For the adjoint problem. both the upper and lower bounds on II"' - wlJllE,m
are seen to be accurale. The bounds Ilupp and '1ltlw on the modeling error in the quantity
of interest are far from unity as expected; for a detailed analysis of the accuracy of these

TABLE II
Etl'cctivit~' Indices of the Estimates As-

sociatcd with the Adjoint Problem C4Irre-
sponding til the Quantity of Intcrest [,

Error est imate

~"p,.
IIw-w"II/.{(l,

1:",..,
IIw - w"lIb!'!'

I);II'P

L(e")

'/'"",
Lte")

Lte")

'}.-~L~pr

Lte"}

Effectivity index

1.123

0.994

-162.7

1614

0.709

-2.028
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bounds. see 161. We see that the estimate 17esl.l<lw alonc has a reasonablc efle(;tivity index.
In our experience. this estimate has performed consistently and can be used to drive the

adaptive proccss.
The relative modeling error in the quantity of interest L4. defined as L4(u - lIo)/ L4(u).

is found to be 74.3%. To rcduce this error. we adapt the material model as follows. The cell
containing the inclusion WJ is chosen as an inilial guess for the domain ofinlluence 0.2 (with
the superscript indicating that this is the initial guess for the domain of innuence). Note that
this is the cell with the largest error indicator fh. The ]ocal problem (62) is solved on this
cell using a well-resolved h-p adaptive mesh. and the enhanccd solution ii is constructcd.
The error in the quantity of interest is reduced and we tind L4(lI -O)/L.j(lI) = 35.2%.

The material model is further adapted hy adding neighboring cells to 0.~. The resulting
regions and the associated errors arc shown in Fig. 10. In each case. we solve a local problem.
as desuibed above, and construcl the enhanced solution (0). Figurc 10 shows that to reduce
the modeling error to below 5% (which is considered "engineering tolerancc"), it would
suffice to stop the adaptive algorithm after computing the enhanced solution (ii) on 0.7_.

6. SUMMARY AND CONCLUSIONS

The concept of adaptive model ing of materials makes no assumptions about the exis-
tence of representative volume elements (RYEs) or the periodicity of microstructure. as is

usual in the traditional analysis of composites. Using regularization as pari of a larger al-
gorithm. adaptivc modeling allempls to deliver material models thai satisfy preset accuracy
requirements.

In this work, we present a new theory for the goa/-oriented adaptive modeling of hetero-
geneous materials and an algorithm for adapting material models based on our theory of
local modeling error estimation. Preliminary numerical examples demonstrate the advan-
tages that such modeling techniques have over traditional methods. Extensive numerical
experiments. details of a parallel computational infrastructure for the adaptive modeling

of heterogeneous materials. incorporation of imaging technology into such analyses. and
extensions to nonlinear problems are suhjects \0 be addressed in future work.
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