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Abstract. It is common knowledge that the accuracy with which computer simulations can de-
pict physical events depends strongly on the choice of the mathematical model of the events. Perhaps
less appreciated is the notion that the error due to modeling can be defined, estimated, and used
adaptively to control modeling error, provided one accepts the existence of a base model that can
serve as a datum with respect to which other models can be compared. In this work, it is shown that
the idea of comparing models and controlling model error can be used to develop a general approach
for multiscale modeling, a subject of growing importance in computational science. A posteriori esti-
mates of modeling error in so-called quantities of interest are derived and a class of adaptive modeling
algorithms is presented. Several applications of the theory and methodology are presented. These
include preliminary work on random multiphase composite materials, molecular statics simulations
with applications to problems in nanoindentation, and analysis of molecular dynamics models using
various techniques for scale bridging.
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1. Introduction.

1.1. Introductory remarks. The development of mathematical and computa-
tional modeling techniques for simulating physical events that occur across several
spatial and temporal scales has become one of the most challenging and important
areas of computational science. Advances in nanotechnolgy, semiconductors, cell and
molecular biology, biomedicine, geological and earth sciences, and many other areas
hinge upon understanding the interactions of events at scales that could range from
subatomic dimensions and nanoseconds to macroscales and hours or even centuries.
Available computational methods have largely been designed to model events that
take place over one, or rarely two, spatial scales and are generally nonapplicable to
multiscale phenomena. Molecular dynamics (MD), for example, may provide an ac-
ceptable basis for modeling atomistic or molecular motions over a time period on the
order of nanoseconds, while nanodevice fabrications may involve events occurring over
seconds or minutes.

In the present exposition, we develop a general approach to multiscale model-
ing based on the notion of a posteriori estimation of modeling error and on adaptive
modeling using so-called Goals algorithms. By a mathematical model we mean a col-
lection of mathematical constructions—partial differential, integral, ordinary, or alge-
braic equations, boundary and initial conditions, constraints, and data—that provide
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an abstraction of a class of physical phenomena covered by scientific theory. Tradi-
tionally, a model is selected by a modeler, the analyst, who chooses a model, based on
experience or empirical evidence, heuristics, and personal judgment, to depict events
assumed to involve well-defined spatial and temporal scales. Events at different scales
require, in general, the use of different models. Thus, multiscale models should gen-
erally involve a blending or adaptation of models of one scale of events with those of
another. It would seem to follow, therefore, that successful multiscale modeling tech-
niques should be able to compare models of different structure and to adapt features
of different models so that they deliver results of an accuracy sufficient to capture
essential features of the response or to make engineering decisions. This is the basis
for the methodologies developed in the present work.

This presentation reviews and extends the theory and methodology developed in
earlier works (e.g., [25]) and extends the scope of applications to a broad range of
problems, including problems in multiphase random materials and molecular statics.
The general tact is different from other techniques proposed in the rapidly growing
literature on multiscale modeling.

Several surveys of the literature on multiscale modeling have been published, and
we mention in particular the articles of Liu et al. [19], E, Li, and Vanden-Eijnden [12],
and Curtin and Miller [8]. In [19], it is asserted that multiscale methods can be nat-
urally grouped into two categories: concurrent and hierarchical. Concurrent methods
simultaneously solve a fine-scale model in some local region of interest and a coarser-
scale model in the remainder of the domain. Hierarchical, or serial coupling meth-
ods [11], use results of a fine-scale model simulation to acquire data for a coarser-scale
model that is used globally, e.g., to determine parameters for constitutive equations.
The methodologies we develop here are more akin to concurrent approaches since
the notion of adaptive modeling fits naturally within that framework. Additionally,
the various applications we present here are largely described in terms of problems
in mechanics and materials science, although the framework is very general and is
applicable to multiscale problems in virtually all areas of science.

We identify three main thrusts in the current literature for implementing mul-
tiscale methods. The first involves dimensional reduction approaches such as that
used by Tadmor, Ortiz, and Phillips in the quasicontinuum method (QCM) [44, 46].
The QCM has been applied to quasistatic fracture [20, 23], grain-boundary interac-
tion [39], and nanoindentation [45, 43]. In these applications, the QCM has led to a
dramatic reduction in the number of degrees of freedom while still resolving physical
features of interest.

A second line of research in concurrent multiscale methods is the decomposition-
of-scales technique used by Liu et al. in the bridging-scale method (BSM) [51, 32, 47,
48]. The scale decomposition provides a natural separation of spatial and temporal
scales for coupling MD and continuum models and has successfully reduced spurious
wave reflection in preliminary tests. A static formulation has been applied to the
deformation of carbon nanotubes in [35], and a three-dimensional generalization to
problems in dynamic fracture is presented in [31].

Finally, widely used concurrent methods are those that directly interface atom-
istic and continuum models using “pad,” “overlap,” or “hand-shake” regions. The
first method to use such schemes was the FEAt method [18], which was used to
simulate the fracture of body-centered cubic (b.c.c.) crystals using a molecular and
continuum model. The FEAt method later provided the foundations of the well-
known molecular, atomistic, ab initio dynamics (MAAD) or coupling of length scales
(CLS) method [7], which was the first to concurrently couple quantum, molecular,
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and continuum scales. The atomistic-continuum interface in the MAAD method was
extended by Belytschko and Xiao with the bridging-domain method [5, 52] by using
an augmented Lagrange method to enforce displacement boundary conditions in the
overlap region as well as separating temporal scales in the numerical implementation.
The coupled atomistic and discrete dislocation plasticity (CADD) method [41] was de-
veloped by Shilkrot, Miller, and Curtin to interface an atomistic model, similar to the
QCM, with a more complex continuum model that incorporates descriptions for dislo-
cation movement [49]. In this way, dislocations can be passed to the continuum model,
or vice-versa, thereby preserving degrees of freedom that would otherwise be needed
to track the dislocation movement. Published implementations of the CADD method
are two-dimensional and static, although work in developing three-dimensional and
dynamic models is reportedly underway [42].

There also exist more general schemes that develop modeling frameworks rather
than concentrating on the details of model interfaces. The heterogeneous multiscale
method (HMM) [10], proposed by E and Engquist, provides such a framework for
designing multiscale methods based upon the particular nature of the problem. The
HMM has been applied to many mathematical problems that possess solutions with
multiple scales (see, e.g., [11]), and some work has been done in a priori error estima-
tion for elliptic problems [13].

The idea of estimating modeling error and controling error through model adap-
tivity was inspired by work on a posteriori estimation of numerical approximation
error and control of error through adaptive meshing [1, 24, 4]. Oden, Zohdi, and
coworkers [53, 30, 29] used global error estimates to drive adaptivity of models of
multiphase heterogeneous elastic materials. Upper and lower bounds of modeling er-
rors in local quantities of interest for this class of problems were presented in [28]
and model adaptivity based on the Goals algorithm was first presented in [50]. Fur-
ther extensions of these approaches are described in [36, 26], and a general theory for
model error estimation is proposed in [25].

In the remainder of this introduction, we review the basic ideas behind our error
estimation methodology and the Goals algorithm for adaptive modeling, and we lay
down notation and assumptions prerequisite to subsequent developments. The basic
theorems on model error estimation are taken up in section 2. Discussions of some
technicalities connected with ensemble averaging and homogenization are given in
section 3. The Goals algorithms are discussed in section 4. There we describe two
general versions of these types of algorithms that have proved to be very effective
in several application areas. A brief account of global error estimates is given in
section 5. Applications are discussed in section 6, and conclusions are collected in a
final section.

1.2. Basic ideas. The basic idea behind the multiscale modeling approach to
be described here is one of computing and controling modeling error. We first assume
that we can define a general mathematical model of a physical system which can serve
as a datum with respect to which other models can be compared. This fine or base

model may be highly complex, even intractable, it may involve incomplete data, and,
in general, it is never “solved.” In studying multiscale phenomena, this base model
will depict events that take place on the finest (smallest) spatial and temporal scales.
An abstract setting for many base models is embodied in the problem

Find u ∈ V such that A(u) = F in V ′,
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where V is an appropriate topological vector space, A(·) is a nonlinear operator map-
ping V into its dual, V ′, and F is given data in V ′. If 〈·, ·〉 denotes duality pairing on
V ′ × V , then the above problem is equivalent to

(1)
Find u ∈ V such that

B(u; v) = F (v) ∀v ∈ V

where

(2) B(u; v) = 〈A(u), v〉, F (v) = 〈F, v〉,

the semicolon signaling that B(·; ·) may be a nonlinear function of the argument u to
the left of the semicolon, but linear in the test vector v to the right of it.

