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Abstract

This paper addresses a classical and largely unsolved problem: given a structural component constructed of a heterogeneous elastic
material that is in equilibrium under the action of applied loads, determine local micromechanical features of its response (e.g., local
stresses and displacements in or around phase boundaries or in inclusions) to an arbitrary preset level of accuracy, it being understood
that the microstructure is a priori unknown, may be randomly distributed, may exist at multiple spatial scales, and may contain
millions, even billions, of microscale components. The approach described in this work begins with a mathematical abstraction of this
problem in which the material body is modeled as an elastic solid with highly variable, possibly randomly distributed, elastic prop-
erties. Information on the actual character of the microstructure of given material bodies is determined by computerized tomography
(CT) imaging. A procedure is given for determining the effective material properties from imaging data, using either deterministic or
stochastic methods. An algorithm is then described for determining local quantities of interest, such as average stresses on inclusion
boundaries, to arbitrary accuracy relative to the fine-scale model. A new computational environment for implementing such analyses is
presented which employs parallel, adaptive, hp finite element methods, CT interfaces, automatic meshing procedures, and, effectively,
adaptive modeling schemes. Within the basic premises on which the approach is based, results of any specified accuracy can be ob-
tained, independently of the number of microscale components and constituents. The results of several numerical experiments are
presented. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the service life and performance of structural components, machine parts, and
general material bodies often depend upon micromechanical events that take place at scales much smaller
then those prevalent in traditional macromechanical characterizations of material properties. On the other
hand, in the actual analysis of real components, the geometry, properties, and distribution of the micro-
structure is rarely known and is impossible to determine without the use of special technologies. Moreover,
in most engineering materials, the number of microstructural components is enormous, often exceeding
millions of constituents, and the geometry, orientation, and mechanical properties are unknown or not
known with significant precision. Thus, a detailed analysis of micromechanics is regarded as impossible,
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well beyond the scope of any conceivable computational strategy. It is this somewhat paradoxical situation
that has led to the study of methods to extract “‘effective properties” of materials, a subject that has
dominated research on the mechanics of materials for a half-century or more.

In this investigation, we present a general approach, and a computational strategy, for determining local
micromechanical features of the response of arbitrary, heterogeneous, elastic bodies in equilibrium under
the action of prescribed external forces. The approach can be applied independently of the number of
microscale constituents and can, in a sense to be made precise below, yield computed values of quantities of
interest with an accuracy predefined by the user.

Naturally, the approach is based on a number of critical assumptions. Firstly, the actual, physical
structure is replaced by a mathematical model which depicts the body as a heterogeneous elastic body with
rapidly varying coefficients. These coefficients and their variation over the body (or, equivalently, the
number of constituents and their mechanical properties) are, a priori, unknown. Secondly, we assume that
the microstructure can be characterized with adequate precision by the use of imaging technologies: in our
case, computerized tomography (CT) images generated by X-ray devices. We may then identify “quantities
of interest” which are specific local features of the response that are identified a priori as important in
design considerations, or in determining the local conditions within the material. Such local quantities of
interest could represent, for example, average normal or shear stresses on material interfaces, displacements
of inclusions, relative displacements of particles in a material matrix, etc. Mathematically, such quantities
of interest are characterized as continuous linear functionals on the class of admissible functions to which
the fine-scale solution of the problem belongs. In a previous paper [24], computable a posteriori bounds on
the error (and estimates of the error) in the quantities of interest due to evaluating them using a “ho-
mogenized solution” of the problem were derived. These estimates provide a basis for adaptive modeling of
the quantities of interest. This is accomplished by using an algorithm, referred to as the goal oriented
adaptive local solution (GOALS) algorithm in our companion paper [24], which utilizes CT data and
automatic meshing schemes to augment the analysis procedures.

It is clear that the assumptions underlying our approach may be invalid in many cases or they may be
insufficient in themselves to allow a complete resolution of the target problem. These assumptions can be
weakened and the approach generalized. It is well known that local damage or plastic deformation can
occur in heterogeneous materials, even under moderate loads. To account for such effects, the model
problem class that serves as a datum against which modeling errors are measured must be extended to
include nonlinear effects. Such extensions of the approach can be accomplished by expanding the equations
governing the model to include specific nonlinear effects and using the GOALS algorithm each step of the
iterative procedure. Discussions of such extensions are given in preliminary reports [21,22].

In addition, CT imaging is subject to well-known imprecisions. Firstly, available CT devices are capable
of resolutions of around 10 pm; features at smaller scales are thus lost. To resolve finer-scale attributes,
other imaging modalities must be employed, but most require an invasion of the microstructure by various
means which for many applications may be unacceptable. Secondly, the CT image itself is imperfect, as it
depends on the threshold levels selected for gray-scale shadings assigned to pixel arrays defining the image.
This is the problem of segmentation, and is critical in determining an accurate representation of internal
features in a nondestructive process. We discuss one approach for addressing this problem in Section 3 of
this work. Thirdly, CT imaging yields only density maps of slices of the specimen, and does not provide
information on the mechanical properties of the microscale constituents. Such microproperties must gen-
erally be inferred from additional information gathered on the material. This information can possibly be
obtained from micromechanical tests (e.g., nanoindentation tests, which may also be subject to significant
errors), from other models of sub-scale physics (e.g., molecular dynamics models), or can be determined
from independent tests on constituents prior to the fabrication of the specimen (such as in the manufac-
turing of multi-phase composites). In the present work, we confine our attention to n-phase composites (n
generally two or three) in which the mechanical properties are known a priori and for which the geometry
of individual components is rather simple; typically spherical or cylindrical. Our approach, however, is
applicable to materials with quite general microstructural features provided they are resolvable by the CT
device in hand.

We review briefly the major features of the GOALS algorithm in Section 2. We then present the details
of a general computational system designed to deliver high-fidelity predictions of local response features of
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structural components which fall into the class covered adequately by our initial assumptions. For prob-
lems in this class, the approach, as indicated earlier, yields results of arbitrary, preset accuracy, is inde-
pendent of the number and distribution of microstructural constituents, makes use of imaging data to
represent micromechanical properties to the extent required in the adaptive modeling algorithm (GOALS),
provides automatic meshing of sample representative volume elements (RVEs) using imaging data, and
involves highly accurate numerical approximations of various boundary value problems (BVPs) generated
in the process obtained using a parallel, adaptive, hp finite element solver and a systematic partitioning and
load balancing technique based on the notion of space filling curves (SFCs) [26]. Details of all these aspects
of our approach are covered in the remainder of this paper.

Following a review of the basic strategies, we describe the integration of CT imaging and parallel hp
adaptive finite element analyses to determine effective properties of various specimens, a key step in the
basic approach. The architecture of the software developed to implement the strategy is briefly summarized.
Finally, we present the results of several experiments which test the validity of the approach and which
demonstrate its performance on a suite of model problems. Included in these tests are cases in which
physical specimens have been fabricated which are two-phase composites comprised of an epoxy matrix
and spherical glass inclusions. The final section contains concluding remarks.

