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Abstract

This paper presents a framework for the construction of Galerkin approximations of elliptic boundary-value problems with sto-
chastic input data. A variational formulation is developed which allows, among others, numerical treatment by the finite element
method; a theory of a posteriori error estimation and corresponding adaptive approaches based on practical experience can be utilized.
The paper develops a foundation for treating stochastic partial differential equations (PDEs) which can be further developed in many
directions. © 2001 Published by Elsevier Science B.V.

1. Introduction

To date, most computer simulations are based on deterministic mathematical models, where all input
data are assumed to be perfectly known. In fact, this is never the case. All data contain a certain level of
uncertainty: material properties, loading scenarios, boundary conditions, domain geometry, etc., have
smaller or larger uncertainties which influence the quantities of interest. This resulting uncertainty in the
solution, can, of course, be larger or smaller than that in the input data.

The uncertainties of the input data can have different characteristics which must be taken into account,
and must be related to the aims of the analysis. They can, for example, show stochastic probabilistic
character when the material properties are obtained experimentally. Unfortunately, probabilistic data are
often difficult to obtain and are generated by methods which themselves have additional uncertainties. The
input data can be based on a “worst scenario’ approach when bounds for the quantity of interest or in a
probabilistic framework are desired. If the uncertainties are small, perturbation theory is a very valuable
tool for analyzing their effects. If they are larger, then perturbation theory is not applicable.

In this paper we address problems characterized by linear partial differential equations for which the
input data are stochastic; for example, the coefficients or the right-hand side (RHS) of the partial differ-
ential equation (PDE) are the stochastic functions. The aim of the paper is to transform the stochastic PDE
problem into a deterministic problem where finite element methods can be used for obtaining useful nu-
merical approximations. It is possible to use the theory of finite elements to obtain several useful results,
including a posteriori error estimates, adaptive approaches, superconvergence computations of functionals,
etc. (see [1,4]). The formulation of the stochastic boundary-value problem developed here also provides a
basis for interpreting and analyzing numerous approaches suggested in the FEM literature from a unified
point of view.
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This paper will concentrate on the stochastic input data in problems which are not white noise, i.e., there
are significant correlations. This is typical in many engineering applications. Differential equations with
white noise are broadly studied in various contexts in physics, financial models, etc. For more on this
subject see, e.g. [10]. One obvious way to treat stochastic PDEs is the Monte Carlo Method. This method is
expensive especially when some higher-order accuracy for mean values, variation, etc. are sought. In ad-
dition, errors in the numerical approximation of the exact solution must be characterized in a probabilistic
way. It is worthwhile to mention our approach when adaptive finite element methods are used, has a clear
relation to an adapative Monte Carlo Method.

Various numerical methods to solve stochastic partial differential equations (SPDEs) have been
proposed in the literature. The work of Ghanem [9] and Ghanem and Spanos [8] advocate a hybrid
finite element-spectral approach, while the monograph of Kleiber and Hien [11] utilizes a perturbation
approach. Elishakoff and Ren [7] examine engineering finite element methods for structures with large
stochastic variations and point to limitations of some approaches. A fuller description of work on
computational methods for SPDEs used to model stochastic behavior in problems of mechanics can be
found in the survey of Schueller and Pradwarter [14], in the books of Kleiber and Hien [11], Ghanem
and Spanos [8], and in Deb [5,6] and the references therein. This paper is closely related to the Ph.D.
thesis [0].

2. Model problems

We begin by considering two model problems of SPDEs of elliptic type.

Problem 1.
V-a(x)Vu(x) = f(x) on D, @.1)
ux) =0 on 0D. '
Here @ and u are stochastic functions while f'is deterministic.
Problem 2.
V-a(x)Vi(x) = f(x) onD, (2.2)
ux) =0 on 0D.

Here ] and 7 are stochastic functions while « is deterministic. We assume that D € RY,d = 1,2,3, is a
bounded Lipschitz domain. We formulated these two problems separately because they have different
structures. Of course, it is possible to analyze the problem when both @ and f are stochastic, but con-
sidering each case separately simplifies slightly the notation etc., and, in addition, allows us to exploit
special properties of Problem 2. We also can treat analogously, the stochastic problem for other differential
equations; for example, those of linear elasticity, nonhomogeneous boundary conditions, stochastic
boundaries 0D etc. We refer to Problem 1 as a problem of the left-hand side (LHS) type of SPDE and
analogously Problem 2 will be referred to as the RHS type of SPDE.