Now, in all applications of interest, we do not merely want to characterize the
vectors u satisfying (1), but rather we want to find a particular physical event or fea-
ture of the system that depends upon u. Such quantities of interest are characterized
by functionals Q of the solutions to (1). Thus, our actual target problem is this:

(3)
If u is a solution of (1), find Q(u), where Q : V → R

is a given functional defining a quantity of interest.

If (1) is intractable, so is (3). We must therefore seek an approximation to Q(u).
Let u0 be an arbitrary member of V . In the case that the forms B(·; ·) and Q(·)

are sufficiently smooth (twice differentiable in a certain functional sense), it is shown
in [25] that the error

(4) ε = Q(u) − Q(u0)

coincides with the sum of a residual functional,

(5) R(u0, p) = F (p) − B(u0; p),

p being the solution of an appropriately defined dual or adjoint problem, and higher
order terms involving the error e0 = u− u0. We examine this result in more detail in
section 2.

An important observation is that the trial solution u0 may itself be the solution
of some other surrogate mathematical models, characterized by a different semilinear
form B0(·; ·) and linear form F0(·); i.e., u0 is then the solution of the problem

(6) Find u0 ∈ V : B0(u0; v) = F0(v) ∀v ∈ V.

Thus, the fact that the error between the quantity of interest Q(·) computed using
the base model (1) and that computed using any other surrogate model (6) can be
estimated in some manner provides a means for comparing the appropriateness of dif-
ferent models and, presumably, controlling modeling error relative to the base model.
The surrogate problem(s) (6) will therefore correspond to models of coarser (larger)
scales than (1). Still, the base model may never be solved; it remains a datum with
respect to which various surrogates are measured.

If modeling error can be effectively estimated, the next challenge is to adaptively
control it by systematically changing the surrogate models. This is the goal of the
Goals algorithms: to adapt the mathematical model so that preset tolerances in the
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error in the specific quantity of interest can be met. Here we will describe a gen-
eral family of algorithms that include earlier methods as special cases (see [28, 50]).
The surrogate model that can approximate the base model well enough to lead to a
small tolerable error may often be a hybrid consisting of components involving several
different spatial or temporal scales. We take this subject up in section 4.

1.3. Notation: Functional derivatives and Taylor formulas. We define
the functional or Gâteaux derivative of the semilinear form B(u; v) in (1) as

B′(u; w, v) = lim
θ→0

θ−1[B(u + θw; v) − B(u; v)]

assuming this limit exists. Higher derivatives of B(u; v) are defined analogously:

B′′(u; w1, w2, v) = lim
θ→0

θ−1[B′(u + θw2; w1, v) − B′(u; w1, v)],

B′′′(u; w1, w2, w3, v) = lim
θ→0

θ−1[B′′(u + θw3; w1, w2, v) − B′′(u; w1, w2, v)]

...

Thus, for each u ∈ V , B′(u; w, v) is a bilinear form in v and w, B′′(u; w1, w2, v) is a
trilinear form in w1, w2, and v, etc. Similarly, if the target output functionals (the
quantities of interest Q) are differentiable, we use the following notation for various
Gâteaux derivatives:

Q′(u; v1) = lim
θ→0

θ−1[Q(u + θv1) − Q(u)],

Q′′(u; v1, v2) = lim
θ→0

θ−1[Q′(u + θv2; v1) − Q′(u; v1)],

Q′′′(u; v1, v2, v3) = lim
θ→0

θ−1[Q′′(u + θv3; v1, v2) − Q′′(u; v1, v2)]

...

Taylor formulas with integral remainders can easily be constructed for such dif-
ferentiable functionals and semilinear forms. Among many such expansions, we list
as examples the following:

Q(u + v) − Q(u) =

∫ 1

0

Q′(u + sv; v)ds,

Q(u + v) − Q(u) = Q′(u; v) +

∫ 1

0

Q′′(u + sv; v, v)(1 − s)ds,

Q(u + v) − Q(u) =
1

2
Q′(u; v) +

1

2
Q′(u + v; v)

+
1

2

∫ 1

0

Q′′′(u + sv; v, v, v)(s − 1)s ds

and

B(u + w; v) − B(u; v) =

∫ 1

0

B′(u + sw; w, v)ds,

B(u + w; v) − B(u; v) = B′(u; w, v) +

∫ 1

0

B′′(u + sw; w, w, v)(1 − s)ds.
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We shall say that B(·; ·) and Q(·) belong to Cr(V ) whenever the limits defining
functional derivatives of order r exist. In all of the theory and applications we consider
in subsequent sections, V is a reflexive Banach space with norm ‖·‖. The theory can
be extended to more general settings.

2. A posteriori estimates of modeling error. We begin with the observation
that the target problem (3) can be viewed as a problem of optimal control: find an
extremum of Q subject to the constraint (1):

(7) Q(u) = inf
v∈M

Q(v); M = {w ∈ V ; B(w; q) = F (q) ∀q ∈ V }.

The Lagrangian associated with (7) is

(8) L(v, q) = Q(v) + F (q) − B(v; q),

and, assuming Q and B are Gâteaux differentiable, solutions to the constrained opti-
mization problem (7) are pairs (u, p) such that

L′((u, p); (v, q)) = 0 ∀(v, q) ∈ V × V ;

i.e., (u, p) is a solution of the coupled problem

(9)
Find (u, p) ∈ V × V such that

B(u; q) = F (q) ∀q ∈ V,
B′(u; v, p) = Q′(u; v) ∀v ∈ V

We refer to (9)1 as the primal base problem and to (9)2 as the dual base problem.
The dual problem is thus always linear in p. The dual solution p is called the influence

vector (or function) or the generalized Green’s function. In the cases in which B(·; ·)
is a bilinear form and Q(·) is a linear functional, the dual problem (9)2 reduces to

B(v, p) = Q(v) ∀v ∈ V

so that

(10) Q(u) = B(u, p) = F (p).

This is recognized as a generalization of the property of Green’s functions for linear
initial- and boundary-value problems.

Now let us suppose that the system (9) is intractable and that we seek an ap-
proximation (u0, p0) to (u, p). The following theorem [25] provides the error in the
quantity of interest Q.

Theorem 1. Let the semilinear form B(·; ·) in (9) belong to C3(V ) and let the

quantity of interest Q(·) ∈ C3(V ). Let (u, p) ∈ V × V be a solution of the base

problem (9) and let (u0, p0) be an arbitrary pair in V × V . Then the error in Q(u)
produced by u0 is given by

(11) E(u0) = Q(u) − Q(u0) = R(u0; p0) + R(u0; ε0) + ∆1(u0, p0, e0, ε0),

where R(u0; v) is the residual functional,

(12) R(u0; v) = F (v) − B(u0; v), v ∈ V,
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and ∆1 = ∆1(u0, p0, e0, ε0) is the remainder,

∆1 =
1

2

∫ 1

0

{B′′(u0 + se0; e0, e0, p0 + sε0)

− Q′′(u0 + se0; e0, e0)}ds

+
1

2

∫ 1

0

{Q′′′(u0 + se0; e0, e0) − 3B′′(u0 + se0; e0, e0, ε0)

− B′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)sds

(13)

with

(14) e0 = u − u0 and ε0 = p − p0.

We observe that ∆1 ≡ 0 whenever B(·; ·) is bilinear and Q(·) is linear. In that
case, Q(u)−Q(u0) = R(u0; p0)+R(u0; ε0) = R(u0; p0)+B(e0, ε0). Equation (11) es-
tablishes that the error E(u0) is dominated by the residual functional evaluated at the
influence functional p0 to within terms of higher order in the error components (14).

An alternative representation of the error E(u0), involving the residuals associated
with the primal and dual problems, is given in the following corollary [25].

