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Abstract—An adaptive feedback control system is presented
which employs a computational model of bioheat transfer in
living tissue to guide, in real-time, laser treatments of prostate
cancer monitored by magnetic resonance thermal imaging.
The system is built on what can be referred to as cyberinfra-
structure—a complex structure of high-speed network,
large-scale parallel computing devices, laser optics, imaging,
visualizations, inverse-analysis algorithms, mesh generation,
and control systems that guide laser therapy to optimally
control the ablation of cancerous tissue. The computational
system has been successfully tested on in vivo, canine prostate.
Over the course of an 18 min laser-induced thermal therapy
performed at M.D. Anderson Cancer Center (MDACC) in
Houston, Texas, the computational models were calibrated to
intra-operative real-time thermal imaging treatment data and
the calibrated models controlled the bioheat transfer to within
5 �C of the predetermined treatment plan. The computational
arena is in Austin, Texas and managed at the Institute for
Computational Engineering and Sciences (ICES). The system
is designed to control the bioheat transfer remotely while
simultaneously providing real-time remote visualization of the
on-going treatment. Post-operative histology of the canine
prostate reveal that the damage region was within the targeted
1.2 cm diameter treatment objective.

Keywords—Hyperthermia, Real-time computing, Medical

imaging, Cancer treatment, Cyberinfrastructure, PDE

constrained optimization.

INTRODUCTION

The use of modern methods of computer modeling
and simulation to guide and predict the outcome of
medical procedures is a development of monumental
importance that could eventually change and enrich all

of medical science and significantly enhance the
health and quality of life of the human species. One
recent development in computational science that can
greatly increase the fidelity and predictive power of
computer simulations is the use of feedback control
systems that integrate computer models with field
measurement systems so as to allow near-real-time
calibration of the models. Such systems are collec-
tively called Dynamic Data Driven Application Sys-
tems (DDDAS),6 and, in theory, such systems can be
used to deliver predictive simulations of unprece-
dented accuracy and reliability.

This paper describes a canonical feedback control
system developed to control and predict the outcome
of laser therapies for prostate cancer. The system
involves the integration of a long list of technologies
and new methodologies, including magnetic resonance
thermal imaging (MRTI), computer visualization, laser
optics, high-speed networks, nonlinear dynamic bio-
heat transfer models of heterogeneous tissue, adaptive
meshing, high-performance parallel computing, cell-
damage and heat-shock protein models, inverse anal-
ysis, calibration, model validation, signal processing,
optimal control algorithms, and error estimation and
control. In our particular DDDAS, the fact that these
diverse technologies and systems are connected across
a high-speed computational grid connecting remote
sites—an imaging and medical unit in Houston and a
modeling and computational unit in Austin—qualifies,
in our opinion, as an example of cyberinfrastructure.3

The basic hypothesis underlying the creation of this
system is that cancer cells can be eradicated when
subjected to sufficient heat for a sufficient period of
time. Such heat sources can be supplied by inserting
optical fibers into the infected tissue and then supply-
ing energy by means of a laser. If one can predict the
evolution of temperature fields generated by such heat
sources, then the location of the fiber and the fre-
quency and power of the laser can be controlled to
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minimize damage to healthy tissue while maximizing
damage to tumor cells. The development of calibrated
models that accurately simulate bioheat transfer in
prostate tissue is thus a key component of the system.
But, as can be anticipated, there are many complicat-
ing factors in developing such a control system,
including, for example, the development of computa-
tional models of cell damage and heat-shock protein
expression. This research aims to focus on minimally
invasive thermal therapy delivery designed to provide
local treatment of focal disease, such as those designed
to replace, or act as an adjuvant to, conventional
surgery. The real-time monitoring of temperature
using MRTI is useful in these treatments in order to
increase both efficacy and safety due to the rapid
heating and high temperatures involved. The proposed
technology further increases this efficacy by helping to
optimize the conformality of the treatment as well as
minimize risks associated with damaging nearby criti-
cal structures.

The core simulation tool embeds experimental real-
time thermal imaging data within the nonlinear Pennes
bioheat transfer model. The thermal imaging data are
provided by an MRTI device that follows the actual
therapy at the imaging laboratory at M.D. Anderson
Cancer Center (MDACC) in Houston, Texas. The
MRTI technology developed over the past decade is a
modification of existing MRI technology to use fast
imaging sequences to acquire larger imaging volumes
in the same time with comparable temperature sensi-
tivity and to provide a 3D temperature field as a
function of position and time in the living tissue. The
optimal control system is guided by simulations per-
formed at the computational modeling arena with the
Institute for Computational Engineering and Sciences
(ICES) in Austin, Texas with high-bandwidth network
connections to computers at the Texas Advanced
Computing Center (TACC). As noted, through accu-
rate computer prediction, the location and power of
the laser can, in principle, be modulated to maximize
damage to the tumor while minimizing damage to
healthy tissue. Computer prediction may be used to
accurately control the affected tissue response through
a collection of imaging based measurements about how
the complex physiological system is responding to the
surgery and to make changes in the treatment plan
based on an intelligent understanding of the physio-
logical pathways and feedback mechanisms to affect
the surgical outcome. This represents a significant
extension of modern simulation methods as a means
for real-time calibration and validation of models are
made possible in this system. The possibility of simu-
lating bioheat transfer in cancerous tissues of mice
was established in the work of Rylander et al.13,17 that
was a precursor of the present study. In these works,

primitive models of cell damage and heat-shock-pro-
tein expression were also proposed and calibrated by
means of in vitro experiments.

Following this introduction, we describe the com-
putational infrastructure constructed to implement the
control strategy, including the assembly of various
software modules and the new software units devel-
oped to carry out various functions for the systems.
In ‘‘Real-Time Optimization’’ section, we describe
inverse analysis and optimization algorithms devel-
oped around a computational model based on a non-
linear parabolic partial differential equation that is a
generalization of the classical Pennes model.15 The
control paradigm is based on the derivation of back-
ward-in-time adjoint problems associated with various
cost functionals. It is shown that a single mathematical
and computational framework can be developed for
adjoints corresponding to control cell damage, HSP
expression, and numerical accuracy in approximations
of specific quantities of interest. The computational
model of heat transfer is constructed using adaptive
hp-finite elements7 and a Crank-Nicolson scheme for
approximating the temporal behavior of the tempera-
ture field. ‘‘Results’’ section contains discussions of
results of actual physical trials employing the full sys-
tem for predicting thermal response and controlling
laser input. This involves so-called phantom tests, run
on an agar gel in which a canine prostate is implanted,
and MRTI-monitored in vivo experiments, guided by
the control system, involving laser treatment on pros-
tates of living canines. The results clearly establish that
the system can provide accurate depictions of in vivo
thermal histories in canines and that the computer
simulations provide adequate information for effec-
tively controlling laser inputs and locations. Major
conclusions of the study are collected in ‘‘Conclusions
and Future Directions’’ section.

CYBERINFRASTRUCTURE AND WORK FLOW

We begin by describing the so-called cyberinfra-
structure developed to implement a DDDAS. This
involves developing a computational grid which
connects the experimental arena, at which the laser
treatment for prostate cancer is done, and the com-
putational arena, at which the computer modeling,
visualizations, and high performance computing is
carried out. The former is built around the MRTI
laboratory at M. D. Anderson Cancer Center in
Houston, Texas and the latter is managed at ICES in
Austin, Texas, approximately 150 miles away. Com-
munications between these arenas are handled via
batch sftp over a commercial GigE Internet connec-
tion. The full system is depicted symbolically in Fig. 1.
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The principal software modules and the data flow are
depicted in Fig. 2.