3. Mathematical formulation
Let (Q,F, P) be a probability space, where Q, F, P are the set of random events, the g-algebra of subsets

of Q and P the probability measure, respectively. If X is a real random variable in (Q, F, P) with X € L1(Q),
we denote its expected value by

EX] = [ X(0)dp() = [ xduto
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Here u is the distribution probability measure for X, defined on the Borel set B and R given by
u(B) = P(X"'(B)).

We will assume that p(B) is absolutely continuous with respect to Lebesque measure; then there exists a
density function for X, p : R — R such that

E[X] = /R p(x)dx.

Let us now define a random function. A function v (x) = y(x,w) : D x Q — R will be called a random
function when it is jointly measurable (on the Borel sets (B(D) & (R))) and

E[/Dlllz(x,w)dx] < 0.

Remark 3.1. The last condition is not essential, but in this paper we will consider only such functions.

We assume that in (2.1) @(x) = a(x, w) is such that
0 <o <alx,w) <u <oo ae onDxQ. (3.1)

Let v(x, w) be defined on D x Q. Then we define

V= {Jv(x,0)||lv]l, < oo, v(x,w)=0 ondD}, (3.2)
where | - ||, is the energy norm
ol =E[ [ at. w>|vxv|2dx] ~ [ Elatx. )| Val . (3.3)
D D

The natural inner product in V' is the bilinear form Z: V x V — R
B(u,v) = E{/ aVu - vadx] = / (E[aVu - V,v])dx. (3.4)
D D
Obviously, V is a Hilbert space of random functions.

Theorem 3.2. Let f(x) € L*(D). There exists unique weak solution uy(x,w) € V (i.e., a random function) of
the problem (2.1) which satisfies

B, v) = /D (E[fe]) dx = #(v) Voe V. (3.5)

Proof. The theorem follows immediately from the Lax—Milgram lemma. O

Remark 3.3. We address here the LHS problem (2.1) when f is deterministic. The RHS problem is ad-
dressed in Section 7.

Let us assume now that
ax,w) = (E(a))(x) + Z Viia(x)A(w), (3.6)

where 4;(w), i=1,2,...,M are real mutually independent random variables with mean value zero
(E(4;) = 0), variance one (E(A4;) = 1), and bounded images I'; of @, I'' = 4;(Q) e R', i=1,..., M.

Further, we assume that each 4, has a probability density function p,: I, - R", i=1,..., M, and
0<p,<p; <P, <ooand a;(x) € (D), 4; >0, i=1,...,M, and (3.1) holds.
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Remark 3.4. In (3.6), we can have M = oo provided that the series converges in L (D). Then, using (3.6) as
the truncated series, we can estimate the error caused by the truncation, but we will not address this
estimation here.

The expansion (3.6) is known as the Karhunen-Loeve (K-L) expansion [12]. Then 4; and a;(x) are the
eigenvalues and eigenfunctions associated with the given covariance function C(x,*) of @(x) = a(x, w) and
a;(x) have orthonormalities properties which can be utilized in the implementation. The probability den-
sities p; are arbitrary. For any of them, we get E[a(x, w)a(X, )] = C(x,X).

Using (3.6), we can write

a(x,w) = a(x,4;(w), ..., Ay(®)). (3.7)
Let '=1T; xTyx--xTycCRY,
p(¥) = pi)p22) )y Vi €T y=n,...,om) €1, 0< By <p(ni) <Py < .

Then a(x,w) = a(x,y) with y, = 4;(w).
Using the Doob-Dynkn lemma (see [13], p. 9), the solution uy(x, @) of (3.6) has the form

uo(x, @) = up(x, 41 (@), ..., Ay(w)) = uo(xX, 1, -, Yur)- (3.8)
Let v(x,y),x € D,y € I and

w(0.1) = {o0)| [ 90) [ )| Fuats.3) Pardy = ol < . 06x.5) =0 on 2D for al 3}
(3.9)

Then the space, W is the same as (equivalent to) V when a(x,w) is given in (3.6). Because of our as-
sumptions on a and p, W is Hilbert space. Further, (3.4) becomes

Au0) = [ p0) [ als)Vautey) - Voot y)drdy (3.10)
which will be used in the sequel. Further, we have

20)= [ o0) [ vles)f)drdy, vew. (3.11)
Then uy(x,y) € W defined in (3.5) can be written in the form (3.8) and satisfies

B(ug,v) = L(v) YoeW. (3.12)