Corollary 1. Let the assumptions of Theorem 1 hold. Then the error in Q(u)
produced by u0 is given by

(15) E(u0) = R(u0; p0) +
1

2
(R(u0; ε0) + R̄(u0, p0; e0)) + ∆2(u0, p0, e0, ε0),

where R̄(u0, p0; v) is the residual functional for the dual problem

(16) R̄(u0, p0; v) = Q′(u0; v) − B′(u0; v, p0), v ∈ V,

and ∆2 = ∆2(u0, p0, e0, ε0) is given by

∆2 =
1

2

∫ 1

0

{Q′′′(u0 + se0; e0, e0) − 3B′′(u0 + se0; e0, e0, ε0)

− B′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)sds.

(17)

We note that the remainder in (17) should be smaller in practical applications
than the one in (11) at the expense of having to determine or estimate both e0 and ε0.
Results similar to those in Theorem 1 and Corollary 1 for finite element approximation
errors were presented in Oden and Prudhomme [24] and Becker and Rannacher [4].
A detailed account of the versions of the methods of [4] is given in [3].

It is emphasized that the surrogate functions (u0, p0) in (11)–(14) are completely
arbitrary vectors in V × V . However, the most natural choice of these vectors are
those which are solutions of a surrogate problem of the form

(18)
Find (u0, p0) ∈ V × V such that

B0(u0; v) = F0(v) ∀ v ∈ V,
B′

0(u0; v, p0) = Q′
0(u0; v) ∀ v ∈ V

where B0(·; ·) is a semilinear form for a coarser-scale problem and F0(·) and Q0(·)
are coarse-scale approximations of F (·) and Q(·). In most cases, B0, F0, and Q0

are obtained through an appropriate homogenization or averaging process. Thus,
(18) could represent models of events that occur at scales larger than those of the
base model. Theorem 1 then provides a means for comparing models of different
scales.
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3. Homogenization and construction of surrogates.

3.1. Some general remarks. Symbolically, one can envision a multiscale model
in which the quantity of interest Q(u) of the base model is the target output, Q(u1) is
the approximation of that output produced by a coarser-scale model obtained through
a homogenization process, Q(u2) is the approximation due to a still coarser scale, and
so on. If uN denotes the surrogate solution to the coarsest-scale model, the various
modeling error components are

Q(u) − Q(uN) = Q(u) − Q(u1)
︸ ︷︷ ︸

error in scale 1 model

+ Q(u1) − Q(u2)
︸ ︷︷ ︸

error in scale 2 model
relative to scale 1

+ · · · + Q(uN−1) − Q(uN)
︸ ︷︷ ︸

error in scale N model
relative to scale N − 1

.

Each error component, of course, depends upon how the successive coarser models are
obtained through a homogenization process. As will be seen in applications discussed
later, if a target error level is specified, the models that can ultimately deliver that
accuracy may involve a mosaic of component models of several different scales.

It can be argued that the limit processes carrying models of one scale to those of
larger scales, such as the limiting process from molecular models to continuum models,
is a central problem to the mathematical foundations of multiscale modeling. It is a
subject in which some progress has been made in recent years (see, e.g., [6, 15]) but
for which much additional work remains to be done. It is a remarkable fact, however,
that even when these processes are not understood and when only crude averaging
procedures are employed, the adaptive modeling algorithms described later may still
produce acceptable results, albeit at slow rates of convergence.

Finally, we note that in all applications we are only able to compute a numerical
approximation uh

0 of any particular surrogate problem solution u0. However, we can
write

Q(u) − Q(uh
0)

︸ ︷︷ ︸

total error

= Q(u) − Q(u0)
︸ ︷︷ ︸

modeling error

+ Q(u0) − Q(uh
0 )

︸ ︷︷ ︸

approximation error

.

The total error Q(u) − Q(uh
0 ) can be estimated with the aid of Theorem 1 using uh

0

instead of u0. The approximation error Q(u0) − Q(uh
0 ) can be accurately estimated

and controlled using the theory and methodology discussed in [24] (see also [1, 4,
3, 27]). Finally, an estimate of the modeling error is obtained by substracting the
approximation error from the total error.

It should be understood that while models involving an ascending sequence of
scales can, in theory, be obtained through some sort of ensemble averaging (homoge-
nization) process, the actual surrogate pairs (u0, p0) appearing in the error estimate
(11) are not necessarily solutions of a homogenized problem defined for coarser-scale
models. In fact, the coarse-scale models obtained through homogenization processes
may even belong to different function spaces than those appearing in the base prob-
lem. For example, if the base model is discrete, such as is the case in which the base
model corresponds to a crystalline lattice model or an MD model, and a homogeniza-
tion process produces a continuum model, then the continuum model cannot be used
as the surrogate within the context of our theory. Another step is needed.

Let the following denote a model obtained from the base model through some
homogenization

(ũ, p̃) ∈ V0 × V0 :

B̃(ũ; ṽ) = F̃ (ṽ) ∀ṽ ∈ V0,

B̃′(ũ; ṽ, p̃) = Q̃′(ũ; ṽ) ∀ṽ ∈ V0,
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where B̃(·; ·), F̃ (·), and Q̃(·) are functionals produced from B(·, ·), F (·), and Q(·)
through homogenization. Let Π(·) denote a map,

Π : V0 −→ V ; Πũ = u0, Πp̃ = p0.

Then, for any appropriate choice of Π, we use (u0, p0) as the solutions of the surrogate
models, and the error in the quantity of interest is estimated with respect to Q(u0).
We provide examples of such surrogates in section 6.

3.2. Fine-scale fluctuations about a mean. Various methods for treating
the interactions of events at two or more scales begin with the separation of the fine-
scale solution u into a “mean” component ū and a fluctuation u′ about the mean (see,
e.g., [47, 48])

(19) u = ū + u′.

Comparing this to our notation, if V0 ⊂ V , the component ū and u′ can be identified
with u0 and e0 = u − u0 as

(20) ū = u0 and u′ = e0.

Using the developments laid down thus far, it is a straightforward exercise to
determine approximate relationships for coarse-scale/fine-scale interactions and for
computing the fluctuations.

Ignoring higher order terms in the component u′ (assumed small compared to ū),
we have, for any v ∈ V,

F (v) = B(ū + u′; v) ≈ B(ū; v) + B′(ū; u′, v).

Thus

(21) B′(ū; u′, v) ≈ R(ū; v) ∀v ∈ V

That is, the fluctuations u′ satisfy the transpose of the dual problem with u replaced
by ū and with Q′(u; v) replaced by the residual functional R(ū; v). Then, with p the
solution of the corresponding primal dual problem,

(22) B′(ū; u′, p) ≈ R(ū; p) ≈ Q(u) − Q(ū)

The result establishes a relationship between the fine-scale fluctuations u′ and the
error E(ū) in the quantity of interest. The fine-scale fluctuations thus affect the error
in the quantity of interest at positions of the space-time domain within the support
of the dual solution p.

At the heart of many multiscale methods is the particular homogenization strategy
used to compute the mean component ū. If Π : V0 → V is a given extension of the
space containing the surrogate solution such that Πu0 = ū, then one can construct
the “filter,” Pu = ū, so that the fluctuations u − Pu = u′ are minimized in some
sense. We describe one such approach in section 6.

4. The Goals algorithms. The Goals algorithms, introduced in [28, 50] and
implemented in various versions in [26, 36, 37], are designed to reduce estimated
modeling error by systematically adapting the model using a sequence of surrogates.
In [28], reference is made to the “Goal-Oriented Adaptive Local Solutions” algorithms;
hence we have the term “Goals.” We refer to these general algorithms as Goals or
goal-oriented algorithms. As will be shown, not all employ “local” solutions.

The general ideas can be described in the following setting:
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1. Let the domain of the solution (u, p) ∈ V × V of the base problem (9) be an
open region D ⊂ R

d, and let {Θj}k
j=0 be a partition of D:

D =

k⋃

j=0

Θj , Θi

⋂

Θj = ∅, i 6= j, 0 ≤ i, j ≤ k.

The semilinear and linear forms in (9) can be broken into k + 1 components
so that

(23) B(u; v) =

k∑

j=0

BΘj
(u; v), F (v) =

k∑

j=0

FΘj
(v)

for u, v ∈ V , with BΘj
(·; ·), FΘj

(·) being the values of the forms produced by
restrictions of u and v to Θj .