2. Preliminaries: the adaptive modeling strategy

Our purpose here is to provide an overview of the general computational environment that is the ob-

jective of this work, and to then provide further detail on the individual components in subsequent sections.
The general ideas of the adaptive-modeling algorithm depicted in Fig. 1, are:

1. a structural component is given or fabricated and a list of analysis goals, so-called quantities of interest,
is identified; the accurate calculation of these quantities is the goal of the analysis;

2. X-ray tomography is used to scan the specimen or various portions of it to approximately define the
internal microstructure;

3. a homogenization module accepts imaging data taken from sampled sections of the body and computes
effective mechanical properties using an adaptive finite element method;

2. SCANNING STEP

& MESH GENERATION
(CT Device)

A structural component
Loads, Boundary Conditions,

4. ACCURATE FE
ANALYSIS

Adaptive hp Finite

Element Analysis Module

3. HOMOGENIZATION

[0 Y] Calculation of Effective
Properties of Samples

6. OUTPUT

Accurate Estimates of
QuantitiesLi

\II/

Experimental Verification

5. GOALS MODULE
Estimates Modeling Error

in L. and adaptively adjusts
Microstructural characterization

Fig. 1. Schematic of the adaptive modeling strategy.
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4. the effective properties are used as input data in the adaptive hp finite element program which computes
a highly accurate ““homogenized’ solution to the equations of elastostatics for given loading and applied
force data (a step in which the response of the body is modeled mathematically as a homogeneous, lin-
early elastic body);

5. the homogenized solution is input to a module which implements the GOALS algorithm which estimates
the errors in the quantities of interest (errors due to modeling the heterogeneous material as a homog-
enized medium) and adaptively adjusts the calculated quantities (by using additional microscale data
supplied by the imaging process) until preset levels of accuracy are attained;

6. the output is the set of quantities of interest; when possible, these results are verified by independent
physical experiments.

In general, there is feedback between steps 1 and 2, and steps 5 and 2: from 2 to 1, as imaging data may be

needed to identify quantities of interest, and from 5 to 2, as additional imaging data on microstructure

may be needed to adaptively improve the accuracy of the model. Further discussion of these steps is given
below.

2.1. Goals of the analysis: quantities of interest

The target problem is this: given a structural component subjected to known boundary conditions and
loads, determine its response to these external loads. In the present investigation, it is assumed that
1. the body is linearly elastic;

2. the exterior geometry, boundary conditions, and applied external forces are known exactly; !
By “response”, we generally mean the displacement and stress fields within the body or some well-defined
functions of these fields.

In virtually all applications having to do with engineering analysis and design or with determining the
performance of the component to design loads, the analyst is interested in a finite (generally small) list of
special local features of the response, such as local stresses on internal inclusions in the body, average
stresses on material interfaces, relative displacements of constituents, average displacement, shear stress, or
normal stress on internal surfaces, etc. Our goal shall be the accurate determination of such local quantities
of interest. If each such quantity be labeled L;, 1 <i<N;, then our goal is to determine, with a prescribed
and quantifiable level of accuracy, the set & = {L;}1",.

2.2. Imaging

It is further assumed that
1. while the internal microstructure of the body is unknown, it can be determined with sufficient accuracy

by the use of imaging devices such as X-ray tomography.
The microstructure is characterized by the geometric shape, orientation, distribution, and mechanical
properties of various constituents and by the volume fraction of certain “phases” of material. While our
approach is applicable to bodies with many such phases, each phase is assumed to be linearly elastic and to
have mechanical properties (elasticities) that are a priori known. In some cases, including cases described
later, the actual fabrication of the component is done as a precursor to the implementation of the analysis
process. Then, mechanical properties of some of the microstructural features may be known with high
precision.

The imaging field of typical CT imaging devices is often much smaller than the physical dimensions of
the specimen (the structural component). Thus, CT imaging may be used to depict microstructural features

! Of course, a natural question, in practical applications, is how does one determine the actual loads and boundary conditions on
various structural components? In general, such loads and conditions are obtained, albeit approximately, from a global analysis of a
larger assemblage, of which the component of interest is a unit. Forces and restraints on the assemblage are also presumed to be
known, perhaps with better precision than those on components. The response of the component can, therefore, change the nature of
the loads acting on it. Then the process described here is only one step in an iterative global-local procedure in which final loads are
determined by a sequence of corrections of an initial analysis.
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(topology and geometric features) of samples of the material. We will use such sample images to determine
effective properties of the heterogeneous material. As will be seen later, such approximate effective prop-
erties may be highly inaccurate; nevertheless, a method for calculating effective properties from sample CT
images is an important part of the computational procedure.

2.3. The mathematical model

Now the actual response of the material body under study can be thought of as being depicted by a
mathematical abstraction, a mathematical model, provided (in this investigation) by the equations of linear
elasticity for heterogeneous bodies:

— divE(x)Vu(x) = f(x), x€Q,

n(x) - E(x)Vu(x) = t(x), xeT, (1)
u(x) =%(x), xerl,.

Here, @ C RY (N =1,2,3) is the open interior of the material body under consideration, I', and I', are
portions of the boundary 0Q of Q on which tractions t and displacements %, respectively, are prescribed, f
is the body force per unit volume, and n is the unit exterior normal to 0Q. In (1):

E(x) = the value of the elasticity tensor E at a point x € Q;

u(x) = the value of the fine-scale displacement field u at a point x € Q.

It will always be assumed that E has the standard symmetries and ellipticity properties of elasticity tensors:
Eju(X) = Eji(X) = Eqju(X) = Epyj(x), for a.e x € Q,1<1,/,k, I <N; there exist constants o, o; > 0 such
that for almost all x € Q,

to&iies < Ejjr (X) &0 < o1 €65 (2)

for any ¢; € RY x RY, &;; = &, and repeated indices are summed throughout their range, 1 <i,/,k, [ <N.
Owing to the possibly very irregular distribution of multi-phase microstructural features within the body, E
will, in general, be a highly oscillatory, rapidly varying function of x.

It is emphasized that the function E = E(x) will rarely ever be completely known, and therefore, the fine-
scale displacement field uw = u(x) will also never (or rarely ever) be known. The best that one can usually hope
for is that a CT imaging device can be used to sample the specimen and determine an approximate re-
striction of E to the sampled subdomains.

2.4. Effective properties: the homogenized problem

Since our knowledge of E is incomplete and since the fine-scale displacement field is unknown and
generally impossible to determine, we resort to an old and classical approach used to analyze heterogeneous
media: the elasticity tensor E is replaced by a smeared, or homogenized tensor E° of effective properties.

In our adaptive modeling process, imaging data from the samples is used to compute such effective
properties. This is accomplished by generating a finite element mesh of the microstructure and calling an hp
finite element module (discussed below) to calculate effective moduli. It is emphasized that the determi-
nation of effective properties is not the goal of this analysis; homogenization is only an artifact in a broader
computational strategy. Thus, in the present approach,

e E’ is computed from data supplied by the CT image of samples of the body;

¢ E’ may be a constant tensor, or it can vary over a large group of samples, being constant, however, over
each sample.

E’ can be computed from sample data on the microstructure using the well-known theories of homoge-

nization [5,28], or it can be approximated using well-accepted bounds on effective properties of heteroge-

neous materials [12]. With E° known, we replace (1) by the homogenized problem:



6094 K.S. Vemaganti, J.T. Oden | Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089—6124

—divE'Vd'(x) = f(x), x€Q,
n(x)-E'(x)Vu'(x) = t(x), xeT, (3)
W (x)=%x), xerl,.

The displacement field u’ = u’(x) is called the homogenized displacement field. While we do not know the
fine-scale field u, we can nevertheless estimate quite accurately, the homogenization error

=u—u (4)

using methods described in [24,31].

2.5. Weak forms, error norms, and finite element analysis

It is well known that for general domains 2 and general loading and boundary conditions, classical
solutions to problems (1) and (3) do not exist. One is then led to consider weak or variational forms. In the
case of (1), we have the corresponding weak problem:

Find u € {u} + V(Q) such that Bq(u,v) = Fo(v) Vv € V(Q). (5)
Here, V(Q) is the space of admissible displacements

def

V(Q)“ {v e (H'(@)" :v=00n ru}. (6)

Also, i is an (H'(Q))" function whose trace on I, is the Dirichlet data %, and

Bo(u, v)déf / Vv : EVudx, (7)
Q
fg(v)déf/f-vdx+/ t-vds. (8)
Q r,
In (7), the integrand is an L'(Q) function,
ov; Ou
Vv:EVu= o (X)Eyia (%) a—x’; (x)

(repeated indices summed; 1 <i,j,k, [ <N,N = 1,2, 3). In (8), it is implicitly assumed that f € (LZ(Q))N and
t-v is integrable on I', for v € V(Q).
The weak form of the homogenized problem (3) is:

Find u’ € {@} + V(Q) such that 2%(u’,v) = Zo(v) W € V(Q), 9)
where
2, v) & / Vv : BV’ dx, (10)
o

and E° denotes the elasticity tensor for the homogenized problem.