Because of our assumptions, uy(x,y) € W is uniquely determined from (3.12); we transformed the stochastic
problem (2.1) (resp. (3.5)) into the deterministic problem (3.12).
Because uy(x,w) € V (resp. up(x,y) € W), we have

Elug(x, )] = / p()uolx,y)dy € H'(D),

r

Eli(x, )] = / p()ii(x,y)dy € L' (D),

E[Z‘CO (Lw)} = /rp(y) 22? (x,y)dy € L*(D), (3.13)

(%’2@,@)21 z/rp(y)@—?(x,y))zdyeﬂ(l?),

C(x,%) = E[uo(x, 0)up(x, )] € L*(D x D).

E

Equations (3.13) shows that the mean value, variance, standard deviation and covariance are well-defined
functions. Their smoothness depends on a;(x) in (3.6), f(x), and smoothness of OD.
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4. The finite element solution of the LHS type of SPDE

We have seen in Section 3 that the LHS type of SPDE can be cast in the form (3.10). This form is very
suitable for finite element approximation, and allows us to use the theories of FEM, the a posteriori error
estimation, adaptivity, etc.

Let A(D) be a mesh on D which satisfies all of the usual assumptions, common in the finite element
theory and 7(A(D)) be the elements with #4(D)= max(diamt(A(I')). Then we denote by
A(I') = A(I'y) X -+ x A(T'y) the rectangular mesh on I' and let t(A(I')) = ©(A(I'1)) x --- x ©(A(I'ys)) the
associated elements. We denote by A(D,I") the mesh on D x I', and ©(A(D,TI')) = ©1(A(D)) x ©(A(I')) the
elements on D x I'. Let

SP(D, I = {v(x,y) € Wlo(x,y)|«p,r is polynomial of degree pinx, Vy € I' and of degree ¢
in 31,35,y Vx € D}, (4.1)

If ©(D) are quadrilaterals, then v(x, y) are polynomials of degree p in every variable x;, i =1,...,d. If the
mesh on D is curvilinear, then we use the standard pull-back polynomials of degree p.

Remark 4.1. The finite element approximation then reads: Find wug.p ) € S74(D,I") such that
B(uspa(p,r),v) = L(v) VoeSP)D,T) (4.2)

where 4 and . are defined in (3.10) and (3.11). From standard finite element theory, we get the basic
result:

Theorem 4.2. The finite element solution usrqpr) € S"(D, I") exists, is unique, and

lluo = usra.rllwip.ry < }gpf; lluo = 2l wi.r)- (43)
Hence

o — et oy — 0 as A(A(D)) and A(A(T)) — 0 (44)
and

lluo — usraw.r)llwip.ry = 0 as p,g — oo. (4.5)

Remark 4.3. Condition (4.4) expresses convergence of the / version while (4.5) that of the p version of the
finite element method.

Utilizing the smoothness of the data and of the solution, we can, in standard ways, prove a priori es-
timates for the error in the energy norm, L?, norm and the error in the data at interest for the mean value,
standard derivation, covariance etc. When data are smooth, the following result follows from standard
FEM procedures.

Theorem 4.4. Let the input data a;(x), f(x) and 0Q be sufficiently smooth. Then we have
o = usseior |, < Co(ps @) (WD) + (W(T)*), (4.6)
1 1
[uo = tspao.r) || 2 p.py < Co(p, @) (RDY) + (A(D)"), (4.7)

| Eluo] = Efusraion] [0y < () (DY + (H(T))*). (48)
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5. A simple model problem: algebraic stochastic equations

We next consider a very simple problem which has many of the same essential properties as the LHS type
of SPDE. To show the major ideas, we consider the stochastic problem
au =1, (5.1
where @ = a(w) is a stochastic function (in fact, a random variable) with
0 < amin < a(0) < amax < 00 (5.2)

and u = u(w) is the stochastic solution of (5.1).
We assume that

a(w) = ap + Za,-A,-(a)), (5.3)

where 4;(w), i =1,...,M are independent random variables with the same assumptions as in Section 2,
a; € R. Conditions (5.2) are the expressions (3.6) when a(x,w) is x independent. Let I'; = 4,(Q) =
(—oy,00) =1,0 >0, di(w) =y €L, i=1,....M, ' =T;x---x Ty, p,(y) be the probability density of