The control strategy involves multiple steps. Several
days prior to the laser treatment, the prostate area of
the therapy subject, in our case a laboratory canine, is
scanned using a 1.5 T clinical MR scanner (Excite HD,
GEHT, Waukesha, WI, USA). This pre-operative,
patient-specific data are transmitted to the computa-
tional arena where an initial 3D finite element mesh
approximating the prostate geometry is generated.
Several mesh generation packages are available,
including the Level Set Boundary-Interior-Exterior
(LBIE) Mesher1 presented.9 A pipeline, Fig. 3, of
commercial software may also be used. AMIRA,
http://www.amiravis.com, is used to perform a semi-
automatic segmentation and create a faceted surface
representation of the prostate. CUBIT, cubit.sandia.
gov, is then used to create a pillowed hexahedral mesh
and apply boundary conditions. The majority of the
time in this pipeline is spent in the semi-automatic
segmentation of the prostate. An expert user must
identify and extract the geometry of the prostate

from the pre-operative images. Prior to treatment,
reservations for access to the supercomputers as well as
the MRI scanner are made, and initial optimal laser
parameters are identified such as the location of the
endpoint of the optical fiber, laser power as a function
of time, etc. A trial simulation of the therapy is per-
formed using initial bioheat transfer data, some taken
from handbooks,10 to determine the initial location of
the laser fiber. The initial parameters are ultimately
corrected during the calibration phase of the process
using temperature data generated via MRTI. This is
described fully in ‘‘Results’’ section. The entire system,
computation, data transfer, visualization, etc., is tested
repeatedly to ensure stable code execution during the
treatment window. The laser treatment may take place
over a period of up to 18 min, but shorter procedures
may also be adequate.

We employ an FDA cleared system for MR tem-
perature monitoring of laser-induced thermal therapy
(Visualase�, BioTex Inc., Houston, TX, USA) modi-
fied to be controlled from remote supercomputers in
Austin. The Visualase uses a diffusing interstitial laser
fiber to provide the heat source to heat the tissue to an
ablative temperature regime. This system is monitored
remotely at the computational arena in Austin. Upon

FIGURE 1. The communication architecture used to control the laser treatment process over a distance of 150 miles is shown.
The continual interaction of the computational models, implemented at the Texas Advanced Computing Center in Austin, with the
thermal imaging data, acquired at M.D. Anderson Cancer Center in Houston, provides the feedback control. Visualization of the
treatment is rendered in Austin and provided to Houston, remotely.

1Software available at: http://cvcweb.ices.utexas.edu/cvc.
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initiation of the treatment process, the software
processes the intra-operative MRI data to register the
computational domain and real-time MRTI data
drives the calibrations aligning the parameters of the
Pennes bioheat transfer model to the patient’s biolog-
ical tissue values. As new thermal imaging data are
acquired intermittently, the computational prediction is
compared to the measurements of the real-time thermal
images and the differences seen are used to update the
computations of the optimal laser parameters needed to
achieve the original planned treatment. If the model is
incorrectly calibrated and the thermal images begin to
detect unexpected high temperatures, the laser power is
turned off. The model must then be recalibrated before
proceeding. The entire system is built around five main
computing modules as indicated in Fig. 2.

The treatment protocol is broken into four stages,
as illustrated in Fig. 4. The problems of real-time cal-
ibration, optimal control, and goal-oriented error

estimation are solved in parallel by separate groups of
processors working together as indicated in Fig. 5.
Before any thermal image transfer occurs, an initial
prediction of the entire time history of temperature/

FIGURE 2. There are five main software modules which together represent the computational infrastructure. A suite of programs
handles the anatomy and real-time thermal image acquisition; the geometry extraction and finite element mesh generation; the
simultaneous real-time visualization of the FEM, anatomical, and thermal image data; the implementation of the cellular damage
models; and finally the PDE constrained optimization. HP3d uses the Visualase software to control the laser source. The arrows
indicating the data flow between the control system modules is illustrated.

FIGURE 3. AMIRA is used for 3D semi-automatic segmentation in the XY, XZ, and YZ planes of the anatomical data. The data are
output as a facet file. The output facet file is then input into CUBIT to create a pillowed hexahedral mesh.

FIGURE 4. The treatment process is divided into four stages.
(1) MRTI thermal image data is acquired and used for model
calibration; (2) the time span of actual calibration computa-
tions; (3) the time span for optimal temperature/damage/HSP
computations; and (4) the optimal laser control parameters
are applied to the biological domain. In the event of the
detection of an unexpectedly high temperature within the
biological domain, a fail-safe signal shuts off the laser power.
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damage/HSP from textbook or pre-calibrated material
properties is computed. The time window of the pre-
diction is the entire length of the treatment [0, tf].
During the first stage, the biological domain is pulse
heated during time [0, t0] and MRTI thermal image
data is acquired from time [0, t1 > t0] for the heating as
well as the cooling. The images from [0, t1] are used to
calibrate the bioheat transfer model. The time window
[t1, t2] is allotted to finish the calibration computation.
The calibration computations are check-pointed
intermittently. The timing of the optimal control
computations are implicitly based on the acquisition of
the thermal image at time t2. At time t2, a second group
of processors uses the most recent checkpoint of the
calibration parameter update and proceeds to optimize
the power from [t3, tf] (t3 > t2); the time window [t2, t3]
is provided to finish the optimal control computations.
At time t3, the optimizer is stopped and the final pre-
diction is made over the time window [t3, tf]. During
this fourth and final stage, the optimal laser control

parameters modulate the laser power for the remainder
of the treatment. In the event of the detection of an
unexpectedly high temperature within the biological
domain, a fail-safe shutoffs the laser power.

A Control Task unit orchestrates the treatment while
simultaneously acting as a data server of the thermal
images. Periodically during treatment, the group-wise
optimization solutions and error estimates are collected
on the Control Task data repository. A skeleton of the
entire FEM mesh of the biological domain is stored on
the Control Task. Using the collective error estimates, a
mesh refinement strategy is computed on the Control
Task and both the collective optimization solutions and
refinement strategy are broadcast to the individual
Computational Groups. The Control Task/Data Ser-
ver, Fig. 5, reads in the thermal images from disk, filters
the thermal images to remove noise, broadcasts the
thermal images to each computational group as needed,
and transmits the laser power toHouston. The timing of
the laser power control is implicit through the image

FIGURE 5. The finite element computations are performed on a parallel computing architecture using multiple groups of pro-
cessors to simultaneously solve the disjoint PDE constrained optimization problems of the control system. A single processor
acts as a Control Task/Data Server to orchestrate the entire treatment. The processor is used to gather and broadcast the individual
solutions of the computational groups and broadcast filtered thermal images to individual computational groups as requested. The
imaging implicitly controls the laser power output. As a new thermal image is acquired by HP3d in Austin, the estimated power
wattage for the next time interval is transmitted to the laser and is physically generated during the therapy.
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acquisition by the HP3d, Fig. 5, in Austin. As new
thermal images are written to disk physically in
Houston, they are transferred to disk at the computing
center (TACC) in Austin. When the Data Server detects
that the full set of thermal images for a time instance is
available, the predicted power to be used for the next
time interval is sent to Houston.

A high-level abstraction of the HP3d8,2 hp-adaptive
finite element solver is given in Fig. 5. The models are
implemented efficiently in parallel to meet the demands
of rapid calibration and rapid optimal control calcula-
tions. The finite element solver is implemented at the
Austin site and run at the computing center (TACC)
through a network connecting ICES to the center. The
software infrastructure is built from the PETSc4 parallel
computing paradigm and the TAO5 parallel optimiza-
tion library. AVS1 is used in conjunction with a VNC
server for remote visualization. AVS coroutines are used
tomanage and coordinate the simultaneous visualization
of theMRI anatomical image,MRTI thermal image, and
finite element data sets. From a computational point of
view, the orchestration of a successful laser treatment
must handle the problems of registration, calibration,
and optimal control invisibly to the surgeon, and provide
a priori visualization of the outcome of the treatment for
use as guidance for the actual treatment.

