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In this work, the notion of a posteriori estimation and control of modeling error is extended to large-scale
problems in molecular statics. The approaches developed here involve systematic methods for multiscale
modeling in which sequences of hybrid particle–continuum models are generated using an adaptive goal-
oriented algorithm designed to control modeling error. We focus on a particular class of problems
encountered in semiconductor manufacturing in which a molecular model is used to simulate the defor-
mation of polymeric materials used in the fabrication of semiconductor devices. Algorithms are described
which lead to a complex molecular model of polymer materials designed to produce an etch barrier, a
critical component in imprint lithography approaches to semiconductor manufacturing. The surrogate
model involves a combination of the molecular model of the polymer and a coarse-scale model of the
polymer as a nonlinear hyperelastic material. This coupled model is based on the so-called Arlequin
method. Coefficients for the nonlinear elastic continuum model are determined using numerical exper-
iments on representative volume elements of the polymer model. Furthermore, a simple model of initial
strain is incorporated in the continuum equations to model the inherent shrinking of the material. Three-
dimensional numerical results demonstrate the effectiveness of the coupled model, the error estimates,
and the adaptive modeling procedure.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Traditional disciplines of science and engineering are roughly
partitioned according to the spatial and temporal scales of partic-
ular classes of physical events of interest. The fact that advances
in a large and growing number of critical scientific and technolog-
ical areas require an understanding of events that transcend many
scales has highlighted the need for interdisciplinary research and
has brought focus on the difficulty of modeling events of multiple
scales. As a result, multiscale modeling has become one of the most
important and challenging areas of modern computational science.

In recent years, a variety of techniques for multiscale modeling
and simulation have been proposed in the literature. Reviews of
some of this literature can be found in [18,20,22]. In some respects,
multiscale modeling can be viewed as a technique for dimensional
reduction, wherein minimal information at the finest scale is used
to model events of interest, and coarser scales prevail when they
do not influence particular quantities of interest.

Frequently, decisions on what scales are important are made in
an ad hoc manner through methods of ‘‘coarse-graining”, ‘‘upscal-
ing”, ‘‘homogenization”, or other techniques. We attempt here to
ll rights reserved.

: +1 512 471 8694.
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provide a basis for activating the important scales by using a pos-
teriori error estimates, based on the relative error between coarse,
multiscale models and a base model involving the smallest scale.
The error estimates are not necessarily global, but focus on specific
quantities of interest. Thus, we follow and extend the methodology
of [26,28].

There are four important aspects of the work described here: (1)
we attempt to provide a more rigorous basis for selecting the par-
ticular scales in a multiscale event that influence the goal of the
simulation; (2) we focus on the goal of the simulation: the specific
quantity of interest that is the target of the analysis; (3) we imple-
ment these methodologies for a difficult and new class of complex
engineering problems that could significantly benefit from an
accurate multiscale computer simulation: nanomanufacturing of
semiconductor devices using imprint lithography; and (4) we ex-
tend the methods of error estimation and adaptive control to com-
plex, three-dimensional systems involving molecular models,
continuum models, and hybrid models in realistic applications.

The manufacturing of semiconductors, which often hinges upon
the ability to understand physical phenomena from the nanoscale
to the microscale and beyond, has become one of the most impor-
tant areas in which multiscale modeling is a critical tool. By 2018,
feature sizes of less than 15 nm are expected to be sought for man-
ufacturing of production devices, the current production value
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being 45 nm [29]. It is estimated that, using current techniques, the
cost of manufacturing machinery that produce devices with such
small features could reach higher than $50 million [30], a cost gen-
erally regarded as prohibitive to the industry. Thus, other processes
must be devised to produce the desired technological advance-
ments. Predictive computer simulation could provide an attractive
tool to reduce costs in the design of expensive experiments and
testing, to assist in obtaining information where experimentation
is simply not possible, and to optimize the design of the manufac-
turing process. Nevertheless, simulations of engineering systems
within this context reach beyond the capability of the current com-
puting technologies, making the dimensional reduction for multi-
scale modeling an essential tool. The development of such
simulation tools rests on the edge of contemporary modeling
methods and high-performance computing capabilities, and is
the focus of this paper.