2. Next, through an averaging or homogenization process, we construct a surro-
gate problem of the form (18) and compute the surrogate solutions (u0, p0) ∈
V × V defined over all of D.

3. To assess the accuracy of the surrogate solution, we seek to estimate the
modeling error in the quantity of interest and call upon Theorem 1 to note
that to within higher order terms,

(24) E(u0) ≈ R(u0, p) = R(u0; p0) + R(u0; p − p0).

The first term is computable, whereas the remaining term is generally in-
tractable and has to be estimated. However, the derivation of an estimate
depends heavily on the type of problem that is analyzed. Examples of error
estimates for problems in molecular statics, elastostatics, and elastodynamics
are given in [26, 28, 37, 36].

4. If the error estimate is to within a user defined error tolerance δTOL, the
analysis stops and provides the analyst with the prediction of the quantity of
interest Q(u0).

5. If the error exceeds the tolerance, the algorithm proceeds by enhancing or
improving the surrogate model in a subdomain DL ⊂ D, called the domain

of influence. Suppose that the quantity of interest Q involves features of the
solution confined to a subdomain DQ ⊂ D (e.g., Q(u) could be the average
of u or its derivatives over DQ). Then the initial choice of DL is generally
the union of subdomains Θi that intersect with DQ.

6. There are several possibilities to then compute a correction (ũ, p̃) of (u0, p0)
using the enhanced surrogate model.

I. Global Goals algorithms. Let

(25) B̃(ũ; v) = BDL
(ũDL

; vDL
) + B0,D\DL

(ũD\DL
; vD\DL

),

where ũDL
= ũ|DL

, etc., and B0,D\DL
(·; ·) is the semilinear form for the

surrogate problem defined on restrictions of functions in V to D\DL.
Thus, B̃(·, ·) includes fine-scale features of the base model over domain
DL while it is characterized by coarse-scale features of the surrogate
model over D\DL. We calculate (ũ, p̃) ∈ V × V such that

B̃(ũ; v) = F (v) ∀v ∈ V,

B̃′(ũ; v, p̃) = Q′(ũ; v) ∀v ∈ V.
(26)
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Q

D

D

fine scale model

1 2Θ Θ

0Θ

coarse scale model

Fig. 1. (Top left) A fine-scale base model and a subdomain DQ surrounding features of a
quantity of interest Q; (top right) a partition of Ω into subdomains with an initial domain of
influence D = Θ0; (bottom) successive enlargements of D designed to reduce the modeling error.

II. Local Goals algorithms. In this case, we compute a correction (ũ, p̃) that
coincides with (u0, p0) outside the initial domain of influence but uses
the base problem data (the “fine-scale data”) within DL:

BDL
(ũ; v) = FDL

(v) ∀v ∈ V (DL) with ũ = u0 in D\DL,

B′
DL

(ũ; v, p̃) = Q′
DL

(ũ; v) ∀v ∈ V (DL) with p̃ = p0 in D\DL

(27)

and V (DL) is the space of restrictions of functions in V to the domain
of influence DL. The situation is illustrated in Figure 1.

7. As done in step 3, we can derive an estimate of the modeling error of the
enhanced solution ũ,

E(ũ) ≈ R(ũ; p).

Again, the estimation of this term depends on the type of problem (e.g., see
[28, 36]). In this work, we introduce an alternative estimator by noting that

(28) E(ũ) = Q(u) − Q(ũ) = [Q(u) − Q(u0)] + [Q(u0) − Q(ũ)].

The last term in this equation is computable and the first can be estimated
by again using Theorem 1:

(29)
E(ũ) ≈ R(u0; p) + Q(u0) − Q(ũ)

= R(u0; p̃) + R(u0; p − p̃) + Q(u0) − Q(ũ)
≈ R(u0; p̃) + Q(u0) − Q(ũ).

8. If the error estimate is within a user defined error tolerance δTOL, the analysis
stops and provides the analyst with the prediction in the quantity of interest
Q(ũ).
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9. If the error exceeds the tolerance, we obtain an indication of the error contri-
bution of each subdomain (outside the domain of influence) by computing its
contribution to the upper bound of the residual R(u0; p) (e.g., see [28, 36, 37]).
We then expand the domain of influence DL by adding the subdomains {Θi}
whose error contributions, with respect to the maximal contribution, exceed
a user defined tolerance γ and return to step 6.

Steps 1–9 characterize a family of Global and Local Goals algorithms for adaptive
modeling. Several remarks are in order.

Remark 1. While the global versions of the Goals algorithms may involve the

solution of surrogate problems of a larger size than the local solution algorithms, they

have the advantage of accounting for possible interactions of fine-scale and large-scale

behavior. Thus, we expect that they may lead to faster convergence rates than the

simpler local methods.

Remark 2. The initial domain of interest, of course, can be a multiconnected

domain, depending upon the number and structure of the quantities of interest.

5. Global estimates. The quality of goal-oriented error estimates, as can be
seen in Theorem 1, strongly depends on the accuracy of the coarse solutions u0 and
p0. We show here how the errors e0 (= u − u0) and ε0 (= p − p0) are related to the
norms of the residuals. Global estimates of modeling error can be obtained for specific
forms of B(·; ·) and Q(·). In cases in which B(·; ·) is a symmetric, positive-definite,
bilinear form, global estimates of e0 and ε0 can be used to construct upper and lower
bounds of errors in quantities of interest [28, 50, 36]. Here we provide a derivation of
such bounds for cases in which B(·; ·) and Q(·) satisfy a priori conditions.

Let V be a Banach space with norm ‖ · ‖. We observe that

B(u + w; v) = B(u; v) + B′(u; w, v) + ∆4(u, w, v),

Q′(u + w; v) = Q′(u; v) + ∆5(u, w, v),

B′(u + w2; w1, v) = B′(u; w1, v) + ∆6(u, w1, w2, v),

where

∆4(u, w, v) =

∫ 1

0

B′′(u + sw; w, w, v)(1 − s)ds,

∆5(u, w, v) =

∫ 1

0

Q′′(u + sw; w, v)ds,

∆6(u, w1, w2, v) =

∫ 1

0

B′′(u + sw2; w1, w2, v)ds

for all u, v, w, w1, and w2 in V . With this notation, and recalling that u = u0 + e0

and p = p0 + ε0, we have

(30)

B(u; v) = B(u0; v) + B′(u0; e0, v) + ∆4(u0, e0, v)

Q′(u; v) = Q′(u0; v) + ∆5(u0, e0, v)

B′(u; v, p) = B′(u0; v, p0) + B′(u0; v, ε0) + ∆6(u0, v, e0, p0 + ε0)







.

Then the primal and dual base models can be written as

(31)

Find (e0, ε0) ∈ V × V such that
B(u0; v) + B′(u0; e0, v) + ∆4(u0, e0, v) = F (v) ∀v ∈ V,
B′(u0; v, p0) + B′(u0; v, ε0) + ∆6(u0, v, e0, p0 + ε0)

= Q′(u0; v) + ∆5(u0, e0, v) ∀v ∈ V
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Thus, the errors e0 and ε0 satisfy the following equations:

B′(u0; e0, v) + ∆4(u0, e0, v) = R(u0; v) ∀v ∈ V,

B′(u0; v, ε0) + ∆6(u0, v, e0, p0 + ε0)

= R̄(u0, p0; v) + ∆5(u0, e0, v) ∀v ∈ V,

(32)

where R(u0; v) and R̄(u0, p0; v) are the residual functionals in (12) and (16).
If B(·; ·) and Q(·) are a bilinear form and a linear form, respectively, then ∆4,

∆5, and ∆6 vanish, B′ = B, Q′ = Q, so that the errors are governed by

B(e0, v) = R(u0; v) ∀v ∈ V,

B(v, ε0) = R̄(u0, p0; v) ∀v ∈ V.