REAL-TIME OPTIMIZATION

We employ a nonlinear generalization of the classical
Pennes15model of bioheat transfer as the basemodel for
simulating the evaluation of temperature in the bio-
logical domain due to energy supplied by the laser. The
domain, X, shown in Fig. 6, is heated by a laser heat
source within the time interval [0, s]. The entire time

span of the laser treatment occurs within the interval [0,
T], ½0; s� � ½0;T�. The Pennes model describes bioheat
transfer as the conservation of energy applied to a
motionless nondeforming mass of human tissue. The
muscle, fat, blood, connective tissue is represented as a

single continuous medium that may have spatially
varying properties and mass flux does not occur across
the boundary. The heat transfer between blood and
tissue is the defining characteristic of biological heat
transfer; as blood perfuses the complex vasculature
networks embedded in tissue, it may act as a significant
spatially varying heat source or sink. The biological
domain X is composed of a of region of healthy tissue
XH and a region of cancerous tissue XC, X ¼ XH [ XC.

The nonlinear Pennes bioheat transfer model is
given as follows:

The initial conditions, u0, are taken as the baseline body
temperature. The density of the continuum is denoted q
and the specific heat of blood is denoted cblood ½J=kgK�.
On the Cauchy boundary, @XC, h is the coefficient of
cooling and u¥ is the ambient temperature. The pre-
scribed heat flux on the Neumann boundary, ¶XN, is
denoted G. The optical–thermal response to the laser
source, Qlaser(b, x, t), is modeled as the classical

FIGURE 6. The equations of bioheat transfer are derived
from the conservation of energy applied to an arbitrary sub-
volume. The biological domain is composed of a cancerous
region (red) and a region of healthy tissue. A laser source
located at x0 heats the domain within the time interval [0, s].

qcp @u@t �r � ðkðu; x; bÞruÞ þ xðu; x;bÞcbloodðu� uaÞ ¼ Qlaserðb; x; tÞ in X

Qlaserðb; x; tÞ ¼ 3PðtÞlaltr

expð�leffkx� x0kÞ
4pkx� x0k

ltr ¼ la þ lsð1� gÞ

leff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3laltr

p

�kðu; x; bÞru � n ¼ hðu� u1Þ on @XC

�kðu; x; bÞru � n ¼ G on @XN

uðx; 0Þ ¼ u0 in X

2Software available at:http://dddas.ices.utexas.edu.
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spherically symmetric isotropic solution to the transport
equation of light within a laser-irradiated tissue.20 b
denotes an array of bioheat transfer model parameters.

b � ðk0ðxÞ; k1; ~k3; k̂3;x0ðxÞ;x1; ~x3; x̂3;PðtÞ; la; ls; x0Þ

P(t) is the laser power as a function of time, la and ls
are laser coefficients related to laser wavelength and
give probability of absorption and scattering of pho-
tons, respectively. The anisotropic factor is denoted g
and x0 denotes the position of laser photon source. The
scalar-valued coefficient of thermal conductivity,
k½J=smK�, is a function of the local temperature, u,
and is assumed to be of the form (Fig. 7)

kðu; xÞ ¼ k0ðxÞ þ k1 atanð~k2ðu� k̂3ÞÞ

where k0ðxÞ J=smK½ �, k1 J=smK½ �, ~k2 1=K½ �, k̂3 K½ � 2 R.
The function k0(x) is allowed to vary over the spatial
dimension to capture the biological tissue heterogeneity.
The media are thus assumed to be thermally isotropic
(referring to heat flux) but spatially heterogeneous. The
perfusion coefficient is given by x½kg=s m3�. Empirical
evidence suggests that x½kg=s m3�, is a smooth, mono-
tone increasing bounded function of temperature
(Fig. 7). We use the characterization,

xðu; xÞ ¼ x0ðxÞ þ x1 atanð~x2ðu� x̂3ÞÞ

where x0 ½kg=s m3�, x1 ½kg=s m3�, ~x2½1=K�, x̂3½K� 2 R.
Note that x0(x) is allowed to vary over the spatial
dimension as the blood perfusion within the necrotic
core of a cancerous tumor or the blood perfusion
within a damaged tissue is expected to be significantly
lower than the surrounding healthy tissue.

The main problems of interest is the real-time
solution of the calibration of the model coefficients and
the optimal control of the laser. The problem of
adaptive mesh refinement is presented in Oden et al.14

The model parameter available for control of the laser

heat source is the power as a piece-wise constant
function of time, P(t). The material properties avail-
able for model calibration are the thermal conductivity
parameters k0ðxÞ; k1; ~k3; k̂3 the perfusion parameters
x0ðxÞ;x1; ~x3; x̂3 and the coefficients of scattering and
absorption, ls and la. The position of the laser tip,
x0 = (x0, y0, z0), may be used in both calibration and
optimal control. Notice the explicit dependence of
thermal conductivity, k(u, x, b), perfusion, x(u, x, b),
and laser source, Qlaser(b, x, t), on b. The temperature
field resulting from the application of the heat source is
an implicit function of the model parameters.

uðb; x; tÞ t 2 ½0;T� x 2 X b 2 P

where P is defined in (5).

Calibration of Pennes Model

Given a fixed laser power, P(t), the problem of model
calibration is to find the set thermal conductivity
parameters, k0ðxÞ; k1; ~k3; k̂3, blood perfusion parame-
ters, x0ðxÞ;x1; ~x3; x̂3, optical coefficients, la, ls, and
laser parameters, x0, that minimize the L2ð0;T;L2ðXÞÞ
norm of the difference between the predicted tempera-
ture field and an ideal temperature field, uidealðx; tÞ.

Qðuðb; x; tÞ; bÞ ¼ 1

2
kuðb; x; tÞ � uidealðx; tÞk2L2 ½0;T�;L2ðXÞð Þ

¼ 1

2

Z

X

Z

T

0

uðb; x; tÞ � uidealðx; tÞ
� �2

dtdx

ð1Þ

dx = dx1 dx2 dx3 being a volume element. We describe
here a calibrated deterministic model; stochasticity is to
be addressed in future work. The ideal field for the cal-
ibration problem is the experimentally determined
temperature field, uexp(x, t), obtained from in vivoMRTI

(a) (b)

FIGURE 7. (a) Typical temperature dependencies of the blood perfusion and thermal conductivity material data used in the
Pennes model are plotted against the left and right axis, respectively. (b) The power is piecewise constant in time. The duration of
an individual power pulse is determined by the image acquisition time.
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data. The thermal imaging data, as well at the anatom-
ical data, is acquired using a 1.5 TMRI scanner (Sigma
Excite HD, Milwaukee, WI, USA), Fig. 8, using a 2D
temperature sensitive echo planar imaging sequence; the
scanner is located at the experimental (MRTI) arena in
Houston. The MRTI process itself involves a phase
subtraction technique. Each consecutive phase image is
subtracted fromabaseline image thatwas acquiredprior
to heating.19 These phase difference images are pro-
portional to temperature difference, Du. To convert
phase to temperature other factors including echo time,
magnetic field strength, gyro magnetic ratio water ppm
shift with temperature are required. The total tempera-
ture change is given as the cumulative sum of the indi-
vidual temperature differences. The image acquisition
time of the MRTI data is 4–6 s. Given a file size of
approximately .32 MB for one time instance of thermal
imaging data and average bandwidth transferring data
from Houston to Austin of approximately .2 MB/s, the
time to transfer the thermal imaging data is roughly 1 s.

Optimal Control of the Treatment

The optimal treatment of a focal disease is defined
by the following criteria:

– Maintain the functionality of the healthy region
of the tissue.

– Maximize damage to the cancerous region.

Various metrics based on temperature, damage, or
HSP expression are used to evaluate the degree to which
the criteria is satisfied. For optimal control, the laser
power, P(t), is varied as a function of time to minimize
the objective function and the material parameters,
k(u, x, b), x(u, x , b), ls, and la are fixed. An optimal

laser position x0 may be pre-computed. However, the
surgeon’s ability to achieve the pre-computed position is
limited and the actual treatment position of the lasermay
need to be calibrated from the thermal imaging data.