4;and p(y) = p1(11)p202) -+ pOm)s ¥ = By ).
We introduce the space W. Let v(y),y € ' =1, x I X --- X I;. Then

w={o0)| [ p0a0)a = el < o . (54)

where a(y) = ap + Zi:l ay,a; € R,j=0,...,M. Further, for u € W, v € W we define the bilinear form

o) = [ pabIu)e) dy (5.52)
r
and the functional
Z(v) = / p(y)u(y)dy (5.5b)
r
The problem (5.1) can be formulated as follows: Find uy(y) € W such that
B(ug,v) = L(v), YveWw. (5.6)
Let on [;, the mesh A(L) : —o =) < y! < - <y =0, W =3/ —3/7', by =max; i/ =1,...,n(i). Then
by A(I') we denote the rectangular mesh Al ) A(I') x A(T,) x A(T'y;) and 7(A(IN) = r(A(Fl))x

T(A(I)) x -+ x ©(A(I'ys)) be the elements on I'. Then we let

S = { (») € W1v| (o) 1s polynomial of degree g separately in y, ... ,yM}, (5.7
and the finite element S7(I") € $7 satisfies
Bluse,v) = L(v) Vve s (5.8)
Obviously, the exact solution of (5.1) is
1
uy(w) = uy(y) = —. 59
0( ) 0( ) a(y) ( )

Hence, because of (5.2) and (5.3), it is easy to see that u(y) is smooth on I' and hence we have

o 1/2
lluo —usq||W<c<Zh?<q+”> : (5.10)

i=1



M.K. Deb et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 63596372 6365
Further, as an example, consider

E[u()] — E[usq] = E[uo — usq] (511)

which is the error in the data of interest, namely E[ug]. Proceeding analogously as in the classical finite
element method, we define the influence function G € W by

B(u,G) = / updy YueWw. (5.12)
r
Because of the symmetry of %#(u,v) and G(y) = 1/a(y), G(y) is smooth.
Elug] = #(uo, G), (5.13a)
E[Usq] = g(usq, G), (513b)

and
|E[uo] — Efuse]| = |#(uo — use, G)| = |B(uo — uss, G — G|
v 2(g+1)
<||uo—usqIIWIIG—qu||W<C<Zh?q“> : (5.14)
i=1
Next consider the error of the variance,
El) — E,) = El — ). (5.15)
Then we have
|Elug — ug, ]| = [El(uo — uss) (uo + usy)]|
= |E[(uo — use)(2uo — (uo — usd))]|
= [2E[(uo — uss)uo] — El(uo — usq)(uo — uss)]|
<12%(uo — use, Go) + E[(uo — use) (uo — usy)]|
< 2% (up — use, Go — Gosa)| + E[(u — usq), (ttg — tisq )]

M
<c[ R (5.16)

i=1

Next, considering implementational aspects, we assume that ¢ = 0, i.e., we use constant shape functions on
the mesh A(I'), and we have

u = S " Chab OO0 U, ) = S0 "G, 0, (5.17)

where

{ Y, () =g for it <y <y,
0

5.18
elsewhere, ( )

and

lﬁi,»...,iM ()/) = lpil (yl) T WiM (J’M)-
Obviously,

%(Wkl 44444 ko lﬁel,.“,zM) =0



6366 M.K. Deb et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 63596372

L2_Error,
Slope=0.9979

Error_in_Variance,
Slope=2.0055

Error_in_Standard_Deviation,
Slope=1.9870

In(err in L2_norm, mean_u, sd_u, var_u)
o

-10 4
Error_in_Mean,
Slope=1.9859
-12 1
-14 T T T T
0 1 2 3 4 5
In{Tot_num_elems)
Fig. 1. Convergence rate for M = 1,ap = a; = 1, tmax /0min = 1.5. The observed rate is very close to the theoretical one also for crude
mesh.
for (k,...,ky) # (4,...4y) and the system to solve is diagonal. As usual, we call the number of basis

functions in (5.15) the number of degrees of freedom and denote it by N. We can of course use ¢ > 0 and
orthogonalize the shape functions on 7 (A(I')); then we solve systems of equations with a diagonal
matrix.

Let us consider a numerical example. Assume M = 1,q) =a; =1 and that o, is selected so that
@max/amin = 1.5 and the density p, is uniform. Further, consider a uniform mesh A(I';). Because the exact
solution is known, i.e., its probability distribution; we now can compute the error

[luo — ugq ||y = |t — “S‘ZHLZ(])

as well the errors in the mean standard derivation and variation.