Otherwise, we shall assume that constants C4 = C4(u0), C5 = C5(u0), and C6 =
C6(u0, p0) exist such that

(33)

|∆4(u0, e0, v)| ≤ C4‖e0‖2‖v‖
|∆5(u0, e0, v)| ≤ C5‖e0‖ ‖v‖
|∆6(u0, v, e0, p0 + ε0)| ≤ C6‖e0‖ ‖v‖







and that it is possible to find a u0 ∈ V such that ∞ > α(u0), β(u0) > 0, where α(u0)
and β(u0) are given by

α(u0) = inf
w∈V \{0}

sup
v∈V \{0}

|B′(u0; w, v)|
‖w‖ ‖v‖ ,

β(u0) = inf
w∈V \{0}

sup
v∈V \{0}

|B′(u0; v, w)|
‖w‖ ‖v‖ .

Then we easily obtain

α(u0)‖e0‖ ≤ ‖R(u0)‖∗ + C4‖e0‖2,

β(u0)‖ε0‖ ≤ ‖R̄(u0, p0)‖∗ + (C5 + C6)‖e0‖,

where ‖ · ‖∗ denotes the norm on the dual space V ′:

‖R(u0)‖∗ = sup
v∈V \{0}

|R(u0; v)|
‖v‖ ,

‖R̄(u0, p0)‖∗ = sup
v∈V \{0}

|R̄(u0, p0; v)|
‖v‖ .

These results show that for e0 sufficiently small, when the assumed properties prevail,
the modeling errors e0 and ε0 are globally bounded by the norms of the residuals.

6. Examples.

6.1. Random heterogeneous materials. We now show an application of the
Local Goals algorithms to the analysis of the elastostatics of random multiphase com-
posite materials (see also [37]). In section 6.1.1, we first define the model problem and
notation. We then introduce a brief overview on the surrogate models and the esti-
mation of modeling errors in section 6.1.2 and present a specific example application
to a two-phase composite material in section 6.1.3.
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6.1.1. Model problem and notation. We consider a material body, occupying
an open and bounded domain D ⊂ R

d, d = 1, 2, 3, with boundary ∂D = Γu ∪ Γt,
Γu ∩Γt = ∅, meas(Γt) > 0, meas(Γu) > 0, Γu and Γt being portions of ∂D on which
displacements and tractions are to be specified, respectively. The body is in static
equilibrium under the action of deterministic applied forces f ∈ L2(D)d, a surface
traction t ∈ L2(Γt)

d−1, and a prescribed displacement U ∈ L2(Γu)d on Γu. We
assume the body is composed of a multiphase, composite, elastic material with highly
oscillatory material properties. The geometrical features and material properties of its
constituents are functions of a random vector ω ∈ Ω, where Ω denotes the collection
of all possible realizations. The governing probability distribution density function

ρ : Ω −→ [0, 1] is assumed to be known.
Let u = u(x, ω) denote the random displacement vector field defined on D×Ω and

let ∇u denote the spatial gradient. Then the Cauchy stress tensor σ(x, ω) satisfies
σ(x, ω) = E(x, ω)∇u(x, ω), where E(x, ω) is the fourth order tensor of elastici-
ties with components Eijkl(x, ω) ∈ L∞(D, L2(Ω))d×d. The standard symmetry and
ellipticity conditions hold for a.e. x ∈ D and a.s. ω ∈ Ω:

Eijkl(x, ω) = Ejikl(x, ω) = Eijlk(x, ω) = Eklij(x, ω),
α0ξijξij ≤ Eijkl(x, ω)ξijξkl ≤ α1ξijξij , α1 ≥ α0 > 0.

We introduce a space of test functions V ,

(34) V =
{
v ∈ H1(D, L2(Ω)) : v(x, ω) = 0 ∀x ∈ Γu, ω ∈ Ω

}
,

where H1(D, L2(Ω)) is the Hilbert space,

H1(D, L2(Ω)) =

{

v(x, ω) :

∫

Ω

∫

D

[∇v : ∇v + v · v] ρ(ω) dx dω < ∞
}

.

Having established the necessary notations and conventions, we now recall the varia-
tional formulation (9) of our linear, stochastic, elastostatics problem, where [37]

(35)

F (v) =

∫

Ω

∫

D

(f : v) ρ(ω) dxdω +

∫

Ω

∫

Γt

(t : v) ρ(ω) ds dω,

B(u, v) =

∫

Ω

∫

D

(E∇u : ∇v) ρ(ω) dxdω,

where n and s denote the unit normal and position vector on ∂D, respectively. Fol-
lowing the approach in sections 1.2 and 2, we define the target of the analysis as a
linear functional Q(·) of the solution u.

6.1.2. Surrogate models and modeling errors. To implement versions of
the Goals algorithms, we compute a surrogate solution pair (u0, p0) of (18), where
the bilinear form B0(·, ·) is obtained by first computing the statistical mean Ē(x)
of E(x, ω) and by then using standard homogenization methods or classical Hashin–
Shtrikman bounds [16] to obtain the deterministic, homogeneous, elasticity tensor E0.
Thus,

(36) B0(u0, v) =

∫

Ω

∫

D

(E0∇u0 : ∇v) ρ(ω) dx dω.

By recalling the surrogate primal problem (18)1 and the fact that the applied external
forces f and t are deterministic, the above choice for the bilinear form B0(·, ·) implies
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that u0 is deterministic. This does not generally extend to the dual solution p0, which
is deterministic only for certain choices of quantities of interest. The incurred modeling
errors are denoted as e0(x, ω) = u(x, ω)−u0(x) and ε0(x, ω) = p(x, ω)− p0(x, ω).
The corresponding residual functionals (12) and (16) reduce to [37]

(37)

R(u0, v) = −
∫

Ω

∫

D

(EI0∇u0 : ∇v) ρ(ω) dx dω,

R(p0, z) = −
∫

Ω

∫

D

(EI0∇z : ∇p0) ρ(ω) dxdω,

where I0(x, ω) = I − E−1E0 denotes the deviation tensor. We can now call upon
Corollary 1 to establish the error in the quantity of interest,

E(u0) = R(u0; p0) +
1

2
(R(u0, ε0) + R(p0, e0)) + ∆2(u0, p0, e0, ε0).

Ignoring the higher order term ∆2(u0, p0, e0, ε0), we consider the estimate,

(38) E(u0) ≈ R(u0; p0) +
1

2
(R(u0, ε0) + R(p0, e0)).

The last two terms in the RHS of (38) are generally intractable and further steps
need to be taken to derive a computable estimate of the error. We here introduce
an example of an estimator derived in [37] which is used in the example problem in
section 6.1.3:

E(u0) ≈ ηest,upp = R(u0, p0) +
1

4
(η+

upp)
2 − 1

4
(η−

upp)
2

where

η±
upp =

√
∫

Ω

∫

D

EI0∇(u0 ± p0) : I0∇(u0 ± p0) ρ(ω) dx dω.

The Goals algorithm provides two approaches to reduce the error E(u0) and compute
enhanced solutions (ũ, p̃) of (u0, p0): the Local or the Global Goals version (see
section 4). In either case, we use the estimator η̃est, derived from (29), to assess the
error in the quantity of interest of the enhanced solutions,

E(ũ) ≈ η̃est = R(u0, p̃) + Q(u0) − Q(ũ).

6.1.3. Numerical example. For the base problem, we consider a two-phase
composite material consisting of isotropic, linearly elastic constituents. Cylindrical
inclusions account for 30 percent of the volume and have been randomly dispersed in
the matrix material, as depicted in Figure 2. The structure is subjected to a traction
t at the top and has prescribed zero displacements at the base y = 0. The Young’s
modulus and Poisson ratio of the matrix material are deterministic and given by
Em = 5 GPa and νm = 0.345. The material properties of the inclusions, however, are
functions of the random vector ω = {ω1, ω2} ∈ (0, 1) × (0, 1), such that

Eincl(ω) = Eincl(ω1) = 110 + 20 × ω1, [GPa]

νincl(ω) = νincl(ω2) = 0.28 + 0.4 × ω2.
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Fig. 2. A structural component constructed from a two-phase composite material in equilibrium
under the action of applied stress t and prescribed zero displacements at y = 0.

We assume that ω1 and ω2 are statistically independent which implies that ρ(ω) =
ρ1(ω1) ρ2(ω2). We additionally assume that ρi(ωi), i = 1, 2, are truncated Gaussian

distribution density functions,

ρi(ωi) = 2
A√
2π

e−(2ωi−1)2/2π, i = 1, 2,

A = 2

[

erf

(
1√
2π

)

− erf

(

− 1√
2π

)]−1

.