The analysis of these problems and the periodic BVPs used in determining the effective properties (in step
3 in Fig. 1) is done using a parallel, hp adaptive finite element method designed to deliver highly accurate
solutions for u’ (and E°) with estimatable approximation error. The GOALS algorithm in step 5 also
employs this tool to compute the solutions of local BVPs of the type

Bo(0,v) = F,(v) WEV,, (11)

where o is a subdomain surrounding a local quantity of interest, in a sense made precise later. Here, u
is a correction to u’ satisfying Dirichlet boundary conditions (@=u’ on 0w\ TI,, n-EVa=t on
oo NTr,).
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As will be explained in more detail later, the quantities of interest L; € ¥ are mathematically charac-
terized as continuous linear functionals on V:

Li € V,(Q)7 (12)

V'(Q) being the dual space of V(Q). The GOALS algorithm controls the modeling error in each L; and
estimates the value of the quantity itself.

When feasible, the predicted response produced by the adaptive modeling system should be compared
with results of physical experiments. Such experimental verifications, of course, are difficult to obtain. We
also comment on this topic further later in this work.

3. Computerized tomography and mesh generation

With the advent of high-precision imaging devices, the use of imaging techniques to obtain information
about the microstructure of composites is becoming more prevalent. Such techniques are nondestructive in
nature, i.e., they do not affect the service life or usability of a specimen. Typical imaging devices are
scanning electron microscopes, optical microscopes and CT machines.

There is a growing volume of literature on the use of imaging technologies to characterize microscale
properties of heterogeneous materials. As representative of this literature, we mention the work of London
et al. [18] who use CT to observe microstructural damage caused by heating and thermal cycling in metal/
matrix and carbon/carbon composites. Terada et al. [29] use a scanning electron microscope to obtain
images of metal-matrix composites. This information is then used to compute effective properties of the
specimens by treating each voxel from the image as a finite element. Michel et al. [19,20] propose a Fourier
transform-based technique that directly uses imaging data to compute the effective properties of both linear
and nonlinear composite materials.

Ghosh and Moorthy [9] have used micrographs of Al-Si-Mg composites to construct Voronoi cell finite
element method (VCFEM)-based computational models for damage analysis. Using imaging data, Ba-
buska et al. [2] studied the properties of fibrous composites, with an emphasis on the stochastic nature of
the constitutive properties of the composite and the statistics of interfacial stresses. Huet [15] studied crack
propagation in composites using a system that integrated imaging, mesh generation and finite element
analysis. Additional references to work on the use of imaging techniques to obtain effective properties can
be found in the papers cited here.

An important difference between previous works in this area and the current approach is that our goal is
not to compute effective properties of samples by imaging them. Neither is our goal to extract complete
microstructural information about a specimen in order to compute a fine-scale solution. Indeed, our ap-
proach consists of combining imaging techniques with adaptive material modeling procedures in order to
compute quantities of interest with high accuracy.

3.1. CT imaging

Tomography refers to the cross-sectional imaging of an object from data collected by subjecting the
object to electro-magnetic radiation from different directions. X-ray CT refers to the use of X-rays to
analyze a given cross-section. Since a 3-D description of an object can, in principle, be assembled from a
series of 2-D (planar) descriptions, we focus our attention here on the analysis of 2-D CT images.

The output from the CT analysis of a material is a planar map of the attenuation coefficient ? of the
material, given as a discrete function over a cartesian grid in the form of a gray-scale. Each element of this
grid is termed a pixel.

2 The attenuation coefficient of a material, as the name suggests, measures the attenuation or the loss of intensity of an X-ray while
passing through the material as a result of the Photoelectric absorption effect and the Compton effect. In general, the attenuation
coefficient of a material can be related accurately to material densities.
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For a detailed discussion of CT imaging, see [17]. In the current study, we use a X-ray CT device with a
resolution of about 10 um.

3.2. The segmentation problem

Segmentation refers to the process of identifying individual constituents and the interfaces between
constituents in a material from its gray-scale image. For a two-phase material, this amounts to classifying a
pixel as belonging to one of two materials and grouping like pixels. The range of the gray-scale depends on
the number of “bits’ of information stored per pixel; an 8-bit gray-scale, for instance, ranges from 0 to 255
in value. Thus, to segment an image of a two-phase material, it is necessary to select a threshold value,
above which a pixel is considered to be of one material, and below which the pixel belongs to the other
material. For multi-phase materials, several threshold values must be identified to delineate various mi-
cromechanical constituents. The choice of this threshold value, evidently, has a significant impact on the
outcome of the segmentation process. Once the threshold parameter, also known as an isovalue, is selected,
the isocontour — the surface on which the value of the gray-scale function equals the selected isovalue — has
to be determined. Here, we comment only about the selection of the isovalue; a discussion of isocontouring
is beyond the scope of this paper.

Our approach to the segmentation problem consists of augmenting the Contour Spectrum approach
proposed by Bajaj et al. [4] with known information about the specimen. In particular, we use information
about the volume fraction of the specimen to arrive at a segmented image. In the current approach, the
threshold value is varied from one end of the gray-scale to the other, and for each value of the threshold
parameter, the volume fraction of the resulting segmented image is computed. Then, the threshold value
that predicts the known volume fraction of the specimen is selected as the true threshold value. For more
details on the Contour Spectrum approach and the isocontouring algorithms used in this work, see [3,4].

Fig. 2. CT image of sample of rock.



K.S. Vemaganti, J.T. Oden | Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089—6124 6097

=| Conlour Speetrum T
1 Suface Area b e #1 Mau: Volume | 511145.0d830E ‘ 7|
11484475 . BABE S 82936120 . BIAE
7 hin Volume 84475006800 4 Gradient 82936126, 000608 o

===

value

(b)

Fig. 3. (a) Contour Spectrum for the rock sample of Fig. 2. (b) and (c) Segmented images for two different choices of the threshold
parameter.

As an example, we consider a rock sample whose CT image is shown in Fig. 2. Fig. 3(a) shows the
Contour Spectrum for this sample, with the blue line representing the variation of the volume fraction with
the threshold parameter. Finally, in Figs. 3(b) and (c), we show the resulting segmented images for two
different choices of the threshold parameter. As is seen from these figures, an arbitrary selection of the
threshold parameter can result in a highly inaccurate picture of the microstructure.

3.3. Mesh generation

The final step in using the original CT image is to generate a mesh on which computations can be
performed. We now discuss the generation of 2-D meshes of quadrilateral elements for the case of two-
phase composites with cylindrical (circular) inclusions embedded in a matrix material. Mesh generation
using triangles for more general inclusions has been performed but will not be considered here. For the
purpose of the present discussion, we assume that the centers and the radii of the inclusions have been
extracted from the segmented image of the specimen.

The main steps in the mesh generation algorithm are as follows:

1. Construct the weighted Voronoi diagram of centers of the circles, with the weight proportional to
radius.

2. Merge short edges of the Voronoi diagram based on user-specified threshold. If this leads to an inter-
section between an edge and a circle, the operation is not performed.
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(d)

(e)

Fig. 4. Meshing algorithm: (a) original configuration of the inclusions, (b) weighted Voronoi diagram for this configuration,
(c) Voronoi diagram after removal of short edges, (d) initial mesh, and (e) mesh after five iterations of centroid smoothing.

3. Divide faces of Voronoi cells into n pieces (n is user-specified) by introducing vertices (nodes) on the
faces. If a face is shared, this division must be unique.