Temperature-Based Optimal Control

Temperature-based optimal control is similar to the
calibration problem, the goal being to find the set of
model parameters that minimize the space-time norm
of the difference between the computed temperature
field u(b, x, t) and an ideal field uideal(x, t). The
mathematical structure is the same as in (1). However,
the ideal field for temperature-based optimal control
maximizes damage to cancerous tissue while minimiz-
ing damage to healthy tissue,

uideal ¼ 37 �C x 2 XH

60 �C x 2 XC

�

Damage-Based Control

Damage-based control attempts to minimize the
L2-norm of the difference between an ideal damage
field and the computed damage field,

Qðuðb; x; tÞ; bÞ ¼ 1

2
kuðuðb; x; tÞÞ �DidealðxÞk2L2ðXÞ

¼ 1

2
kDðxÞ �DidealðxÞk2L2ðXÞ

An ideal damage field, Dideal(x), maximizes damage to
the cancerous region while maintaining functionality
of the healthy region. Within the cancerous region
there is a threshold damage value, denoted DC

ideal,
above which all cancerous cells will die. Similarly,
within the healthy region there is a threshold damage
value, denoted DH

ideal, below which the functionality is
maintained for all healthy cells.

DidealðxÞ �
Dideal

C x 2 XC

Dideal
H x 2 XH

(

The functional that acts on the temperature field and
returns the corresponding damage field is denoted u,

u : L2ð0;T;H1ðXÞÞ ! L2ðXÞ
uðuðb; x; tÞÞ ¼ DðxÞ 8x 2 X

The damage field, D(x), reflects the time-temperature
thermal injury resulting from the application of the
heat source.

An Arrhenius model and a Two-State model12 are
used to quantify the damage from the thermal assault
on the biological domain, X. The Arrhenius model is a
classical empirical law used in early models of thermal
effects and properties of molecular averages. For the
Arrhenius model, u represents the damage index, and
for the Two-State model, u represents the cell viability.

FIGURE 8. The 1.5-T clinical scanner used in this research is
shown. The average data set sizes obtained from this scanner
are 3.7 MB (256 3 256 3 30 voxel), 3D anatomical data for
planning, and .32 MB (256 3 256 3 5 voxel), thermal images
every 4–6 s for monitoring progression of treatment.
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uðuðb;x;tÞÞ¼DðxÞ¼

R

T

0

Ae
�Ea
Ru dt Arrhenius

Z

T

0

e�
h
uþa tþbð Þ

1þe�
h
uþa tþbð Þ dt Two-State

8

>

>

>

>

>

<

>

>

>

>

>

:

ð2Þ

The constants Ea, A, and R are known constants of the
Arrhenius model and h, a, and b are known constants of
the Two-State model determined from in vitro experi-
ments on cell samples.12 Note that the numerical values
of DC

ideal and DH
ideal for the Arrhenius model will be dif-

ferent from DC
ideal and DH

ideal for the Two-State model.

Heat Shock Protein (HSP) Based Control

Heat shock protein (HSP) based control is similar to
damage control. It is assumed that the functional
mapping the temperature field to the corresponding
HSP expression field is known:

H: L2ð0;T;H1ðXÞÞ ! L2ðXÞ Hðuðb; x; tÞÞðxÞ 2 L2ðXÞ

The constitutive data mapping the temperature field to
the HSP expression field is obtained from in vitro cel-
lular data.16 An ideal HSP expression field, Hideal(x),
maximizes the protective effect of heat shock proteins
within healthy tissue while minimizing heat shock
protein expression within the cancerous region.

A summary of the objective functions is provided as
follows:

PDE Constrained Optimization

The mathematical structure of the calibration and
optimal control problems is the same: Find the set of
model parameters b*, that minimizes a given objective
function, Q, over a parameter manifold, P,

Find b� 2 P s.t.
Qðuðb�Þ; b�Þ ¼ inf

b2P
QðuðbÞ; bÞ

subject to the constraints of a variational form of the
Pennes PDE, Cðu; b; vÞ: V � P� V ! R

8v Cðu; b; vÞ ¼ 0

¼
Z

T

0

Z

X

qcp
@u

@t
v dxdt

þ
Z

T

0

Z

X

kðu; x; bÞru � rv dxdt

þ
Z

T

0

Z

X

xðu; x; bÞcbloodðu� uaÞ v dxdt

þ
Z

T

0

Z

@XN

G v dAdt

�
Z

T

0

Z

X

Qlaserðb; x; tÞv dxdt

þ
Z

T

0

Z

@XC

hðu� u1Þ v dxdt ð4Þ

The variational form (4) is nonlinear with respect to the
first two arguments,u,b, but linearwith respect to the test
function, v. The proper mathematical setting for the trial
and test functions is the space of mappings from the
time domain to the appropriate function space,H1(X),

uðb; x; tÞ � ðuðb; tÞÞðxÞ: ð0;TÞ ! H1ðXÞ

such that the H1 norm of the mapping, u, is L2 inte-
grable in time,

Z

T

0

kuðb; �; tÞk2H1dt<1

The appropriate space containing such mappings is
V � L2 0;T;H1ðXÞ

� �

: A well-defined solution to the
variational problem (4) may be shown to exist for model
parameters, b, belonging to a parameter space, P,

P¼
b 2L1ðXÞ�R3�L1ðXÞ�R3�L1ð½0;T�Þ�R5 :
0<k�<k0ðxÞþk1atanðk2ðu�k3ÞÞ<k�<1
0<x�<x0ðxÞþx1atanðx2ðu�x3ÞÞ<x�<1

8

<
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9

=

;

ð5Þ

Qðuðb; x; tÞ; bÞ ¼
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X
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T

0

uðx; tÞ � uidealðxÞ
� �2

dtdx calibration/temp. based
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Z

s

0

A e
�Ea
Ru dt�DidealðxÞ
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0
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over which the operators are coercive, bounded, and
type-M.18

The gradient of the objective function with respect to
the control variables is the work horse of our optimiza-
tion schemes. The objective function is guaranteed to
decrease in the direction of the gradient and is also used
to approximate theHessian in a quasi-Newton scheme.A
Newton scheme for optimization is not considered in this
work. The real-time nature of the control systemdoes not
permit the efficient computation of the Hessian of the
objective function. An adjoint solution method of the
optimization problems is used to compute the gradient.
The adjoint method considered employs framework of
differential calculus in Banach spaces and clearly dem-
onstrates how the use of an adjoint variable eliminates
the need to solve for sensitivities of the solution. An
analytical expression for gradient of the objective func-
tion with respect to the control variables is determined
under the assumption that the objective function and
temperature field are Fréchet-differentiable.3

Considering the Pennes model solution, u, as a
function of the control parameters, b, and the objective
function,Q, as a function of the Pennes model solution,
u, and the control parameters, b, the composition of the
objective function with the Pennes model solution,
denoted as Q 	 u, may be considered as a Fréchet-dif-
ferentiable mapping solely from parameter space to R.

uðbÞ: P! V
Qðu; bÞ: V � P! R

Q 	 u � QðuðbÞ; bÞ: P! R

The derivative of the composition, Q 	 u, is of interest
and is computed under the following first order
approximations of the solution and objective function.

uðbþ b̂Þ ¼ uðbÞ þ u0ðbÞb̂
Qðuþ û; bþ b̂Þ ¼ Qðu; bÞ þDuQðu; bÞûþDbQðu; bÞb̂

Here u0: P! V denotes the Fréchet derivative of the
solution with respect to the control variables,
DuQ: V ! R is the partial Fréchet derivativewith respect
to the solution, and DbQ: P! R is the partial Fréchet
derivative with respect to the control variables.

For functions defined on the Cartesian products of
spaces, the notion of partial Fréchet differentiability is
understood as follows:

Partial Fréchet-differentiability: Let X denote the
direct sum of the space of trial functions and param-
eter space, X ¼ V 
 P. For U open, U � X, and
F: U! Y consider the point x = (u, b) 2 X. Define

fuðzÞ: V ! R fuðzÞ ¼ Fðz; bÞ
fbðsÞ: P! R fbðsÞ ¼ Fðu; sÞ

The Fréchet derivative of fu(z) at z = u and fb(s) at
s = b are the partial derivatives F in the direction of u
and b; respectively.