In this example, our target Q(u) is the statistical average of the average strain εyy over
a small circular area DQ near the support of the structure, with a radius r = 0.017m
(see Figure 2).

We establish the surrogate problem (18) by computing the average of the Hashin-
Shtrikman upper and lower bounds [16] of the material coefficients in the base model.
Using these averaged coefficients, we construct a surrogate E0 whose coefficients are
obviously homogeneous and deterministic. It is easy to show [38] that with the current
choice of Q(u) not only u0 but also p0 is deterministic. In Figure 3, the strain field
ε0

yy is shown which is obtained by using overkill finite element approximations of
(u0, p0) (the finite element models were implemented using the commercial package
ProPHLEX [2]).

For comparison, the base solution u(x, ω) has also been computed by using
overkill Monte Carlo and finite element approximations and the statistical average
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Fig. 3. Strain field ε0
yy for the deter-

ministic surrogate problem.

DQ

Fig. 4. Mean value of the strain field
εyy for the base problem.

Table 1

Relative error and effectivity index of the estimator ηest,upp.

E(u0)/Q(u) ηest,upp/E(u0)

0.73 1.22

Table 2

Relative error and estimator effectivity for the locally enhanced problems.

Local Goals Global Goals
Step no. E(ũ)/Q(u) η̃est/E(ũ) E(ũ)/Q(u) η̃est/E(ũ)

1 0.61 1.07 0.20 1.31
2 0.61 1.10 0.15 1.49
3 0.56 1.08 0.13 1.40

of the resulting strain field εyy(x, ω) is shown in Figure 4, where the area of inter-
est around DQ has been magnified. In Table 1, the relative error in the quantity of
interest and the effectivity indices of the estimate ηest,upp is given. Even though the
relative error is large, the estimator ηest,upp provides a fairly accurate assessment of
the error with an effectivity index of 1.22.

To reduce the error, we perform two separate series of local enhancements. In
one series, we employ the Local Goals algorithm, while the Global Goals is used in a
second series. In Table 2, the relative errors and the effectivity indices of the error
estimator η̃est are listed for three steps of both approaches. Also, in Figures 5 and 6,
the statistical averages of the enhanced strain fields ε̃yy that are obtained after the
first and third step, respectively, are shown. In these figures, the boundary of the
domain of influence ∂DL is highlighted red.

As expected (see Remark 1), the results in Table 2 reveal that, although the Global
Goals algorithm requires solving a larger problem, the rate of decrease in the error in
the target quantity is more pronounced with this approach. In both approaches, the
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DL

(a) Local Goals (b) Global Goals

Fig. 5. Mean values of the strain field ε̃yy after the first step of local enhancement using the
Local and Global Goals algorithms.

estimator η̃est exhibits good accuracy with effectivity indices close to unity. For the
Global Goals version, the effectivity is slightly worse, but this is due to the fact that
the error has been reduced to much smaller values. In these applications, we have
observed that the estimates become less accurate as the actual error decreases.

6.2. Nanoindentation application. In this section, we consider the problem of
determining static equilibrium configurations of a regular lattice of N atoms. The base
problem is derived by minimization of the potential energy of the system involving all
atoms in the lattice. However, for many applications, the base problem is intractable
due to the very large number of atoms N . We construct here surrogate problems
using the popular QCM [44, 45, 46] which allows for the reduction of the number of
active atoms as needed.

6.2.1. The base and surrogate problems. Let L be a regular lattice of N
atoms in R

d, d = 2 or 3. The positions of the atoms in the reference configuration
are given by the vectors x̂i ∈ R

d, i = 1, . . . , N, and in the equilibrium configuration
by xi = x̂i + ui, i = 1, . . . , N , where ui is the displacement of atom i. We assume
that the lattice in the reference configuration covers the region Ω̄, where Ω is an open
bounded set of R

d with boundary ∂Ω. For a more detailed analysis, see [34]. We
introduce the finite-dimensional vector space V = (Rd)N , and we use the notation
u = (u1, u2, . . . , uN ) ∈ V to refer to the displacements of the collection of N atoms.
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(a) Local Goals (b) Global Goals

Fig. 6. Mean values of the strain field ε̃yy after the third step of local enhancement using the
Local and Global Goals algorithms.

The total potential energy of the system is assumed to be the sums

(39) E(u) = −
N∑

i=1

f i · ui +

N∑

k=1

Ek(u),

where f i is the external load applied to an interior atom i and Ek(u) is the energy
of atom k determined from interatomic potentials.

The goal of molecular statics is to find the equilibrium state u ∈ V that minimizes
the total potential energy of the system, i.e., u = argmin

v∈V E(v). This minimization
problem can be recast into the variational problem:

(40) Find u ∈ V such that B(u; v) = F (v) ∀v ∈ V,

where, for any u ∈ V and v ∈ V ,

B(u; v) =

N∑

i=1

[
N∑

k=1

∂Ek

∂ui
(u)

]

· vi,

F (v) =

N∑

i=1

f i · vi.

(41)

Here ∂/∂ui is the gradient vector with respect to each component uα,i of the dis-
placement vector ui; i.e., ∂/∂ui = (∂/∂u1,i, . . . , ∂/∂ud,i).

We briefly recall the main features of the quasicontinuum method (QCM). For
more details, see [44, 40, 21]. The first step consists of choosing a set of R repre-
sentative atoms, the so-called repatoms, and of approximating u ∈ V by a reduced
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vector u0 ∈ W = (Rd)R, R ≪ N , with u0 = (u0,1, u0,2, . . . , u0,R) ∈ W . The dis-
placements u0 represent the active degrees of freedom of the system and the repatoms
are conveniently identified with the nodes of a finite element partition Ph of Ω. The
displacements of the (N −R) slave atoms are then interpolated from u0 by piecewise
linear polynomials using the finite element mesh.

The second step of the QCM is devoted to the approximation of the total energy
E(Πu0) (recall section 3.1) by summing only over the repatoms such that

(42) E(Πu0) ≈ E0(u0) = −
R∑

r=1

nr f0,r · u0,r +

R∑

r=1

nrEr(u0),

where nr is an appropriate weight function associated with repatom r so as to account
for all atoms in the lattice, i.e.,

∑

r nr = N , and f0,r is the averaged external force
acting on repatom r. For further details, see [21].

The minimization of the energy E0(u0) yields the surrogate problem

(43) Find u0 ∈ W such that B0(u0; v) = F0(v) ∀v ∈ W,

where the semilinear form B0(·; ·) and linear form F0(·) are defined as

B0(u; v) =
R∑

i=1

[
R∑

r=1

nr
∂Er

∂ui
(u)

]

· vi,

F0(v) =

R∑

i=1

ni f0,i · vi.

(44)

6.2.2. Error estimation and adaptivity. In the nanoindentation problem
that will be presented in the next section, the quantity of interest is the force that
the crystal exerts on the indenter. Let the atoms, in contact with the lower surface
of the indenter, be numbered from 1 to M . The quantity of interest is

(45) Q(u) = −
M∑

i=1

fy,i = −
M∑

i=1

∂Ei

∂uy,i
(u),

where fy,i and uy,i are the force and the displacement in the y-direction with respect
to atom i. We assume that the meshes are such that the M atoms under the indenter
are representative atoms, and all the forces are computed by the nonlocal approach
(see [21]). The objective is then to estimate the error quantity

(46) E = Q(u) − Q(Πu0).

The dual problem associated with the base problem (40) reads

(47) Find p ∈ V such that B′(u; v, p) = Q′(u; v) ∀v ∈ V,

where the derivatives are given in the molecular statics case by

B′(u; v, p) =
N∑

j=1

N∑

i=1

vj ·
[

N∑

k=1

∂2Ek

∂uj∂ui
(u)

]

· pi,

Q′(u; v) = −
N∑

j=1

vj ·
[

M∑

i=1

∂2Ei

∂uj∂uy,i
(u)

]

.