4. Connect centers of circles to the vertices on the faces, leading to a collection of super-triangles. Each
such super-triangle is divided into a quadrilateral and a triangle by the presence of the circle. Optionally,
additional division can be performed in the radial direction.

5. Subdivide each triangle into three quadrilaterals.

6. Smooth the mesh using, say, centroid smoothing, wherein an internal node is relocated to the geometric
center, or centroid, of the polygon comprised of the elements containing the internal node.

In Fig. 4, some of the steps in the algorithm are illustrated for a simple case. More involved example

problems employing the above algorithm will be presented later. It should be noted that the approach

described here is not related to the VCFEM of Ghosh and Moorthy (e.g., [9]). Here, the Voronoi cells are
not finite elements; they are partitions that encapsulate inclusions and provide a geometric description of
needed for automatic meshing. These meshes are adapted using a parallel hp adaptive finite element system

discussed in Section 6.

4. Homogenization: determination of effective properties

The term homogenization, as used here, refers to processes by which the micromechanical properties of
heterogeneous materials are averaged, smeared out over larger scales, so that properties of a homogenized
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material are obtained that are, “effectively”’ those that would be experienced in macroscopic character-
izations of material properties. A large body of work exists on this subject and the underlying mathematical
theory, and we refer to standard references for full details: see, for example, [5,16,28] or for an engineering-
oriented treatment, [6].

4.1. Asymptotic homogenization theory

Much of the classical homogenization theory is concerned with the abstract situation in which the mi-
crostructure (the array of coefficients in the governing equations) is periodic with period e. The domain Q is
assumed to be composed of a periodic lattice of cells ¥, ¢ R", each cell being the image of a unit cell Y
under a dilatation x = ey and a translation. The displacement, strain, and stress fields are then expressed as
asymptotic expansions:

u(x,y) = u'(x) +eu'(x,y) + -,
g(x,y) = &(x,y) +e (x,y) + -, (13)
66(X7y) = O-O(Xay> + 60‘1(X, y) + ey

where x is the macro-coordinate of a point in Q and y is the microcoordinate, y = x/e. Here, the superscript
€ is used to emphasize the dependence of the fields on the size of the cell. Also, where necessary, the
subscripts x and y are used to denote differentiation with respect to the macro and microcoordinates,
respectively. The expansions above are introduced into the governing equations (1) and one finds that, on
the macroscale, the macrostress equilibrium equation is given by

—div, (6°)(x) = f(x), (14)

where (-) denotes the unit cell average,

),
V= Nd 15
0= [ Oay (15)
and
(a”) = E&"), (16)
where E is the effective or homogenized elasticity tensor. It can be shown (e.g., [28]) that
Egy = (Epa (9) (Bundn + 10y (1" (¥))))- (17)

1<i,j,k,l,mn<N, ycY,and y” is a symmetric array of N> vector functions of the microscale coor-
dinate y which are solutions of the following weak BVP:

Find 3™ € Vy such that (™) =0, Zy(y™,v) = Zy(v) Vv € Vy, (18)
where
€ € a i
B [ViEvgray F0S - [ B,y (19)
Y ’ Yy Vi

and Vy is the space of locally H' periodic vector valued functions defined on the unit cell ¥

def

Vy={v:ve H (RY), v,Y - periodic}. (20)

loc

Thus, to determine the effective properties, we solve (18) for ™ and then calculate the effective elasticity
tensor E° using (17).
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4.2. Other methods for defining effective properties

Another popular method for defining effective properties of composite materials is based on the notion
of RVEs: samples of the heterogeneous material which are (a) larger than typical microscale features, such
as fiber diameters, and smaller than the characteristic length of the body itself, and (b) exhibit properties
“representative” of the material as a whole. In this approach, no periodicity of microstructure is assumed.
However, the material is assumed to be statistically homogeneous: meaning “all global geometrical char-
acteristics such as volume fractions, two-point correlations are the same in any RVE, irrespective of its
position”; see [12] and the references cited therein.

The homogenized elasticity tensor is computed as follows: the RVE, also denoted Y, is subjected to
either
e displacement boundary conditions of the type

u=¢-y on?dY, (21)

where € is a constant prescribed strain tensor or
e traction boundary conditions of the type

t=o-n on?dY, (22)

where & is a constant prescribed stress tensor.
Such boundary conditions are referred to as “uniform” boundary conditions in literature. Then, the ef-
fective elasticity tensor E° is defined by relating the RVE-average of the stress field to the RVE-average of
the strain field,

(6) = E(g). (23)

This, of course, implies that the equations of elasticity have to be solved on the RVE, using a numerical
method such as the finite element method, in order to compute the effective properties.

An equivalent definition of effective properties of certain composite materials can be given in terms of the
strain and stress energy of the RVE. Using these energy expressions and certain extremum principles,
Hashin and Shtrikman obtained upper and lower bounds on the effective properties of a composite material
with isotropic phases [13,14].

4.3. Current implementation

In our approach, the “unit cell” Y is determined by sampling the microstructure using the imaging
process described in the previous section. The cell samples are meshed using the procedures described
earlier. Problem (18) is then solved on Y, subject either to periodic or uniform boundary conditions, using
an adaptive hp finite element method, described in Section 6. In some cases, we choose to employ the
Hashin—Shtrikman bounds. The process also admits a statistical characterization of properties by using the
sampling data to obtain statistical averages as in [2]. We note, once again, that the calculation of such
effective properties represents only a step in the larger algorithm. While the rate of convergence to results
exhibiting the targeted accuracy and the size of the domain of influence will depend on the choice of E°
(a point discussed in more detail in Section 7), the use of finely tuned estimates of effective properties is not
necessary in our approach.

5. Error estimation and adaptive modeling: the GOALS algorithm

In this section, we review the major results regarding modeling error estimation and adaptive
modeling presented in [24]. First, we review global energy bounds on the modeling error e°. Next,
bounds on the modeling error in local quantities of interest are briefly discussed. This is followed by a
review of the GOALS algorithm [24], a procedure for delivering accurate values of quantities of in-
terest.
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5.1. Energy error estimates

Let
Jy=1-E'E"), (24)

where I is the identity tensor. Next, for g€ V(Q), define the associated linear residual functional
Ry :V(Q) = R,

Re(V) = —/QVV :ES\Vgdx, veV(Q). (25)

Finally, define the energy norm of an admissible function v € V(Q),

def
V]l z(0) = v/ Ba(v,v), (26)

where %q(-,-) is the bilinear form defined in (7).

Theorem 5.1. Let u and u° be the solutions to problems (5) and (9), respectively. Then the following holds:

Clow < HeOHE(Q) = [lu— “0”5(9) < Lupp (27)
where
o (o (a0 . 1/2
Lo & Wﬂ Lupp =2 { / SVl : EJOVuodx} : (28)
[0l g o

For proofs, see [23,31].
5.2. Local error estimates

Let L be a quantity of interest that is characterized by a continuous linear functional V(Q), L € V'(Q).
The problem

[Find w € V(Q) such that Zq(v,w) = L(v) Vv € V(Q)| (29)

is referred to as the adjoint fine-scale problem. The solution w to the adjoint fine-scale problem is termed the
fine-scale influence function. The homogenized version of this problem is referred to as the adjoint ho-
mogenized problem and reads

‘Find w’ € V(Q) such that 2°(v,w’) = L(v) ¥v € V(Q)‘ (30)

The solution to this problem is the homogenized influence function. In what follows, we sometimes refer to
the problems (5) and (9) as the primal fine-scale problem and primal homogenized problem, respectively.
Functions w and w° exist and are uniquely defined. The modeling error in the influence function is given
by

[=9
<,

& =w—w. (31)

Also, &° satisfies the following relationship:
fow < HéOHE(Q) = [lw— WOHE(Q) < 5u1o1m (32)
where

Cw | - 2
7 [P (W) guppd:f{ / JOVWO:EJOVWOdX} . (33)

”wO”E(Q)
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We now state the main result on the estimation of modeling error in quantities of interest.