DuFðxÞ: V ! R DuFðxÞ ¼ DfuðuÞ
DbFðxÞ: P! R DbFðxÞ ¼ DfbðbÞ

The Fréchet derivative of F at (u, b) is the sum of its
partial derivatives.2

The chain rule holds for a composition of Fréchet
differentiable functions2; the derivative of the compo-
sition is computed as follows,

DðQ 	 uÞ: P! R

DðQ 	 uÞ ¼ DuQðu; bÞu0ðbÞ þDbQðu; bÞ
ð6Þ

Notice that to compute the gradient of the objective
function, Q, the sensitivities, u¢, must be computed.
The variation of the PDE constraints with respect to
the model parameters may be used to compute the
sensitivities. Only model parameters for which a solu-
tion to the governing PDE exists are of interest (i.e., b:
C(u(b), b; v) = 0 "v). Within this hyper-space the
variation is identically zero.

ðDuCu
0 þDbCÞ: P! R

DuCðu; b; vÞu0ðbÞ þDbCðu; b; vÞ ¼ 0 8v 2 V ð7Þ

where DuC: V ! R is the partial Fréchet derivative of
the PDE with respect to the solution and DbC: P! R

is the partial Fréchet derivative of the PDE with
respect to the model parameters. The adjoint method
of computing the gradient of the objective function
may now be formulated.

Theorem. Given b 2 P, the derivative of the objective
function is

DðQ 	 uÞ ¼ DbQðuðbÞ; bÞ �DbCðuðbÞ; b; pÞ ð8Þ

where u 2 V is the solution of the Pennes model and
p 2 V is the solution to the adjoint problem.

Find p 2 V :
hDuCðuðbÞ; b; pÞ; ûiV0�V
¼ hDuQðuðbÞ; bÞ; ûiV0�V 8û 2 V

Proof. For a fixed b, the solution to the adjoint
problem, p, satisfies

hDuCðuðbÞ; b; pÞ; u0iV0�V ¼ hDuQðuðbÞ; bÞ; u0iV0�V
From the first variation of the PDE constraints (7), we
have that3The notion of Fréchet differentiability is covered in Atkins et al.2
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DuCðuðbÞ; b; pÞu0ðbÞ ¼ �DbCðuðbÞ; b; pÞ

The gradient follows from a direct substitution in (6) to
eliminate the sensitivities:

DðQ 	 uÞ ¼ DuQðu; bÞu0ðbÞ þDbQðu; bÞ
¼ DbQðu; bÞ �DbCðuðbÞ; b; pÞ

(

Recall that DðQ 	 uÞ is an operator on the param-
eter space, P, and the desired solution, b, is such that

DðQ 	 uÞðbÞ ¼ 0() hDðQ 	 uÞðbÞ; b̂i ¼ 0 8b̂ 2 P

As a concrete example, the strong form of the
adjoint problem is derived from the Fréchet derivatives
used to derive (8). The following Taylor series expan-
sions are used in computing the derivatives of the
variational form of Pennes model:

kðuþ û; bþ b̂Þ ¼ kðu; bÞ þ û
@k

@u
þ k̂0

@k

@k0

þ k̂1
@k

@k1
þ k̂2

@k

@k2
þ k̂3

@k

@k3
þ h.o.t.

xðuþ û; bþ b̂Þ ¼ xðu; bÞ þ û
@x
@u
þ x̂0

@x
@x0

þ x̂1
@x
@x1
þ x̂2

@x
@x2
þ x̂3

@x
@x3
þ h.o.t.

An alternative formulation of (4) must be used to
account for the initial condition. The initial condition
is accounted for in the variational form by integrating
by parts on the time derivative.

Z

X

qcp uðx; 0Þpðx; 0Þ � uðx;TÞpðx;TÞ½ � dx

¼
Z

T

0

Z

X

qcp
@u

@t
pþ @p

@t
u

� �

dxdt

Recognizing that u0(x) = u(x,0) and not testing the
equation at the final time, p(x,T) = 0, leads to the
following

Cðu; b; pÞ ¼ �
Z

T

0

Z

X

qcp
@p

@t
udxdt

þ
Z

T

0

Z

X

kðu; bÞru � rp dxdt

þ
Z

T

0

Z

X

cbloodxðu; bÞðu� uaÞp dxdt

þ
Z

T

0

Z

@X

hup dAdtþ
Z

X

u0ðxÞpðx; 0Þ dx

Applying the definition of the partial Fréchet deriva-
tive to the variational PDE gives

Cðuþ û; b; pÞ

¼ �
Z

T

0

Z

X

qcp
@p

@t
ðuþ ûÞdxdt

þ kðuþ û; bÞrðuþ ûÞ � rp dxdt

þ
Z

T

0

Z

X

cbloodxðuþ û; bÞððuþ ûÞ � uaÞp dxdt

þ
Z

T

0

Z

@X

hðuþ ûÞp dAdtþ
Z

X

u0ðxÞpðx; 0Þ dx

Substituting the Taylor series expansion for k and x
and rearranging terms gives

Cðuþ û; b; pÞ
� Cðu; b; pÞ

¼

�
Z

T

0

Z

X

qcp
@p

@t
û dxdtþ

Z

T

0

Z

@X

hûp dAdt

þ
Z

T

0

Z

X

kðu; bÞrû � rpþ û
@k

@u
ru � rp

� �

dxdt

þ
Z

T

0

Z

X

xðu; bÞûpþ û
@x
@u
ðu� uaÞp

� �

dxdt

þ
Z

T

0

Z

X

ûkðu; bÞrû � rpþ 1
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û2
@2k

@u2
ru � rp
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Notice that the terms involving the initial condition
cancel out. Letting

DuCðu; b; pÞû

¼
Z

T

0

Z

X

qcp
@û

@t
p dxdtþ

Z

T

0

Z

@X

hûp dAdt

þ
Z

T

0

Z

X

kðu; bÞrû � rpþ û
@k

@u
ru � rp dxdt

þ
Z

T

0

Z

X

xðu; bÞûpþ û
@x
@u
ðu� uaÞp dxdt

implies that

Cðuþ û; b; pÞ � Cðu; b; pÞ �DuCðu; b; pÞûj j � ~Ckûk2

ð9Þ

where the higher-order terms of the thermal conduc-
tivity, @2k=@u2, and perfusion, @2x=@u2, are assumed
bounded and hidden in the constant, ~C. For a partic-
ular test/adjoint function, p, the constant, ~C, also de-
pends on the norm of the test/adjoint function, kpk;
however, because p 2 V, the norm is always bounded
and (9) holds. It follows from the definition that Du

C(u, b; p) is the Fréchet derivative of C. The strong
form of the adjoint formulation is as follows.

� qcp
@p

@t
�r � ðkðu; x; bÞrpÞ

þ @k
@u
ðu; x; bÞru � rpþ xðu; x; bÞ p

þ @x
@u
ðu; x; bÞ p ðu� uaÞ ¼ dQ in X

� kðu;x; bÞrp � n ¼ h p on @X

pðx;TÞ ¼ 0 in X

Notice that the adjoint problem for the calibration,
optimal control, and goal oriented error estimates are all
essentially the same, the only difference being the source
term dQ which depends on the quantity of interest.