(48)
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The surrogate dual problem is then

(49) Find p0 ∈ W such that B′
0(u0; v, p0) = Q′

0(u0; v) ∀v ∈ W,

where by Q0 we mean Q0(v) = Q(Πv). The errors e0 ∈ V and ε0 ∈ V in Πu0 and
Πp0, respectively, are defined as e0 = u−Πu0 and ε0 = p−Πp0. Then, the error in
Q(u) produced by Πu0 is given by, using Theorem 1,

(50) E = Q(u) − Q(Πu0) = R(Πu0; p) + ∆1(Πu0, Πp0, e0, ε0),

where R(Πu0; v) is the residual functional, with respect to the base model problem

(51) R(Πu0; v) = F (v) − B(Πu0; v), v ∈ V.

For details on the error estimator, see [34].
The adaptivity algorithm then proceeds as follows:
1. Initialize the load step s = 0. Input user-tolerance δtol.
2. s = s + 1.
3. Solve the primal and dual problems.
4. Compute the error estimates.
5. Check: |η| > δtol|Q(u0)|. If false: go to step 2. If true: mark those elements

with |ηK(Π̃u0, p̃)| > α maxK |ηK(Π̃u0, p̃)|, where α is a user-supplied number
between 0 and 1.

6. Refine flagged elements and go to step 3.

6.2.3. A numerical example. The performance of the error estimator and
adaptive strategy is demonstrated for a nanoindentation problem proposed by Tad-
mor et al. [33, 40, 45]. The simulation is actually provided as a model example
accompanying the open source software package [22]. In this example, a thin film of
aluminum crystal is indented by a rigid rectangular indenter, 9.31 Å wide and infinite
in the out-of-plane direction, as depicted in Figure 7. The dimensions for the block of
crystal are 2000×1000 (in Angströms) in the [111] and [1̄10] directions of the crystal.
The crystal rests on a rigid support so that homogeneous boundary conditions ui = 0

are prescribed for those atoms i located at y = 0. The indenter is moved downward
in a succession of 30 load-step increments δl = 0.2. The boundary conditions for
the atoms i just below the indenter are given by ui = (0,−m δl, 0), m = 1, . . . , 30.
Quasistatic steps are then considered to solve for the displacements.

The site energies Ek(u) of the aluminum crystal are computed here using the
embedded atom method (EAM) (see, e.g., [9, 14]). Briefly, the semiempirical potential
energy for atom k is given by the sum of an electron-density dependent embedding
energy and pairwise interatomic potentials. The QCM also employs a cutoff function
to approximate the interatomic potentials as the potential function decays rapidly
with respect to the interatomic distance.

The interatomic distances in the undeformed configuration of the crystal are 2 Å
in the x- and y-directions. One (1̄, 1̄, 0) layer of the film contains about 500,000
atoms. Rather than solving for the solution u of the full base problem (40), we have
opted to consider as our reference solution an “overkill” solution of the surrogate
problem (43). This solution is hereafter referred to as the base model solution as it
involves a sufficiently high number of degrees of freedom so that it is a very accurate
approximation of u.

The base model solution is compared to the solution u0 obtained by the QCM on
a much coarser discretization. In the quasicontinuum (QC) solution, the refinement
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Fig. 7. Nanoindentation of an aluminum crystal (the schematic representation is inspired by
Figure 1 in [45]).
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Fig. 8. Force-displacement curve comparing the evolution of the base model, QC, and Goals
solutions.

parameter was set according to the authors’ recommendations [22] to .075 while the
Goals solution was set to a 5 percent error tolerance in the quantity of interest. Next,
the force under the indenter is shown in Figure 8 for the base model solution, the
QC solution, and the Goals algorithm. This force represents a quantity of physical
interest as it can be experimentally measured and clearly indicates the nucleation of
the dislocation. The QCM produces a stiffer material so that the critical force for
dislocation nucleation occurs one load-step earlier than the base model solution. On
the other hand, the Goals solution produces a remarkably accurate representation of
the force-displacement curve when compared to the base model. Shown in Figure 9
are the relative errors and effectivity indices for each load-step, demonstrating the
effectiveness of the error estimator used. Note that the effectivity index at loadstep 2
is far from unity due to the fact that the error is very near zero. As can be seen, the
error in the solution is controlled to within the preset tolerance of 5 percent with the
exception of the third and final load-steps. Although the error estimator overestimates
the exact error for most of the load-steps in this example, this behavior may not be
true for other cases. It is not proved that this is a guaranteed upper bound.
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Fig. 9. Exact and estimated relative errors for the Goals solution (left). Effectivity indices (right).

6.3. Molecular dynamics application. We present in this section an appli-
cation to modeling the dynamics of atoms whose motion is determined by molecu-
lar dynamics (MD) principles. We consider here surrogate models generated by the
bridging-scale method (BSM) of Wagner and Liu [51] and the pseudospectral mul-
tiscale method (PMM) of Tang, Hou, and Liu [48]. We will show only preliminary
results, but future work will include the development of automatic model adaptivity
algorithms and the investigation of other surrogate models such as that put forth by
Xiao and Belytschko [52].

6.3.1. The base model. Let Ω ⊂ Z
d be an open bounded set, d = 1, 2, or 3. Let

L denote the lattice of n atoms covering Ω. The initial positions of the atoms are given
by the vectors xi ∈ R

d and the respective displacements by ui ∈ R
d, i = 1, . . . , n. The

notation u = (u1, u2, . . . , un) collectively represents the displacement of the n atoms.
We denote by M the mass matrix of the system Mij = m(i)δij , where mi is the mass
of atom i. Additionally, the interatomic potential energy (assumed to be given) is
represented by E(u) and the interatomic forces are computed as f(u) = −∂uE(u).

The MD problem is then characterized by the following system of ordinary dif-
ferential equations for the displacements u = u(t):

(52) Mü = f(u), u(0) = U0, u̇(0) = V 0

subjected to appropriate boundary conditions. Note that external forces on the atoms
have been neglected for simplicity. The superimposed dot implies differentiation with
respect to time. Assuming u, v ∈ V = C2

(
(0, T );

(
R

d
)n)

, we may recast the above
problem into the weak form (1) with

B(u; v) =

∫ T

0

vT (Mü − f (u)) dt + vT (0)Mu̇(0) − v̇T (0)Mu(0),

F (v) = vT (0)MV 0 − v̇T (0)MU0.

(53)

Note that the initial conditions in the above formulation are weakly imposed. Sim-
ilarly, it is not difficult to derive the first derivative of the semilinear form B(·; ·).
Indeed, we have for p, v ∈ V,

B′(u; v, p) =

∫ T

0

(
Mp̈ − (f ′(u))T p

)T
v dt

+ (Mp(T ))T v̇(T ) − (Mṗ(T ))T v(T ),

(54)
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Fig. 10. Illustration of the scale decomposition for BSM.

where f ′(u) = ∂uf(u) is the Hessian of E(u) evaluated at u.

6.3.2. The surrogate models: BSM and PMM. We consider as surrogate
models those determined by the BSM [47, 51] and the PMM [48]. These methods are
similar and their overall objectives are the following:

1. Construct a coarse-scale model from the MD model.
2. Solve the MD model only over a subdomain ΩMD ⊂ Ω and solve the coarse-

scale model in the complementary subdomain ΩC = Ω \ΩMD. One difficulty
is then to develop proper interface conditions to reduce/eliminate spurious
wave reflection at the interface of ΩMD and ΩC .

The starting point of the BSM and the PMM is based on the classical decompo-
sition of scales (see, e.g., [17]):

(55) u = ū + u′, ū = P u, u′ = Qu = (I − P )u,

where ū and u′ define the coarse-scale displacements and the fine-scale fluctuations
(see Figure 10), respectively, P is a general projection operator, and I is the identity
matrix. One main difference between the BSM and the PMM is that ū is obtained
in terms of piecewise linear functions in the case of the BSM and of a spectral repre-
sentation in the case of the PMM.