Theorem 5.2. Let u® and w° be the solutions to problems (9) and (30), respectively. Then

Mow < L(€”) < 1ypp, (34)
where
difl + 32 1 - \2 R 0 35
’7|ow - Z (nlow) - Z (nupp) =+ lll)(w )7 ( )
der 1 1, _
Nupp = Z (’ﬁpp)z - Z (nlow)2 + :%“0 (WO) (36)
with arbitrary s € R*,
0t = \/ Sy 2 /Q JoVu’ : ES VW dx + s20] (37)
and
+ el | R g0 5140 (uo + Hiwo)| (38)
o [u® + 05wl g
where {,, and C_upp are defined by (28) and (33), respectively, and 0* is given by
ot — Bo(, W) Ry (su® £ 57w0) — B (u’, u®) Ry (su® + 57 'w0) (39)

B0, WO) R0 (su® £ 57IWO) — Bo(W0, WO) Ry (su® £ 571w0)

See [23] for the proof. The scalar parameter s is a scaling factor and its optimal value is s* = ngpp /Cupp-
Also, in our numerical experiments, we employ the following estimate of the modeling error in the quantity
of interest:

def 1 1, _
L&)~ 1 F 1) (g + 2 (W0) (40)

5.3. Definition of the local fine-scale problem

For the purpose of simplicity, we assume that the quantity of interest L is a functional of the form

L(v) :/Z(v)dx, (41)

where / is a linear map /: V(Q) — L} (). Here, o is some subset of the domain Q. Functionals of other

types can be accommodated very easily in our approach. Let Q; be a subset of the domain Q that contains
w: o C Q;. We shall refer to Q; as the functional’s “domain of influence, and it’s determination will be
discussed shortly.

In order to define the local fine-scale problem on Q;, we introduce some notation. Let

r,¥ee,nr, r, e \r,. (42)

Define the local function space on Q; as
V(@) = {v EV(Q), v=00n 0\ 2, v, = 0}. (43)

Next, an extension operator &; : V(Q;) — V(Q) is introduced, defined by:
vi € V(Qp), &1(ve) = v such that v[g, = v, Vg, =0. (44)
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The resftriction of the homogenized solution u’ to the domain of influence €, is defined as
w :ul | o,-Then, the following weak BVP is referred to as the local fine-scale problem:

|Find ii, € {ul} + V(Q,) such that %, (ii,,v,) = 7 (V) W, € V(Qy),

(45)
where the bilinear and linear forms are defined as
By (0, v,) S /Q Vv, : EVii, dx (46)
L
and
%L(VL)déf/ f-dex+/ t-v.ds, (47)
Qp Iy,

respectively. Thus, @ is a perturbation to the homogenized solution u® on ; that takes into account the
fine-scale microstructure. It equals the primal homogenized solution u’ on the I';, portion of its boundary.
Using the extension operator &, we define the locally enhanced function a € V(Q) as:

a4+ &, (0, —u?). (48)

Finally, it is noted that the modeling error u — u can also be estimated — both globally in the energy norm,
and locally in the quantity of interest — using the results presented in [24].

5.4. Modeling error estimates for perforated materials

The results presented in Theorems 5.1 and 5.2 are applicable to n-phase heterogeneous materials, but not
to perforated domains. The main difference between these two cases is that in the former, it is the elasticity
tensor that is homogenized or smeared out, whereas in the latter, the domain also gets smeared out. Thus,
the fine-scale and homogenized problems are posed on different domains, and new error estimates need to
be developed. Here, we merely state the main result on estimating the modeling error in the energy norm for
perforated domains; see [30] for the proof.

The perforated body, shown in Fig. 5(a), is assumed to occupy an open bounded domain
Q C RY, N =2,3. The boundaries of the voids inside the body are denoted 7,, 1 <i <N,. The following
assumptions are made about the voids:

e the voids are traction-free;

o the voids are sufficiently smooth, i.e., the domain Q is connected, and the Korn’s inequality and the stan-
dard trace theorem for H' functions on polygonal domains still hold; and

o the voids do not intersect the outer boundary 0€Q.

(b)

Fig. 5. Schematic of (a) a perforated domain, and (b) the homogenized model of the perforated domain.
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It is also assumed that the material is linearly elastic and that the elasticity tensor E;;; obeys standard
ellipticity and symmetry conditions. Under the stated assumptions, the fine-scale displacement field u is the
solution to following fine-scale problem:

‘Find u € V(Q) such that Bo(u,v) = Fo(v) Vv € V(Q),

(49)

where %Bq(-,-), 7 o(-) and V(Q) are as defined in Section 2.5.

In the homogenized version of the above problem, the domain Q is replaced by a domain without
voids, denoted by Q, (see Fig. 5(b)). The boundary conditions on I', and I'; remain unchanged. To
account for the smearing out of the voids, the material moduli E are replaced by moduli E°, representing
a softening of the material. Then, the homogenized solution u° is the solution to the following homogenized
problem:

Find u’ € V() such that %, ,(u,v) = ( ) Vv € V(Qp). (50)
The homogenized bilinear and linear forms are given by
A0, (0, v )“ef/ Vv E°Vu'dx, ?go(v)def/ fvdx +/ t-vds, (51)
Q Q I,
and the space of admissible functions is defined as
vie)® {ve (#'(@)" v, =0}. (52)

Since the fine-scale solution u: Q — R" and the homogenized solution u’ : Q, — R" are defined on dif-
ferent domains, we work with the restriction of the homogenized solution to the perforated domain, also
denoted u’. Then, the modeling error ¢’ : @ — R" is defined as

0 def

e =u—u. (53)

Let the residual functional R, : V(Q) — R, for g,v € V(Q), be redefined as follows:
Ry (v) < / Vv:E.,Vgdx — Z / (E°Vg - n) (54)

where n is the unit outward normal to y,.

Theorem 5.3. Let u and u° be as defined above. Then the following holds:

Ny
Clow < HeOHE(Q) = [lu— “0”5(9) < lupp + CZ Ki, (55)
i=1
where
def |Ryo
é,low “)M (56)
([0l 50y
and
def 0 0 def 0
Cupp = \// JoVu' : E 4 Vu' dx, = |[E°Vu’ - 02, (57)
Q

The constant C depends on the boundaries of the voids inside Q and the elasticity tensor E.
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With the energy bounds in hand, bounds on the modeling error in quantities of interest can easily be
obtained, as described in our companion paper [24].

5.5. The GOALS algorithm

The GOALS algorithm provides an adaptive procedure for accurately computing a quantity of interest
L(u) by determining the size of its domain of influence. For this purpose, we introduce a partition 2 of the
domain Q into cells O, 1 <k < N(Z), where N(2) is the total number of cells in the partition. The fol-
lowing modeling error indicators are used in the GOALS algorithm:

def

Chnpp = { SV’ E S V' dx}l/z,
. y (58)
Zkruppdéf{ /@ IoVW" : E.7,Vw’ dx}
:
and
ﬂkdéfék‘uppgk,upp + Ck.,uppHWo”E(@ky (59)

The indicators { ,, and Ekupp are contributions of a cell to the modeling errors estimates {,,, and fupp
(recall (28) and (33)), respectively. The measure f3, is an indicator of the local contribution of a cell to the
modeling error in the quantity of interest.

The outline of the GOALS algorithm is as follows:

Step 1. Initialization. Given the initial data Q, I, I',, E, f and t, construct a nonoverlapping partition of
the domain 2 ={6,}, k=1,2,...,N(2). Specify error tolerance parameters oror and droL,
0< 5TOL < 1.

Step 2. Homogenization. Compute the homogenized elasticity tensor E°. Solve the primal homogenized
problem (9) for u’ and the adjoint homogenized problem (30) for w’.