Discretization of Equations

The Galerkin representations of the temperature
field and adjoint variable are assumed as follows

uðx; tÞ ¼
X

Nstep

k¼1

X

Ndof

j¼1
akj ðtÞ/jðxÞ pðx; tÞ ¼

X

Nstep

k¼1

X

Ndof

i¼1
kki ðtÞ/iðxÞ

where Nstep is the number of time steps, Ndof is the
number of Galerkin coefficients, and /i’s are the finite
element shape functions.

akj ðtÞ ¼
tk�t

tk�tk�1 a
k�1
j þ t�tk�1

tk�tk�1 a
k
j ; t 2 ½tk�1; tkÞ

0; otherwise

�

kki ðtÞ ¼
kki ; t 2 ½tk�1; tkÞ
0; otherwise

�

The time discretization of the power is assumed
piecewise constant in time:

PðtÞ ¼ Pk; t 2 ½tk�1; tkÞ
0; otherwise

�

The spatial variation of the parameters fields is as-
sumed to have the following Galerkin representation,

k0ðxÞ ¼
X

j

kj0w
jðxÞ x0ðxÞ ¼

X

j

xj
0w

jðxÞ

where w(x) are piecewise constant across elements. The
test function are assumed piecewise constant in time

vðx; tÞ ¼
X

Nstep

k¼1

X

Ndof

i¼1
vki ðtÞ/iðxÞ vki ðtÞ ¼

vki ; t2 ½tk�1; tkÞ
0; otherwise

�

The governing equations (4) are solved using a Crank–
Nicolson time stepping scheme.

The Adjoint Gradient of the quantity of interest is
constructed from the derivative of the discretized
equations with respect to an arbitrary single model
variable, bi. The gradient of the quantity of interest is
computed using the chain rule for derivatives taken
with respect to the numerically computed quantity of
interest. The initial condition does not depend on the
model parameters, @u0@bi

¼ 0,

@

@bi

Qðuðb; x; tÞ;bÞ ¼
X

Nstep

k¼1

@Q

@uk

@uk
@bi

As shown in Demkowicz et al.,9 the numerical deriv-
ative of the quantity of interest with respect to a model
variable may be computed as follows.

@Qðu; bÞ
@bi

¼
X

Nstep

k¼1

�Dtk
R

X

@k
@bi
ðuk�1

2
; x; bÞruk�1

2
� rpk dx

�Dtk
R

X
cblood

@x
@bi
ðuk�1

2
; x; bÞ uk�1

2
� ua

� �

pk dx

þDtk
R

X

@Qlaser

@bi
ðb; x; tkÞpk dx

0

B

B

B

B

B
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C

C

C

C
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RESULTS

In this section, results from phantom testing and
in vivo experiments of the control system are presented
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along with post-treatment histology for comparison
with computed predictions. Performance results used
in the design of the treatment protocols are also pro-
vided. All computations use the GMRES linear solver
and block Jacobi preconditioner available from
PETSc.4 A bound constrained quasi-Newton line-
search method available in TAO5 is used for the
optimization solution. The linesearch is based on the
Wolfe conditions, sufficient decrease and curvature,
and a uses a quadratic/cubic interpolation scheme for
the step length selection.

Phantom Validation Tests

Developmental stages uses a series of so-called
phantom experiments constructed to provide a pre-
liminary validation setting for the mathematical and
computational models developed in this study; the
phantoms are constructed from ex vivo canine prostate
tissue embedded within a 1% agar material (Fig. 9).
The phantom provides an animal-free method of test-
ing and debugging every aspect of the control system in
a controlled and repeatable manner without interfer-
ence from confounding conditions such as time varying
perfusion as expected in the in vivo system. The
phantom is meshed, registered, and the computational
models in Austin are used to control the heating. The
heating of the phantom is visible in the MRTI images.
Thermal images of the heating are acquired and sent to
the HP3d program; HP3d calibrates and optimizes the
model parameters, and finally, a visualization of the
entire process is provided in Houston. Figure 10 shows
a post-calibration time instance of the predicted tem-
perature of the phantom heated with an interstitial
laser fiber. A visualization of the anatomy, predicted

temperature contours, predicted damage contours,
cutlines of the baseline thermal images, and cutlines of
the heating predicted by Pennes model are shown. As
there is no perfusion within the excised tissue, Pennes
model reduces to a nonlinear heat transfer equation.
The anatomy images are used to obtain the initial
coordinates of the laser tip in the FEM calculations.
As illustrated by the power profile, Fig. 10e, the
phantom was pulsed heated with the laser source at
8 W applied power for 30 s. Imaging of the heating
and cooling is used for model calibration; in this par-
ticular trial, thermal imaging data were only acquired
for calibration. The initial pulse used for model cali-
bration is seen to mildly damage the prostate before
the optimal control portion of the experiment
(Fig. 10b). The optimal power profile shown was
computed to simulate damage-based control using the
Arrhenius model (2) to optimally heat of a tumor of
radius 1.5 cm. The profile shown maximizes damage to
the tumor and minimizes damage to the surrounding
healthy tissue by following a pulse heating with a
tapering of the laser power; the computed profile begins
at image step id 120 shown in Fig. 10e. The tapering
allows heat to diffuse through the tumor without over-
heating the healthy tissue. The contour plots of the
thermal images and the calibrated Pennes model pre-
dictions is seen to differ (Fig. 10a and d). As expected
from modeling the medium as homogeneous with iso-
tropic heating, the Pennes model prediction shows cir-
cular contours compared to the more elliptical shape
seen in the thermal image contours. However, the par-
ticular time instance illustrates very good cutline
agreement between the thermal images and the Pennes
model prediction (Fig. 10f). Also shown are cutlines of
the filtered and unfiltered thermal images (Fig. 10c).

FIGURE 9. The phantom geometry used in the development of the control system is shown. The phantom consists of a canine
prostate embedded within a 1% agar gel. (a) Isosurface visualization of MRI images of the geometry of the phantom material. (b) A
particular image within the 3D data set shows the ex-vivo canine prostate embedded within the 1% agar gel.
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Treatment Protocol Design

The execution time and speedup of a representative
10 s bioheat transfer simulation is presented in Fig. 11.
The execution times represent 10 nonlinear state solves
of the Pennes model (10 1 s time steps) combined with
10 linear adjoint solves to be used in the gradient
computation for calibration, optimal control, and/or
error estimates. A finite element mesh consisting of
approximately 10,000 degrees of freedom is used to
characterize the computational performance. The
results presented may be used as a template for extrap-
olating to more realistic computational models with
larger degrees of freedom. Computations were done at
the computational arena at TACC on a Dual-Core
Linux Cluster. Each node of the cluster contains two
Xeon Intel Duo-Core 64-bit processors (4 cores in all)
on a single board, as an SMP unit. The core frequency
is 2.66 GHz and supports 4 floating-point operations

FIGURE 11. Shown is the speedup as a function of proces-
sors and execution time for a representative 10 s simulation
(10 nonlinear state solve combined with 10 linear adjoint solve
on 10000 dof system). The fastest execution time is of the
highest priority, the efficiency of the computation is sacrificed
for execution time.

FIGURE 10. Every aspect of the control system has been tested on a phantom constructed of an excised canine prostate
embedded within a 1% agar gel. Depicted is the visualization provided during the laser treatment. The color scale, shown at the left,
is from 20–80 �C and applies to the color scale in (a) and (d). The power history as a function of image number is shown in (e). Time
is implicit in the image number as the image acquisition time is 5 s. As shown, the phantom was heated with a calibration pulse of
8 W for 30 s. The visualization depicts the calibrated model at image number 11. (a) The thermal images are overlaid on the
anatomical images; also shown are the cutlines through the thermal images and FEM predictions used in (c) and (f), respectively.
The cutlines shown are at different spatial positions. The thermal imaging cutline comparing the filtered, red, and unfiltered,
yellow, data are shown in (c); the distance along this cutline is given in meters and the coordinates are with respect to the DICOM
images from the scanner. A cutline through the finite element data comparing the Pennes model prediction, yellow, to the thermal
imaging data, red, projected onto the finite element mesh is shown in (f); the distance along this cutline is given in meters and the
coordinates are with respect to the initial point of the cutline. A contour plot of the FEM temperature prediction of the phantom is
shown in (d); the cutplane corresponds to the cutplane shown in (a). (b) An Arrhenius damage model prediction is shown post-
calibration pulse. The calibration pulse is seen to cause mild damage. (g) A few of numerous controls needed to precisely display
the remote visualization of the treatment are shown. The controls shown may be used to adjust the color scale of the temperature
and the slice plane of the thermal/anatomical images as well as the position of the contour slice of the FEM mesh.
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per clock period. The fastest time recorded is .67 s.
Furthermore, as shown in Benson et al.,11 the optimizer
is seen to be capable of converging to a solution in under
10 function/gradient evaluations. Hence, an estimated
time of 2.5 min of computation time is needed for the
calibration computations using 150 s worth of data -30
images with a 5-s acquisition time, using a ratio of 10 s
of computation time to 1 s of wall time, and allowing for
10 function/gradient evaluations.