Considering the subdomains ΩMD and ΩC , the solution u can be further decom-
posed into the following form:

(56) u =

[
uMD

uC

]

=

[
ūMD

ūC

]

+

[
u′

MD

u′
C

]
in ΩMD,

in ΩC ,

where uMD and uC are the parts of the solution in ΩMD and in ΩC , respectively. In
essence, the BSM and the PMM consist in approximating the large scales ūMD + ūC

by constructing a coarse-scale model over the whole domain Ω (see [51, 47, 48] for
details) and by using ūC to define the boundary conditions for the full MD model in
ΩMD. However, it is well known that such a coarse model may yield spurious wave
reflection at the interface of the two domains. In order to alleviate this issue, the BSM
and the PMM propose to calculate the fine-scale components in ΩC corresponding to
those atoms that are within the cutoff radius of atoms in ΩMD. Therefore, the vector
u′

C is approximated by a vector, say, u′
G, that has zero entries, except at the position

of these atoms “close” to the interface boundary. It follows that the surrogate models
using the BSM or the PMM produce solutions in the form

(57) ũ =

[
uMD,
ūC ,

]
in ΩMD,

in ΩC .
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Once again, the readers are referred to [51, 47, 48] for the full description of the
methods. Our main interest in the present work is to provide error estimates with
respect to quantities of interest for the surrogate solutions ũ.

6.3.3. Error estimates. The residual functional with respect to the MD prob-
lem can be written as

(58) R(ũ, v) =

∫ T

0

vT (M ¨̃u − f(ũ
︸ ︷︷ ︸

r(ũ)

))dt =

∫ T

0

n∑

i=1

vi · ri(ũ)dt.

The local residual ri simply indicates how the second Newton law fails to be satisfied
at atom i. Given a quantity of interest Q(u), the modeling error in Q(ũ) can be
approximated by

(59) Q(u) − Q(ũ) ≈ R(ũ, p) =

∫ T

0

n∑

i=1

pi · ri(ũ)dt,

where p is the dual solution associated with Q(u). The computational domain is
divided here into a partition {Θ}k

j=0, as indicated in section 4. In the case of the
BSM, the subdomains are conveniently constructed from the coarse lattice used in
the solution of the coarse-scale model. We note that the error quantity can then be
decomposed into local contributions either in time, ηt, or in space, ηj , as

(60) ηt =
n∑

i=1

pi · ri(ũ), ηj =

∫ T

0

∑

i∈Θj

pi · ri(ũ)dt,

and that the error can be rewritten in terms of these local contributions as

(61) Q(u) − Q(ũ) ≈ R(ũ, p) =

∫ T

0

ηtdt =
k∑

j=0

ηj .

We will show in the following example the distribution of the contributions ηi and the
evolution of the contributions ηt.

6.3.4. Numerical example. The performance of the error estimator and of the
Local Goals algorithm is demonstrated here for the one-dimensional model problem
studied in [47]. In this problem, Ω = [−2, 2], ΩMD = [−0.35, 0.35], with atomic
spacing ha = 0.005. The atoms in domains ΩMD and ΩC are represented in black
and red, respectively, in Figure 11 and subsequent figures. The initial conditions are
given by

(62) V0(xi) = 0, xi ∈ Ω,

and

(63) U0(xi) =







0.005 (1 + 0.1 cos(80πxi))
e−100x2

i − e−6.25

1 − e−6.25
, |xi| ≤ 0.25,

0 otherwise.
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Fig. 11. Initial displacement U0(xi). The points in black represent atoms in ΩMD while points
in red denote atoms in ΩC .

hc = pha

ha

Fig. 12. Schematic illustrating the construction of the coarse lattice on which the coarse-scale
displacements ū are computed (BSM).

Furthermore, mi = 1, i = 1, . . . , n, and the interatomic forces are given by linear
springs:

(64) f(u) = Ku, K =









−2 1

1 −2
. . .

. . .
. . . 1
1 −2









.

In the case of the BSM, the coarse lattice is constructed by placing a coarse grid point
at every p atom in Ω so that the coarse grid spacing hc = pha; see Figure 12. The
time integration scheme is identical to that used by Wagner and Liu [51]. In this
example, we suppose that we are interested in the locally averaged displacement

(65) Q(u) =
1

M

∑

i∈M

ui, M = {i : |xi| ≤ 0.0025} ,

for which the strong form of the dual problem is

(66) Mp̈ −
(
f ′(u)

)T
p = 0, −Mṗ(T ) = q, p(T ) = 0,

where M is the number of atoms considered in set M and q is the vector defined such
that Q(u) = qT u. The dual problem is solved by integrating (66) backward in time
using a numerical scheme similar to that used in the forward time integration of the
primal problem.
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Fig. 13. Time snapshots of the primal, dual, and force residual at t = 45, 60, 75, 90 (BSM).

The first set of experiments deals with the BSM. The surrogate solution ũ, the
dual solution p, and the local residuals r(ũ) are shown in Figure 13 for four specific
times. Observe how the dual solution propagates in time in the opposite direction to
the primal solution. The dual solution indicates how the local residuals r(ũ) influence
the error in the quantity of interest. In particular, it can be seen that, as the front
moves left to right, the dual solution reduces to zero. This simply means that the
sources of error introduced in those spatial regions in which the dual solution is zero
do not have enough time to propagate and pollute the quantity of interest. In the
meantime, the local residuals become significant when the fine-scale noise starts to
move across the interface boundary. The combination of both effects implies that
the major contributions to the error in the quantity of interest are generated during
the time interval 0.35 ≤ t ≤ 0.90 and in the subregion 0.35 ≤ x ≤ 0.5 as shown in
Figure 14.

Since the sources of error, according to Figure 14, are essentially created in the
space intervals [0.35, 0.5] and [−0.5,−0.35] (by symmetry), we choose to enlarge ΩMD

to [−0.5, 0.5] in a one adaptive step of the Goals algorithm. Figure 15 displays the new
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Fig. 14. The temporal contribution to the error (left) and the spatial contribution (right) (BSM).
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Fig. 15. The temporal contribution to the error (left) and the spatial contribution (right)
following model adaptivity (BSM).

error contributions along the preadapted solution errors for comparison. As clearly
shown, the modeling error has been effectively eliminated. Note that the dual solution
p in the present numerical experiment was computed using the fine-scale model. A
major task will be to construct adequate and reliable surrogate models for the dual
problem.

We repeat the same experiments in the case of the PMM. Here we show only the
results of the adaptive algorithm by considering ΩMD = [−0.5, 0.5], [−0.4, 0.4], and
[−0.45, 0.45]. Figure 16 shows how contribution to the errors is reduced by successive
refinement of the model problem.

7. Concluding comments. That mathematical models of physical events are
almost always imperfect abstractions of nature is a truism universally understood by
all students of science and engineering. The possibility of quantifying in some way
the level of imperfection is therefore an intriguing proposition. Our approach is to
measure this imperfection as estimates of error in specific quantities that we single
out as important features of the behavior of the system under consideration. But even
then we do not escape the necessity of using another imperfect model, the base model
of the event. Nevertheless, we believe that the relatively straightforward machinery
we describe for comparing models by estimating modeling error can be very valuable,
particularly when two or more models of events that occur at different scales are
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Fig. 16. The temporal contribution to the error (left) and the spatial contribution (right)
following model adaptivity (PMM).

considered. If this process can be tied to physical measurements as well, it may be
possible to develop powerful techniques for simulating events at multiple scales with
a level of reliability beyond that thought possible in recent times.

There are many open issues that remain to be resolved. Given a list of quantities
of interest for a base model at the finest scale, a systematic approach for developing
the optimal ensemble-averaged or homogenized characterizations of these quantities
at coarser scales is needed. We have offered some examples in this work, but further
work on how these averaging techniques affect accuracy of estimates and convergence
rates of the adaptive process is needed.

Adaptive modeling techniques are in early stages of development. The Global and
Local Goals algorithms presented here represent only two of many possible approaches.
Other techniques could be inspired by many of the multigrid methods in use in linear
and nonlinear solvers. The role of various hand-shake methods for interfacing models
of different scales as a basis for adaptive modeling is also a topic worthy of further
study.

There is also the issue of modifying the definition of a quantity of interest as one
progresses to coarser-scale models. In a two-scale situation, the coarse-scale model is
a surrogate: an artifact of a computational process. In more general situations, it can
be conceived that coarser-scale models may possess features of interest themselves, not
always tied to fine-scale quantities of interest. The procedures we develop here should
be applicable to such situations with straightforward modifications. Of overriding
importance is the goal of estimating the relative error in quantities delivered by two
or more models.
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