In Fig. 1, we show in the /n — ¢n scale the errors and their observed rate obtained by a least-square fit of
the data. The theoretical rate for the L, norm is 1 and the other data is 2. We see that high accuracy was
achieved with small numbers of degrees of freedom M and the rates match perfectly the theoretical esti-
mates.

In Fig. 2, we show analogous results for M = 2,ay = a; = a», p; and o; = o uniform and amay/@min =
199. We observe that also for crude mesh, convergence is in the asymptotic range.

6. The general case of random LHS of SPD, an example
Let us consider the two-dimensional problem (2.1), respectively (3.10) and (3.11), and its approximate

solution based on (4.1).
Let D =(-0.5,0.5) x (—0.5,0.5),0, = 0.1

3
a(xi,x2, w) = ao(x1,%2) + 0, Z Viiai(x1,x2) A ()
pas
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Fig. 2. Convergence for M = 2,ay = a; = @y = 1, thmax/omin = 199. The observed rate is very close to the theoretical one.

with I' = (—/3,1/3)*, p(y) = constant, and /; and a,(x) are obtained by taking products of K-L expansion
for single dimension with (one-dimensional) covariance function C =g’e ™™l ¢=0.1, and
Sf(x1,x2) = 2(0.5 — x} — x3). Because the problem is symmetric, we need address only a quarter of the
domain D. We consider on D uniform mesh of squares; particularly we use an 8 x 8 mesh on the quarter of
the domain D. Also on I" a uniform square mesh is considered; particularly we use 8§ x 8 x 8 mesh on I'. On
D we use bilinear elements and on I' the constant elements. Denoted by uy(x,y) and u(x, y; #(D),h(I")) the
exact and the finite element solution. We have

( o[ a9 i) - u<x,y;h<D>,h<r>>>|2)l/2 < ClH(D) + A(I"). (6.1a)
Further,
| Eluo] — Elu(h(A), H(D)]
< (D) + (D) | (El] - E)?) — (E@(h(D), h(1) — (Eu(h(a), h(I'))))
< C(R*(D) + h(I)). (6.1b)

In Figs. 3(a) and (b) we show the mean and the variance computed numerically. In Figs. 4(a) and (b) we
show the mean and variance using 65,536 realizations using a uniform mesh in D.
7. Solution of random RSH type SPDE

In the previous sections, we addressed the problem of random LHS type in a SPDE. The analysis of

RHS type is very similar. Nevertheless, in this case we can, in addition, directly compute the mean value
and the covariance. As before we will assume that

f(x, @) = folx) + Z Vfi(x)Ai(w) (7.1)

and assume about the random variables 4,(®), the same as before. Then we can set

flx,0)=f(x,y), x€DandyeTl (7.2)
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Fig. 3. Computation based on (4.1) and (4.2). (a) The mean value of the solution, max value is 0.06323. (b) the variance of the solution,
is max value 0.1876F — 04.

uavg(x,y)

Fig. 4. (a) Computation based on Monte Carlo method: the mean value of the solution, max value is 0.06324. (b) The variance of the
solution is max value is 0.1881F — 0.4.

and the solution has the form
uo (x, ) = uy(x,y). (7.3)
We define

w0.1) = {oe)| [ 00) [ aTae)Paxay < o}, (74)

The major difference between (3.9) and (7.4) is that a(x) in (7.4) is independent of y. The exact solution
uy € W satisfies Vo € W,

Bluo,v) = 2(0) (7.5)
where

Bluo,v) = / o) / a(x)(Vty - Vo) dedly, (7.6a)

L) = / ) / Fy)o(e,y) drdy. (7.6b)

We can use the finite elements as before and taking advantage of the fact that a(x) is now y independent.
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We further utilize this feature. First, we prove that the mean value E[u,] satisfies the deterministic

equation with E[f] at the RHS of f.

Theorem 7.1. Let
U= {v(x)

Bo(u,v) = /Da(x)Vu -Vodx

1/2
o(x) = 0 on 02 and [|o]], = </a(x)Vv|2dx) < oo}
D

and

be the bilinear form defined on U x U. Then
Elul = [ puotx.n)dy € U,
r

Bo(Elug], v(x)) = /D E[fJo(x)dx = /D fo)p(x) d.

Proof. Equality (7.7) follows immediately from the fact that uy(x,y) € W.
Further, u(x,y) satisfies

/F o) / a(¥)V o, ) - Vs0(x, ) drdy = / o) / Fry)ole,y)dy Vo .