Step 3. Modeling error estimation. Compute error indicators {;, {; and f, for 1 <k <N(2), using (58)
and (59). Estimate the modeling error in the quantity of interest using Theorem 3.1. Denote this estimate by
Mest -

Step 4. Tolerance test. If 5., < oror x L(u’), STOP.

Step 5. Domain of influence. Determine initial guess for “domain of influence” Q; as all the cells that
intersect w, the region over which the quantity of interest is defined

o =Jo,s={j:6,n0#0}. (60)
j&r

Compute the quantities {;,(;, and f,:

12 12
CLM{ZCI%‘upP} ) CLM{ZCZupP} ) ﬁLd;fCLEL+CL”wO”E(QL)' (61)

ke g ke g

Step 6. Update domain of influence. Determine the “bad neighbors” of Q;, ie., if
B; > dtoL X |0,]/|Qr| x p,, mark ©; as bad and update Q;:

Q, — Q, U {bad neighbors}. (62)

Update the quantities {;,(;, and p,.

Step 7. Solution of local problem. Solve local problem (45) on €, for u,. Construct the locally enhanced
solution u € V(Q) using (48).

Step 8. Estimate modeling error. Estimate the modeling error L(u — &) and denote the estimate by #.. If
Nyt < aroL X L(w), STOP. ELSE, GOTO Step 6.
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6. Parallel hp adaptive FEM for material modeling
6.1. Computational requirements for adaptive modeling

The adaptive modeling process described in the previous sections requires the solution of three different
BVPs: (1) the BVP on the unit cell Y for the computation of the homogenized elasticity tensor E°, (2) the
homogenized primal and adjoint problems for u’ and w°, and (3) the local fine-scale problems on domains
of influence Q; for u;. Additionally, the primal and adjoint fine-scale problems are sometimes solved for u
and w, respectively, to obtain reference solutions so that the accuracy of the modeling error estimates can be
verified and the adaptive modeling procedure validated.

In order to isolate the modeling error, it is necessary to solve these BVPs with very high accuracy. This in
turn requires the solution of very large sparse systems of equations. Also, the modeling algorithm imposes
certain requirements on the implementation. To list a few:
¢ Both the global and local error estimates involve the computation of integrals over the domain w. These

integrals have to be computed with high accuracy.

e Boundary conditions for the local fine-scale problems need to be extracted from the homogenized solu-
tion.

e In order to handle the output from the meshing code, the representation of element geometry has to be
well separated from the approximation shape functions.

6.2. Features of the hp code

With these requirements in mind, a 2-D parallel and adaptive finite element solver was developed for the
implementation of the adaptive modeling procedure. The main features of the code are:

1. Language. The code is written in C++ and uses the MPICH version of the message passing interface
(MPI) [10,11].

2. Adaptivity. Mesh refinement is done using 1-irregular divisions of elements. Hierarchical shape functions
are used for p adaptivity. For a discussion of hp adaptive finite elements, see [27].

3. Parallelism. The code is designed to run on distributed memory machines. The notion of SFCs is used to
perform partitioning of the domain and achieve load-balancing [7,26].

4. Solution strategy In the current version, the DOF corresponding to the bubble functions are first elim-
inated, and the resulting system of equations is solved using either (a) a preconditioned Conjugate Gra-
dient algorithm or (b) the sparse object-oriented linear equations solver (SPOOLES) package, a public
domain software [1].

5. Datastructure. A Hash table-based datastructure is used for storing element, node and DOF classes.
Very general classes have been implemented for storing material and boundary condition data.

6. Organization, structure and others. The code is organized as a library-style collection of routines, with the
user supplying a few routines that specify the problem parameters. Post-processing is user defined. User-
specified integration rules can be used instead of the default integration routines. Additionally, the code
is capable of running in batch and interactive modes.

The code has been tested on (a) cluster of PCs running Linux, (b) cluster of SGI workstations running IRIX

6.5 and (c) an IBM SP running AIX 4.1.4.

7. Numerical experiments and examples

In this section, we present several numerical examples that demonstrate both the effectivity of the various
estimates as well as the applicability of the adaptive modeling procedure. The first example involves a
straight-forward application of the GOALS algorithm to a 2-D composite with a large number of inclu-
sions that are periodically arranged. Next, this exercise is repeated for a 3-D structure with periodically
arranged spherical inclusions. Then, in Example 3, we consider a composite material characterized by a
graded microstructure. In Example 4, we apply the adaptive modeling algorithm to a perforated domain.
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The fifth example involves the fabrication, imaging and adaptive modeling of an epoxy-glass composite
and draws upon the different technologies discussed in this paper. Finally, the last example involves the
study of a composite wrench with a very large number of inclusions. We present the results of the appli-
cation of our procedure to this problem, in which the fine-scale information is known only in certain lo-
cations.

7.1. Example 1

Our first example consists of a heterogeneous elastic structure that has a periodic microstructure, as
shown in Fig. 6. The volume fraction of the inclusions is taken to be 0.5. The material properties are taken
to be £ = 100 GPa, v = 0.2 for the matrix material, and £ = 1000 GPa, v = 0.2 for the inclusions.

The goal of the analysis is to predict the average stress o,, on the inclusion w. Thus

L(v) :lﬁﬁayy(v)dx. (63)

We remark that L(e”) = L(u) — L(u’) is not the error in the averaged stress over w. The o, -stress error
is

1

o] .

/ (E22kl”k,l - Egzm”?,z) dx = L(e’) + ﬁ /E22k/(jo)k1iju?,j dx. (64)
As the GOALS process progressively adjusts the domain of influence 2; to achieve target accuracies, the
second term on the right-hand side of (64) vanishes, and LZ(u — u) represents the actual stress-average error.

For the purpose of comparison, a reference solution u is computed on a fine-scale mesh with about
250,000 DOF. The mesh, as well as the SFC partition of the mesh, are shown in Fig. 7. The solution was
computed in 340 s on 12 processors of an IBM SP2.

The material is homogenized by solving the unit-cell equations (18) on a square region with a single
inclusion. The unit cell and the resulting solutions ™", m,n = 1,2 are shown in Fig. 8.

Next, the homogenized primal and adjoint solutions u” and w° are determined on a highly refined hp
mesh with about 20,000 DOF. The error estimates and indicators are then computed. As suggested by the
normalized distribution of the local modeling error indicators f3;, shown in Fig. 9, only local information is
needed to predict the quantity of interest accurately. Another observation that can be made is that since the
error indicators are virtually negligible in all the cells except those in the vicinity of the quantity of interest,
one need compute the indicators — which are essentially integrals involving the homogenized solutions
u’ and w°, and the fine-scale information E — only in the neighborhood of the quantity of interest. In
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Fig. 6. Example 1: schematic of the problem.
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(@)

Fig. 10. Example 1: sequence of domains of influence and resulting errors in the predicted quantity of interest. The inclusion of interest
is shown in red: (a) L(u —u)/L(u) = 0.199; (b) L(u — a)/L(u) = 0.120; (c) L(u —u)/L(u) = 0.010.
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Fig. 11. Schematic of the 3-D problem.

summary, for this example, the fine-scale information only needs to be known locally to compute a quantity
of interest.

This observation is confirmed by the results of the adaptive procedure, shown in Fig. 10. By iteratively
enlarging the size of the domain of influence, we find that the error in the quantity of interest is reduced to
1% in three steps. The number of DOF used to solve the local microscale problem on the final domain of
influence shown in Fig. 10(c) was 26,800.
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Fig. 12. Example 2: normal components of the strain tensor &(w°): (a) &1(w), (b) &22(W°), and (c) &33(w").
7.2. Example 2
We now study the deformation of a 3-D heterogeneous structure, depicted in Fig. 11. The structure is

fixed at the bottom, and has tractions applied on a portion of its boundary. The microstructure in this
problem consists of spherical inclusions arranged periodically in a matrix material. The volume fraction of
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Fig. 13. Example 3: distribution of the normalized error indicators: (a) {;, (b) (s, and (c) f;.

the inclusions is taken to be 0.3. Also, it is assumed that the inclusions are 10 times as stiff as the matrix
material. The dashed lines in Fig. 11 indicate the partitioning of the domain into cells.