Here, a molecular model is used to simulate the deformation of
polymeric materials used in the fabrication of semiconductor de-
vices. The goal is to develop a surrogate model that incorporates local
fine scale information, where needed, and only coarse scale informa-
tion in the remainder of the material body. This development re-
quires not only the determination of a compatible coarse scale
model from the fine scale model, but also the construction of an effi-
cient, stable, and robust method to achieve coupling between the
two. Furthermore, the error in local quantities of interest is esti-
mated using the framework of so-called Goal-oriented error estima-
tion. The error estimates can then be used to drive an adaptive
modeling algorithm where the location and extent of the fine scale
model is chosen such that the error in the quantity of interest is with-
in a preset tolerance. These are the Goals algorithms [27,28,26].

The remainder of the paper is organized as follows: Following
brief descriptions of the theory of Goal-oriented error estimation
and the step-and-flash imprint lithography process, Section 2 pre-
sents the detailed construction of the molecular base model. Sec-
tion 3 introduces an algorithm for constructing consistent,
continuum models that approximate the coarse-scale behavior of
the molecular model. Section 4 develops a new formulation for
the coupling of particle and continuum models that is based on
using Lagrange multipliers that enforce constraints on a region of
overlap between the two models. Section 5 applies the framework
for Goal-oriented error estimation established in this section to the
surrogates developed in Section 4. Section 6 introduces approxima-
tions to the solution of the adjoint problem and evaluation of the
residual for more efficient error estimation calculations. Finally,
in Section 7, a summary of results and conclusions are discussed.

1.1. Theory of Goal-oriented error estimation

The concept of estimating and controling modeling error in
complex models of physical phenomena was advanced in earlier
works [25,27,33]. The idea begins with the identification of a base
model of the phenomena, characterized by the so-called primal
base problem,

Find u 2 U such that
Bðu; vÞ ¼ FðvÞ 8v 2 V

ð1Þ

where U and V are appropriate topological vector spaces of trial and
test vectors, Bð�; �Þ is a semilinear form on U � V , and F is a bounded
linear functional on V. The semicolon denotes a possibly nonlinear
dependence of Bð�; �Þ on the entry u to the left of the semicolon,
and linear dependence on v.1
1 Eq. (1) is obviously equivalent to the abstract problem Au ¼ F in V 0 , where A is an
operator mapping U into the dual V 0 of V and Bðu; vÞ � FðvÞ ¼ hAu� F;vi for every v
in V.
An example of (1) relevant to the current work is the nonlinear
system of algebraic equations characterizing equilibrium configu-
rations of systems of N particles (molecules):

EðuÞ ¼min
v2U

EðvÞ; ð2Þ

where the energy of the system, for every v 2 U, assumes the
form

EðvÞ ¼
XN

i¼1

EiðvÞ �
XN

i¼1

f i � vi: ð3Þ

Here, u ¼ ðu1;u2; . . . ;uNÞ is the N-tuple of displacement vectors of
the N molecules relative to a fixed reference configuration, Ei is
the energy associated with molecule i, generally determined from
inter-molecular energy potentials, f i is the prescribed external force
applied at site i, and hi is a prescribed displacement on N � N0

boundary sites, the displacement vectors ui on N0 molecules being
unknowns. The setting is thus one in which the N atoms or mole-
cules making up the model are initially located at points xi in a
bounded region X � R3 with boundary @X. The displacements of
N � N0 points are prescribed, ui ¼ hi, at points on @X, while the dis-
placements of the interior N0 points are unknown, but constitute a
minimizer of the total energy that corresponds to an equilibrium
configuration of the system. Then, in this case, the forms and spaces
in (1) are

V ¼ fv ¼ ðv1; . . . ;vNÞ : vi 2 R3;vi ¼ 0; i ¼ N0 þ 1; . . . ;Ng;
U ¼ ffĥig þ V ; ĥi ¼ 0; i ¼ 1; . . . ;N0; ĥi ¼ hi; i ¼ N0 þ 1; . . . ;Ng;

Bðu; vÞ ¼
XN0

j¼1

XN0

i¼1

@EiðuÞ
@uj

� vj;

FðvÞ ¼
XN0

i¼1

f i � vi:

ð4Þ

The Goal of this analysis is not merely the determination of the
equilibrium N-vector u but the determination of a particular func-
tional of u called the quantity of interest, which is characterized by
a possibly nonlinear Gâteaux differentiable functional Q : U ! R.
The influence of the solution u on the quantity of interest QðuÞ is
characterized by an N-vector p 2 U which is a solution of the adjoint
problem,

Find p 2 V such that
B0ðu; v;pÞ ¼ Q 0ðu; vÞ 8v 2 V ;

ð5Þ

where u is a solution of (1), p ¼ ðp1;p2; . . . ;pNÞ, pi ¼ 0; i > N0, and,
for Bð�; �Þ in (4),

B0ðu; v;wÞ ¼ lim
h!0

h�1½Bðuþ hw; vÞ � Bðu; vÞ�;

Q 0ðu; vÞ ¼ lim
h!0

h�1½Qðuþ hvÞ � QðvÞ�;
ð6Þ

and, in the case that (4)3 holds

B0ðu; v;pÞ ¼
XN0

k¼1

XN0

j¼1

XN0

i¼1

vj �
@2EiðuÞ
@uj@uk

� pk: ð7Þ

Note that the adjoint problem (5) is linear in p.

1.2. Surrogate models and errors in quantities of interest

Let ðu0;p0Þ be an arbitrary pair of N-vectors in U � V . Then, it is
shown in [25] (see also [26]) that the error in the quantity of inter-
est Q obtained by evaluating Q at u0 instead of at a solution u of (1)
is
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E¼ QðuÞ � Qðu0Þ ¼ Rðu0; pÞ þ D

¼ Rðu0; p0Þ þRðu0; p� p0Þ þ D;
ð8Þ

where Rð�; �Þ is the residual functional,

Rðu0; vÞ ¼ FðvÞ � Bðu0; vÞ; v 2 V ; ð9Þ

and D is a remainder functional of higher order in the errors
e0 ¼ u� u0 and e0 ¼ p� p0. Clearly, Rðu0; vÞ is linear in the test
vector v. The derivation of (8) assumes that the forms Bð�; �Þ and
Qð�Þ are thrice differentiable in the sense of (6). The remainder D
is then of the form

D ¼ 1
2

Z 1

0
B00ðu0 þ se0; e0; e0;p0 þ se0Þ � Q 00ðu0 þ se0; e0; e0Þds

þ 1
2

Z 1

0
ðQ 000ðu0 þ se0; e0; e0; e0Þ � 3B00ðu0 þ se0; e0; e0; e0Þ

� B000ðu0 þ se0; e0; e0; e0;p0 þ se0ÞÞ � ðs� 1Þsds: ð10Þ

See [25].
The main ideas behind this approach to multi-scale modeling

and estimating and controlling modeling error developed in this
investigation are

(i) Choose ðu0;p0Þ ‘‘close” to the solution pair ðu;pÞ so that the
remainder D is negligible compared to Rðu0; pÞ.

(ii) A pair ðu0;p0Þ ‘‘close” to ðu;pÞ can presumably be the solu-
tion of surrogate primal and adjoint problems of size
M � N possibly corresponding to models of the event
involving much larger (coarser) scales; e.g.
ðu0;p0Þ 2 U0 � V0 :

B0ðu0; vÞ ¼ F0ðvÞ 8v 2 V ;

B00ðu0; v;pÞ ¼ Q 0ðu0; vÞ 8v 2 V ;
ð11Þ
where U0 and V0 are the spaces corresponding to the coarser
scale model. Note that ðu0;p0Þ must be mapped to U � V to
evaluate the residual in this case.
(iii) Generate a sequence of surrogate problems with solutions
ðuk

0;p
k
0ÞkP1, so that for some integer m0, the modeling error

satisfies
jQðuÞ � Qðuk
0Þj � jRðuk

0;p
k
0Þ þRðuk

0;p� pk
0Þj 6 ctol; k > m0;

ð12Þ
where ctol is a preset error tolerance.
The implementation of these general ideas, of course, can pres-
ent major challenges. To wit

(i) The generation of appropriate sequences of surrogates is the
fundamental problem of multi-scale modeling. Surrogates
can be based on coupling particle and continuum models, such
as is the case in so-called atomistic-to-continuum approaches,
or by dimensional reduction approaches such as
methods based on the quasi-continuum methodologies [24].