Selecting v(x, y) = v(x) and changing the order of integration, we have

[ a0 [ o090l - Voot)drdy = [ al) Vel - Vo) b = [ Blflotr)de = [ fiotw)ds

and (7.8) is proven. [

Let us now analyze the covariance. Because of Theorem 7.1, we can assume that E[f] = fo(x) = 0.

Theorem 7.2. Let v(x,X) be defined on D x D and

U = {v(x,f)|v(x,f) =0 forx€dD,xe D and forxe€ D,x€0D,V, (Vi) € Ly(D x D),

ol = [ [ ata@Iv.(Ts)of < oo},
B0.0) = [ [ ao)a(e) (V.00 (7, Vo] (Vi) e,

Fx,x) = / () (e, (F,) dy.

Then

Colx ) = / p)ulx, y)u(E,y) € U

and

B.(C(x,X),v(x,X)) :/D/DF(x,)_c)v(x,)_c)dxd)_c.

(7.10)
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Proof. Relation (7.9) follows from the fact that u(x,y) € W and the Schwarz inequality.
Let us now prove (7.10). Let v(x,x) € %. Then

/D /DFWW(xaﬂdxdf: / / / PO (x.2)f (F.y)o(x,T) drdxdy

/D /r /Dp(y)a(x)vxuo(x,y) -V,oo(x,X)f(x,y) dxdxdy
— /F /D /Dp()’)a(x)a()_c)(vxuo(Ly))T(V;va(x,X))V;uo()_c,y)dxdfdy
= Bc(C(x,X), v(x,X))
which was to be proven. [

As a a numerical example, consider the one-dimensional problem,

du -
~qz= f(x) on D= (-0.50.5)
u(+0.5) = 0.

Assume that E[f] = 0 and the covariance of f'to be

2 —|x—X|

F(x,X)=o0"¢

with ¢ = 0.1.
Fig. 5 shows the covariance of the solution computed from Theorem 7.2.
Theorem 7.2 shows that the covariance of the random RHS type SPDF can be computed as a deter-
ministic problem on D x D. The strong form is
L. L;C(x,X) = F(x,Xx) on D XD, (7.11)

where L,, L; are the operators of the LHS of the equation and C(x,x) =0 on 0D x D and D x dD.

Soln. Covar

Fig. 5. The covariance of the solution computed by Theorem 7.2.
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Remark 7.3. The space % is the typical space of functions with dominant mixed derivatives. For more,
see [2].

Remark 7.4. The proof that the covariance C(x,X) satisfies (7.11) was proven in [3].

Remark 7.5. Computation of the covariance function directly from (7.6a) and (7.6b) is much more ex-
pensive than computation from Theorem 7.2. Using Theorem 7.2 C(x;,x,) exists for all F € %' and hence
the convergence of the series (7.1) can be very weak. Further, in practice, only the covariance function
F(x),x,) is available and K-L expansion utilizes it. Hence we should utilize F(x;,x,) as much as possible,
i.e., to compute directly the covariance by Theorem 7.2.

Remark 7.6. The perturbation approach for dealing with the LHS problem essentially transforms it to the
RHS problem.

8. Comments and summary

The aim of the present work was to cast the problem of stochastic PDEs into a framework similar to
those familiar in deterministic problems which are suitable for approximation by the finite element method.
The FEM is very well-developed, theoretically and practically. A posteriori error estimation is available as
well, as are adaptive procedures for 4, p and 4—p versions of the FEM. The major difficulty with the method
described here is the high dimensionality of the problem. This aspect has to be taken into account in the
implementation. Obviously, adaptive procedures are necessary for successful solutions. The approach
presented in this paper gives a basis for utilizing the large body of known results and methods pertaining to
the FEM. Implementational aspects are not addressed here.

It is worthwhile to mention that the use of the Wiener chaos polynomials used e.g., in [8] is essentially the
p-version in the framework in this paper. We mention only models problems. Analogously, it is possible to
analyze stochastic boundary conditions and the problem of stochastic domains. Also the approach pre-
sented here can be generalized for other types of differential equations. There are many problems which
remain to be addressed. One essential problem is the case in which the K-L series converges very slowly and
many terms are needed. It is necessary to weaken the sense of convergence so that the problem with ““al-
most” white noise will also be solvable. We assumed that the data in the stochastic formulation are per-
fectly known. Of course this is not generally the case and uncertainties are present here too. The influence of
these uncertainties has to be analyzed as well. This will be the subject of forthcoming papers.
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