In Vivo Experiments

The control system, in its entirety, has been twice
tested on in vivo canine prostate tissue. Registration re-
sults fromboth tests are similar; the first is presented. The
most recent trial of the actual treatment is presented.
Handling of animals was in accordance to an Institu-
tional Animal Care and Use Committee approved pro-
tocol. General anesthesia was induced, utilizing
meditomidine (0.5 mg/kg, intramuscular) and 2% iso-
flurane was used to maintain general anesthesia. Axial
and coronal planning images were acquired using a 1.5 T
MR scanner (EXCITE HD GE Medical Systems, WI)
with a GE 8 4-channel, receive-only phased-array body
coil (MRI Devices Corp, Gainesville, FL, USA).

Pre-operative axial imaging data of the canine
prostate and the neighboring anatomy was used to
create a FEM mesh (Fig. 12). The pre-operative
imaging data was taken at a resolution of 256�
256� 36 voxels with a field of view of 240 mm 9

240 mm and an out of plane thickness of 3 mm with
slice spacing of 1.5 mm. The FEM mesh consisted of
23,303 dof and 20,064 hexahedral elements. A pipeline
of commercial software was used to generate the mesh.
AMIRA, http://www.amiravis.com, was used to per-
form a semi-automatic segmentation of the prostate

and create a faceted surface representation of the
prostate. CUBIT, cubit.sandia.gov, was used to con-
vert the faceted surface into a hexahedral mesh and
apply boundary conditions. Zero flux (G ¼ 0) bound-
ary conditions are used; heating is not expected to
reach the outer boundary of the prostate. Intra-oper-
ative axial imaging data are shown in Fig. 12. The
intra-operative imaging data was taken at a resolution
of 256 9 256 9 12 voxels with a field of view of
240 mm 9 240 mm and an out of plane spacing of
3 mm. Comparison of the pre-operative image and the
intra-operative image reveals that the prostate has
moved a significant amount which poses a significant
registration problem. Current capabilities permit rigid
registration only. The rigid registration is based on
detecting the outer surface of the canine, not the
prostate within. The rigid registration code4 found
the out-of-plane position but failed in-plane due to the
prostate movement. Consequently, the mesh was reg-
istered manually using AVS for interactive visualiza-
tion. Furthermore, stringent time constraints on the
experiment do not permit the use of the full resolution
volume data sets for the rigid registration. The volume
data sets must be subsampled to facilitate a reasonable
execution time of the serial rigid registration code.
However, for rigid registration, subsampling the
imaging data by a factor of four in-plane does not lose
much information on the outer boundary of the
anatomy of the canine and significantly speeds up the
registration from approximately 25 min to roughly
2 min with about 1 mm difference in the final result.

A planning template was placed on the perineum of
the dogs. Coronal images, field of view 20 cm 920 cm,

FIGURE 12. Pre-operative and intra-operative imaging data of canine prostate and the neighboring anatomy. The canine is laying
supine with legs upward. The pre-operative data were used to create a 3D FEM mesh of the prostate consisting of 23,303 dof and
20,064 hexahedral elements. A cropped section of the FEM mesh is shown. The images are reconstructed to 256 3 256 voxels over
a 240 mm 3 240 mm field of view with 36 and 12 acquired slices (3 mm thick with 1.5 mm spacing) being used for the pre-
operative planning and intra-operative updating, respectively. The intra-operative image shown was used to locate the interstitial
laser fiber within the DICOM coordinate system and update the treatment plan.

4ITK: http://www.itk.org.
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slice thickness 1.5 mm, covering the template and the
prostate were input into the template planning program
of the Visualase. Three fiducials on the template were
identified allowing trajectories to be projected through
the prostate volume. A stainless steel stylet was used for
inserting the laser catheters, 400 micron core diameter
silica fiber in a water-cooled diffused tip catheter, to
reach the prostate at a depth of approximately 6 cm.
The final catheter location was estimated using another
set of coronal images. The estimated location of the
laser, in DICOM coordinates, was given to HP3d to
begin the treatment. A late time treatment image of the
control system applied to in vivo laser treatment of
canine prostate is shown in Fig. 13; the entire duration
of the treatment was 18 min. As shown, Fig. 13b, the
goal was to demonstrate that the computational model

could control the bioheat transfer and heat a region of
1.2 cm in diameter to 60 �C. As illustrated in the power
history, Fig. 13e, the treatment protocol is divided into
the four stages described in Fig. 4. During the first
stage, the biological domain is pulse heated and MRTI
thermal image data are acquired for the heating as well
as the cooling. The following parameters were used:
field of view = 24 cm, slice thickness = 4 mm, echo
train length = 8, acquisition matrix = 256 9 128,
repetition time = 545 ms, echo time = 15 ms and flip
angle = 60� and five slices were collected per time
point. The model calibration is divided into a 180 s data
acquisition phase followed by a 180 s computation
phase. For the in vivo experiments, the canine prostate
tissue was heated with a 5 W pulse for 90 s; a 180 s
imaging period is used capture the cooling of the

FIGURE 13. Depicted is the real-time visualization provided during the laser treatment. The color scale shown at the left is from
35–65 �C. (a) The laser tip may be seen within the anatomical images. The thermal images are overlaid on the anatomical images
and the cutline through the thermal images use in (c) is shown. (b) The treatment goal was to create the 1.2 cm diameter lesion
marked in red; for comparison, the diameter of the prostate is 30 mm and the field of view is 240 3 240 mm. (c) Temperature vs.
distance along a cutline through the thermal images is shown. The noise in the unfiltered data, shown in yellow, has been removed
in the filtered thermal signal, shown in red. The distance along the cutline is given in meters and the coordinates are with respect to
the DICOM images from the scanner. (d) A contour plot of the FEM temperature prediction is shown on the prostate mesh. (e) The
power history as a function of time is shown for the duration of the treatment. The history illustrates the four stages of the control
system. The calibration pulse is followed by a series of keep-alive pulses of the laser. The keep-alive pulses prevent the laser from
going into standby during the calibration and optimal control computations. The optimal power profile computed to create the
lesion concludes the treatment. (f) Temperature vs. distance along a cutline through the FEM prostate mesh is shown. For
comparison, the cutline is the same as used in (c). The treatment protocol was to create a lesion through a temperature history of
60 �C within the 1.2 cm diameter ball shown in (b). This is illustrated through the red cutline. The yellow cutline is the Pennes
model prediction of the temperature along the cutline. Finally the green cutline is of the thermal images projected onto the finite
element mesh. The temperature measured in the thermal images was controlled by supercomputers over a distance of 150 miles
and shows within a 5 �C agreement at the peak. (g) A few of numerous controls needed to precisely display the remote visuali-
zation of the treatment are shown. The controls shown may be used to adjust the color scale of the temperature and the slice plane
of the thermal/anatomical images as well as the position of the contour slice of the FEM mesh.
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in vivo prostate tissue as well as the heating. The
acquired imaging data are used for model calibration
computations. The treatment-day thermal imaging
data generated for the canine exhibits significant
decrease in the signal-to-noise ratio compared to those
of the phantom experiments; the positioning grid sep-
arated the top coil from the surface of the canine’s skin
and separated it even further from it’s complimentary
coil underneath the animal. The use of a calibration
pulse of less that 5 W applied power on a previous
experiment resulted in minimal heating, suggesting that
the deposited energy was quickly dissipated by blood
perfusion and any heating seen was masked by the
noise range of the thermal imaging. The treatment
imaging data shown in Fig. 13c uses a space-time filter;
in addition to a spatial median-deriche filtering pipe-
line, if the thermal data at a pixel changes by more than
11 �C it is considered noise and filtered. The 11 �C
threshold is based on intuition from previous in vivo
experiments. The second stage of the treatment ac-
counts for the time span of the calculations that use the
imaging data for model calibration. The third stage
accounts for the time delay to recompute the patient-
specific optimal temperature/damage/HSP heating
protocol. The laser is prevented from entering a
standby mode through a series of keep-alive pulses