The quantity of interest here is the o, component of the stress tensor averaged over @ — an inclusion
centered at xo = (2.75,0.75,1.75)m. The homogenized elasticity tensor is taken to be the average of the
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Fig. 14. Example 2: sequence of domains of influence, and hp meshes for the solution of the local fine-scale problem. The inclusion of
interest is shown in black.

Hashin—Shtrikman bounds, and the homogenized solutions u’ and w’ are computed. The behavior of the
normal components of the strain tensor &(w”) are shown in Fig. 12. In this figure, the values of the functions
are shown on three mutually perpendicular planes passing through the center of the inclusion of interest w.

Next, the modeling error in the quantity of interest is estimated and the modeling error indicators
C, &, By are computed. The estimated relative modeling error in the quantity of interest is 129%. The error
indicators {;, {;, f, are shown in Fig. 13. As in the previous example, we see that the error indicators f5, are
highly local in nature.

According to the GOALS algorithm, an initial domain of influence is chosen (Fig. 14(a)), and the local
fine-scale problem is solved for u. The relative modeling error is now estimated to be 10%. The hp mesh for
this domain of influence has 81,000 unknowns, and is shown in Fig. 14(b). The domain of influence is then
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Fig. 15. Example 3: schematic of the problem with nonuniform inclusion volume fraction.

enlarged (Fig. 14(c)), and the local fine-scale problem is re-solved for u, leading to an estimated 4% relative
modeling error in the quantity of interest. The hp finite element mesh used for the enlarged domain of
influence is shown in Fig. 14(d), and has roughly 130,000 unknowns.

7.3. Example 3

In this example, we test the GOALS algorithm on a problem with a nonuniform volume fraction,
provided by a graded distribution of inclusions in a matrix material, as shown by the problem schematic in
Fig. 15. The material properties of the constituents are the same as in Example 7.1. The quantity of in-
terest here is the average of the g,, component of the stress tensor on the inclusion w indicated in Fig. 15.
Thus

L(v) :ﬁa/ayy(v) dx. (65)

The local volume fraction of the inclusions ranges from 0.5 at the bottom of the structure to 0.1 at the top.

Of special interest here is the issue of selection of E°, the homogenized tensor. For the case of periodic

materials or for materials that are statistically homogeneous, the selection of E° is quite straightforward.

However, for the case of nonuniform volume fractions, this is not the case. There are, in general, two

criteria for choosing the homogenized elasticity tensor.

1. One possibility is to find the homogenized tensor that minimizes the modeling error in the homogenized
solution in a given quantity of interest, assuming that it is possible to find such an E° (see [25,31]). This,
however, does not guarantee that the resulting modeling error L(u — u’) will be below the tolerance level.

2. The other possibility is to find a homogenized tensor E° that provides the best possible boundary con-
ditions to the local problems on the domains of influence Q;.

As will be seen, these two criteria are not necessarily compatible. In order to focus on the effect of the

homogenized elasticity tensor, we first choose the domain of influence Q;, as shown in Fig. 16.

Three different choices of E° are considered:

e Case A: E" is computed based on the volume fraction of inclusions in the immediate neighborhood of the
inclusion of interest w. The inclusion volume fraction here is 0.17.

e Cuse B: E’ is computed based on the volume fraction in the domain of influence. Here, the inclusion vol-
ume fraction is 0.18.

e Cuse C: E° is computed based on the volume fraction in the entire domain. The inclusion volume fraction
is 0.26.
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Fig. 16. Example 3: domain of influence @, and the boundary conditions for the local fine-scale problem.

Table 1
Example 3: Effect of E° on the quantity of interest
Choice of E° L(u—u°)/L(u) (initial error) 1o /L(€°) (effectivity index) L(u—u)/L(u) (final error)
Case A 1.417 0.78 0.050
Case B 1.321 0.81 0.056
Case C 1.001 0.80 0.096

For each selected volume fraction, we compute the homogenized elasticity tensor E” using the lower
Hashin-Shtrikman bound. Corresponding to each homogenized tensor E°, a homogenized solution u® is
computed and this solution is used as boundary data for the local fine-scale problem for @ on the domain of
influence. The results from this process are shown in Table 1. For the purpose of comparison, a reference
fine-scale solution is computed on an hp mesh with about 135,000 DOF.

In Table 1, the first column represents the choice of the homogenized elasticity tensor E°. In the second
column, we have the relative modeling error in the quantity of interest in the homogenized solution
(modeling error in quantity of interest compared to the true value of the quantity). The third column shows
the effectivity index for the local error estimate; the closer it is to unity, the more accurate the error estimate
is. In the last column, we have the error in the quantity of interest predicted by the local fine-scale solution
u. In case A, we see that the modeling error in the homogenized solution is about 150%, whereas in case C,
the modeling error in the homogenized solution is about 100%. In every case, the local estimate of the
modeling error is quite accurate. Interestingly, the reduction in the modeling error is more drastic in case A
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(b)

Fig. 17. Example 3: comparison of g,, stress fields (GPa) predicted by: (a) the local fine-scale solution u, and (b) the reference (global)
fine-scale solution u.

than in case C, i.e., even though the quantity of interest predicted by u’ computed using E° of case A is
more in error (than case C), it provides better boundary conditions to the local fine-scale problem and thus
results in a lower final error in the quantity of interest.

Finally, we compare the o,, field of the stress tensor predicted by the local fine-scale solution u and the
reference fine-scale solution u in Fig. 17. The stress field predicted by the local solution u is essentially
similar to the fine-scale stress field except for perturbations near the boundary of the domain of influence.
An important conclusion from this comparison is that the local fine-scale solution u can be used for pre-
dicting other local quantities of interest in the neighborhood of the original local quantity.

7.4. Example 4

The problem of adaptively modeling perforated domains, while similar in spirit to the modeling of
heterogeneous materials, presents an interesting difference. In all the cases considered so far in this paper
and our companion paper [24], the fine-scale and homogenized problems are posed on the same domain Q.
For perforated domains however, this is not the case, since it is domain that gets “smeared out” by the
process of homogenization. Thus, the specialized estimates discussed in Section 5.4 must now be employed.
Though the error estimates are different, the adaptive modeling procedure and algorithm remain un-
changed.

The problem under consideration here is depicted in Fig. 18. As a quantity of interest, we choose the
average of the o, component of the stress tensor over an annulus 4 whose inner radius coincides with the
void and whose outer radius is 1.2 times the inner radius. The volume fraction of the voids is taken to be 0.3.

L(v) :ﬁ /A 0. (V) dx. (66)

The material properties of the perforated domain are taken to be £ = 100 GPa and v = 0.2, and plane
strain conditions are assumed. The perforated domain is homogenized using the simple rule of mixtures.

The normal strain fields of the homogenized influence function w° are shown in Fig. 19. As in the case of
heterogeneous materials (see [24] for a discussion), the behavior of the influence function for perforated
domains is also highly local. This roughly means that only local information is required to predict the
quantity of interest. This observation is confirmed by the normalized distribution of the local error indi-
cators f3,, shown in Fig. 20.



6116 K.S. Vemaganti, J.T. Oden | Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089—6124

O O 00 000000 OO0 0000 A
000 0000 0000 000 _QL~r
@) OO O OO0 00000 00O
OO0 00 O 0O 0000 00000
0000 @) O
00O OO o O
0000 OO 00O
@) O ‘_1 O 0000
000 OO 000
000 y OO
OO OO OO
OO 0000
18 /7777 188 e

Fig. 18. Example 4: schematic for the perforated domain problem.
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Fig. 19. Example 4: normal strain fields of the homogenized influence function w’: (a) &, and (b) &,.



K.S. Vemaganti, J.T. Oden | Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089-6124 6117

V10
1.0000
0.9286
0.8571
0.7857
0.7143
0.6429
0.5714
0.5000
0.4286
0.3571
0.2857
0.2143
0.1429
0.0714
0.0000

Fig. 20. Example 4: normalized distribution of local error indicator f,.

(@ (b)

Fig. 21. Example 4: comparison of a,, stress fields (GPa) predicted by (a) the local fine-scale solution, and (b) the reference (global)
fine-scale solution.

The adaptive procedure results in a domain of influence shown in Fig. 21(a). For this size of the domain
of influence, the predicted value of the quantity of interest is within 1.2% of the value predicted by the fine-
scale solution. Fig. 21 also shows a comparison of the o,, component of the stress field predicted by the
local fine-scale solution u and the reference fine-scale solution u. Once again, very good agreement is ob-
served, with some perturbations around the boundaries of the domain of influence.

7.5. Example 5

This example demonstrates the integration of two important technologies discussed in this paper:
imaging and meshing techniques, and adaptive material modeling. We study the deformation of a fabri-
cated composite material that has a single layer of glass beads (E=69 GPa, v = 0.22) distributed in an
epoxy matrix (E=4.6 GPa, v = 0.36). The dimensions of the specimen are shown in Fig. 22. The average
diameter of the glass beads is 800 um. Images of the specimen were obtained both with a CT device
(resolution = 10u) and an optical microscope (resolution = 1p).
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(b)

Fig. 24. Example 5: (a) initial mesh, and (b) mesh after smoothing.

We consider the 2-D problem of finding the response of the above specimen to compressive loads, as
shown in Fig. 23. We pick, as a quantity of interest, the o, component of the stress tensor averaged over the
inclusion denoted by w in Fig. 23.

To compute a reference solution u, the meshing algorithm presented in Section 3 is used to generate a
mesh. The resulting initial mesh is shown in Fig. 24(a). The mesh after three iterations of centroid
smoothing is shown in Fig. 24(b).

Next, the homogenized primal and adjoint solutions u’ and w° are obtained using the hp finite element
code. All three components of the strain tensor of the influence function w’ are shown in Fig. 25 (recall that
the error indicators and estimates involve the strains of the homogenized influence function). As can be
seen, the behavior of the strain field is highly local.

The modeling error indicators are then computed and the adaptive procedure is carried out. The se-
quence of domains of influence and the resulting modeling errors are shown in Fig. 26. Once again, it is seen
that the quantity of interest can be predicted accurately using only local microstructural information.

7.6. Example 6

This numerical experiment deals with the analysis of a wrench made of a particulate heterogeneous
material, modeled as a 2-D object. An important difference between this example and the previous examples
is that the internal microstructure of the body is not known completely. However, as pointed out in
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Fig. 25. Example 5: components of the strain tensor of the homogenized influence function w’: (a) &, component, (b) ¢,, component,
and (c) &, component.

Fig. 26. Example 5: results of the adaptive modeling procedure: domains of influence and resulting modeling errors. (a) % Error
=17.0. (b) % Error =9.05. (¢) % Error=2.1.

Example 7.1, it is possible to predict local quantities of interest without knowing the microstructure
throughout the domain.

Our objective is to study the microscale solution at one corner of the hexagonal part of the boundary of
the wrench shown in Fig. 27. A similar problem has been studied by Ghosh and coworkers [8] using the
Voronoi Cell finite element method and asymptotic homogenization. The hexagonal part of the boundary is
constrained, whereas the circular part of the interior boundary is loaded as shown. The internal micro-
structure of the wrench is assumed to be known only in the vicinity of the corner of interest, in a circular
area of radius 0.04 in. The microstructure in this region consists of randomly distributed circular inclusions,
with a local volume fraction of 0.4. Based on the number of inclusions in this region and based on the area
of the wrench, it is estimated that the body has about 128,000 inclusions. Judging from results obtained
in previous calculations, an adapted hp-FEM mesh of the entire structure sufficient to produce global
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Fig. 27. Example 6: schematic of the wrench. All dimensions are in inches.
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(b)

Fig. 28. Example 6: (a) simplified domain for the primal homogenized problem; ignoring fillets (shown by arrows) results in artificial
corners, (b) g,, component of the homogenized stress field (GPa).

solutions within 1% error in an energy norm would require a computational model with on-the-order-of
one billion DOF.

The quantity of interest is taken to be the average o,, stress on the inclusion w, shown in red. The
material properties are taken to be £ = 100 GPa, v = 0.2 for the matrix material, and £ = 1000 GPa,
v = 0.2 for the inclusions. The body is homogenized using the Hashin—Shtrikman lower bound. Also, for
the homogenized problem, the domain is slightly modified by ignoring the fillets. This simplification is
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Fig. 29. Example 6: components of strain of the homogenized influence function: (a) &, component, and (b) ¢, component.

shown in Fig. 28(a), marked by arrows. This, of course, results in artificial corners in the domain, and hence
leads to singularities in the homogenized solution. This is reflected in the plot of ,, component of the stress
tensor, shown in Fig. 28(b).

Next, the homogenized influence function w’ is computed for the specified quantity of interest.
The normal strains of this function are shown in Fig. 29. Once again, a highly local behavior is ob-
served.

Next, the modeling error in the quantity of error is estimated, and L(e”)/L(u’) is found to be
0.49. The error indicators are then computed and two steps of the adaptive modeling algorithm are
carried out. The domains of influence and the resulting estimated modeling errors are shown in Fig. 30.
Note that for the local fine-scale problem, the fillet at the vertex of the hexagon is not ignored
(Fig. 30(b)).

Thus, knowing only a limited amount of information, the adaptive modeling algorithm allows for the
prediction of the quantity of interest to within an estimated 4%.
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Fig. 30. Example 6: domains of influence and the resulting (estimated) modeling errors in the local solutions: (a) estimated final er-
ror = 12.2%; (b) estimated final error =4.2%.

8. Concluding comments

Much of the work on the mechanics of materials is focused on the analysis of various microme-
chanical phenomena occurring in small samples of material subject to idealized boundary conditions
that are supposed to represent the interaction of the sample with the exterior universe: the complement
of some undefined material body. Implicit in such analyses is the assumption that at distances suffi-
ciently far removed from the sample, the material behaves as if it were homogenized, i.e., only averaged
properties of material remote from the site of interest affect local behavior in a neighborhood of the
site.

There are several major flaws is this traditional procedure. Firstly, exactly how far away from the sample
the use of such homogenized properties is valid is unknown. The distance is very much problem dependent,
depending on volume fraction and mechanical properties of constituents and numerous other factors, and
on how accurately local effects are calculated. Secondly, the approach is usually invalid near boundaries,
where external loads, prescribed displacements, and geometrical features of the material body under study
can pollute and dominate local behavior.

In the present work, a collection of procedures is presented which makes possible a systematic analysis of
heterogeneous bodies. This is accomplished using X-ray images of structural components composed of
multi-phase elastic materials to supply data for the GOALS algorithm. This is an adaptive modeling
scheme which uses a posteriori estimates of modeling error as a basis for determining the level of microscale
information needed in a model in order to deliver local analysis results of a given accuracy. The process
makes possible highly accurate analyses of such local micromechanical features such as average stresses on
material interfaces.

The effectiveness of the approach is demonstrated on a wide variety of examples in this study. These
include example problems with fine periodic microstructure, random nonperiodic two-phase materials,
graded materials with nonuniform volume fraction, perforated materials with randomly distributed voids,
fabricated composites consisting of a soft epoxy matrix and containing randomly dispersed glass spheres,
and an analysis of local average stresses in a composite wrench containing an estimated 128,000 particles.
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This latter example demonstrates that the GOALS algorithm can be effective independently of the number
of micromechanical constituents.

The extension of the GOALS algorithm to nonlinear problems, such as heterogeneous elasto-plastic
materials, is to be the subject of future work.
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