during the computational phase. In the fourth and final
stage, the optimal laser control parameters are applied
to the biological domain. For this particular trial, the
perfusion, thermal conductivity, absorption coefficient,
and laser position were calibrated. Results of the real-
time calibration computations moved the laser tip
5 mm from the initial estimated position. Cutlines
illustrating the temperature as function of distance are
taken through the thermal imaging data and finite ele-
ment predictions for comparison. The location of the
cutline is illustrated in the Anatomy and Thermal
Images (Fig. 13a). The bottom right cutline, Fig. 13f,
shows good agreement between the desired treatment
plan, the computation prediction, and the experimen-
tally measured MRTI temperature field. A drift in the
temperature imaging on the order of -1.7 �C was seen
over the course the 18 min treatment time; implying
that the thermal image value may be slightly higher
than shown. However, the drift at the beginning of the
treatment was insignificant during the 90 s thermal
image acquisition for the calibration.

The prostate was excised immediately after exsan-
guination. It was fixed in formalin for 4 days, and then
sectioned with guidance of the MR slice locations; this
provided pathology slices which were congruent to the
post-treatment MR images for comparison (Fig. 14).

FIGURE 14. (a) The damage, outlined by green arrowheads, is noted on a post-dynamic T1 image. This image corresponds to the
central slice, 112 6 11 mm2, of the thermal imaging, slice 3 of 5. The laser fiber is illustrated by the red arrow. Adjoining slices are
also shown at (b) slice 4 of 5, 88 6 4 mm2, and (c) slice 5 of 5, 42 6 4 mm2. The lower row shows the damage on the corresponding
sectioned pathology slices—(d) 110 6 5 mm2, corresponds to (a), (e) 97 6 4 mm2, corresponds to (b), and (f) 46 6 4 mm2,
corresponds to (c). A distance scale in centimeters is provided in (g).
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The damage region was within the targeted 1.2 cm
diameter treatment objective.

The actual power history recorded by the Visualase
for the two experiments is shown in Fig. 15. The actual
and predicted history are seen to be in very good
agreement. However, the minor time delays seen result
in a random single pulse not being physically mani-
fested; but, post-treatment computations show that the
delay seen in the power control is of little consequence.
The 6-s 15 W spike missing from the Visualase log,
Fig. 15a, has an insignificant effect on the model pre-
dictions. Figure 15a also shows that copying the power
control file directly to the mounted Visualase directory
interferes with Visualase power log and instanta-
neously turns the laser off. The problem is a result of
the file system architecture. Overwriting by copying the
file instantaneously deletes the file which instanta-
neously turns the power off. The fix is trivial, over-
writing the file by moving does not delete the file and
simply changes the file pointers (Fig. 15b). The sharp
rise in power to 9 W at the end of the time history of
the Visualase log file, Fig. 15a, is due to a manual
override of the laser control during the earlier canine
experiment.

CONCLUSIONS AND FUTURE DIRECTIONS

We believe that the results reported in this investi-
gation support the proposition that robust simulation
methodologies, based on calibrated nonlinear models
of bioheat transfer in heterogeneous tissue, can be
designed to interact with clinical thermal imaging
modalities to provide near-real-time control of laser
therapy for prostate cancer. The control system

employs what we refer to as a cyberinfrastructure: a
computational grid connecting two remote arenas over
a high bandwidth network. The imaging and laser
treatment arena in Houston manages a MRTI device,
a laser source, and relevant hardware and software
units; the computational arena in Austin generates and
solves a computational model of laser-driven bioheat
transfer using parallel computing algorithms and
visualization software and hardware to view the dis-
crete system. New inverse analysis and optimization
algorithms and software implementations of them are
developed and used to control cell damage (cell via-
bility), HSP-expression, and numerical accuracy. We
employ a unified adjoint formulation for backward-
in-time calculations for these control algorithms. The
tact that numerical simulations and physical mea-
surements interact in a feedback control paradigm in
near real time qualifies this system as a DDDAS.

There are many factors that add to the complexity
and difficulty in creating this particular DDDAS. The
laboratory subjects used in our experimental trials
were canines. Movement of the subject on the MRTI
device before initiating therapy requires implementa-
tion of nonrigid registration algorithms to define the
correct computational domain. Calibration of the heat
transfer model is essential, and the presence of spatially
heterogeneous thermal properties can lead to inverse
analysis problems of enormous size. Numerical filter-
ing algorithms are needed to filter noise inherent in the
MRTI-generated thermal signatures. Accurate model-
ing and control of laser power and its correlation with
temperature distributions is critical to the successful
execution of the control.

Clearly, timing of the various events that evolve
during laser therapy is very important and requires

FIGURE 15. A comparison between the expected and actual power history as a function of time is shown for two canine
experiments. The power history was extracted from the log files of the Visualase for comparison with the expected power profile
from the FEM bioheat transfer code. The graphs show a time delay of approximately one image acquisition between the expected
laser control and the actual laser control. (a) Copying the power control file directly to the mounted Visualase directory interferes
with Visualase power log and instantaneously turns the laser off. (b) An implementation manipulating the file pointers was needed
to keep the laser on.
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access to large-scale parallel computing systems. In the
trial runs described in this work, distributions of the
computational work over 60–100 processors proved to
be sufficient to reduce time-to-solution of the computer
prediction to interval in which all of the control steps
(calibration, power control, etc.) would be done with-
out affecting the results. But for systems in which
multiple calibrations of highly heterogeneous tissue are
needed, 1000 or more cpu’s may be needed. Algorithms
to exploit the full power of forthcoming peta-scale
computers are needed to solve the parabolic con-
strained optimization problems in a fraction of the
time of the actual therapy. This will allow treatment
protocol design that is able to calibrate and recompute
optimal parameters instantaneously. Current work
focuses on using an isotropic laser source to provide
the heating and MRTI to provide the imaging in a
thermal therapy for treating cancer. From a compu-
tational point of view, changing the thermal source or
imaging modality merely amounts to changing the
source term in the governing PDE or adjoint problem,
respectively. This technology has the potential to be
extended to many areas of thermal treatment, includ-
ing RF, microwave, ultrasound, and even cryotherapy
applicators. Modeling of the current laser source may
also be improved by adding the ability for real-time
Monte Carlo simulations to predict the laser fluence
distribution.

Several objective functions have been presented in
this work that mathematically characterize a desired
treatment plan. It may be argued that different objec-
tive functions may be used to better represent the de-
sired goal. For example, current damage functions
account for only the damage accumulated during
heating. Other objective functions may be designed to
account for cooling as well as heating. The damage and
HSP treatment models also need to be validated
in vivo. Furthermore, different metrics may be explored
to provide a better characterization of the distance
between the computed and the ideal solutions. Finally,
the objective function evaluation and gradient com-
putation have been the workhorse in this project.
Adding the functionality for the Hessian computation
may enhance the speed and efficiency of the optimi-
zation steps for more complex bioheat models involv-
ing larger parameter sets and could add the ability to
provide the framework for adding uncertainty quan-
tification for the calibrated model parameters. Given
the increasing ability of diagnostic radiology to detect
diseases earlier and earlier, the impact of minimally
invasive approaches to surgery, such as thermal ther-
apy, will play a large role in safely and efficiently
treating cancer with minimal impact on the patient. We
hope that this work makes a small step toward the time
at which computer modeling and simulation interacting

with medical technologies can dramatically improve
cancer therapies and enhance and prolong the life of
cancer patients.
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