(ii) The calculation of the solution p of the base adjoint problem,
in general, represents an enormous and complex algebraic
problem, even though it is linear. To avoid such calculations,
one hopes to generate a sequence of surrogate adjoint solu-
tions pk

0 that converges rapidly to p in V.
(iii) The modeling error estimate, E � Rðu0; pÞ, involves the

repeated evaluation of the full residual Rðu0; pÞ at pairs
ðuk

0;p
k
0Þ of surrogate solutions. Approximations Rkð�; �Þ of

the residual may be generated to reduce the cost of these
calculations.
One major thrust of this work is the construction and imple-
mentation of such an algorithm and the characterization of its
accuracy and efficiency.

1.3. Step and flash imprint lithography

The principal application area of the multiscale modeling meth-
ods developed in this work involves modeling and simulation of
molecular models of a manufacturing process called step and flash
imprint lithography (SFIL) [2]. The primary goal is to imprint fea-
tures of a computer chip, such as wires, into a metal substrate. Im-
print lithography proposes to use mechanical processes at room
temperature to physically imprint the desired features and has
already demonstrated capabilities of producing 32 nm features.
Typical manufacturing units cost approximately $5 million
dollars [17], a substantial savings over the predicted optical lithog-
raphy costs.

A typical configuration used in imprint lithography consists of
the following:

– The imprinting template: The template is made of quartz crystal
and has the desired features etched onto its lower surface
through an electron beam etching procedure. On the imprinted
surface of the template is a release layer designed to allow the
template to be easily removed from the polymerized etch bar-
rier. The release layer is a perfluro alkane, very similar to Teflon.

– The etch barrier solution: The etch barrier undergoes chemical
reactions when subjected to ultra-violet light. These chemical
reactions form a polymer through a process called
polymerization.

– The transfer layer: The transfer layer is a glassy styrene type of
polymer used to ‘‘add aspect ratio” to the features imprinted
in the etch barrier. In other words, the transfer layer increases
the height-to-width ratio of the features to enhance the fidelity
of the crucial, final etching procedures.

– The substrate layer: The substrate layer is generally made of sil-
icon. Imprinting the desired features into the substrate is the
primary goal of the lithography process.

The process of imprint lithography can be decomposed into
eight stages [19]:

(i) The liquid etch barrier solution is deposited in drops onto
the transfer layer at several locations.

(ii) The template is placed on the surface so that the etch barrier
solution fills the etched features on the template.

(iii) The sample is illuminated with ultra-violet light for approx-
imately 30 s initiating the polymerization process thereby
‘‘solidifying” the features in the etch barrier.

(iv) The template is removed leaving the relief pattern.
(v) An etch is performed to break through the residual etch bar-

rier solution between the features. This is the so-called
breakthrough etch.

(vi) Another etch is performed, but now the goal is to etch the
transfer layer so that the relief pattern is the same as the
etch barrier, but the features have much larger aspect ratios.

(vii) A final etch is performed to etch the feature pattern into the
substrate.

(viii) Finally, the substrate is submerged in an organic solvent in
order to remove residual polymeric materials from the
substrate.

Fig. 1 illustrates the entire process schematically. The key to
success of this process is the fidelity of the features in the etch bar-
rier prior to the breakthrough etch. The reactive ion etch that is
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Fig. 1. The step and flash imprint lithography (SFIL) process.

Fig. 2. A schematic of the lattice cell placement algorithm.
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used requires sharp features in order to produce a relief that mim-
ics the template pattern.

2. The polymerization process and the polymer model

We now investigate a significant computational problem often
overlooked in the literature on computational modeling: the devel-
opment of the base computational model itself. In the SFIL process,
described in Section 1.3, the target etch barrier material is pro-
duced in two steps

(i) A solution of chemical constituents flows into the template
relief (the template contours) as the template is pressed
toward the transfer layer.

(ii) Ultra-violet (UV) light is passed through the template
(which is translucent quartz) into the mixture.

The application of ultraviolet light causes chemical reactions be-
tween the chemical constituents which leads to the formation of
chain-like macromolecules consisting of various repeated molecu-
lar units. The units are monomers and the macromolecules are poly-
mer chains. This chemical process is referred to as polymerization.
The details on the materials as well as the chemical reactions for a
representative acrylate mixture are given in [23,13,6], for example.

2.1. A kinetic Monte-Carlo process

The equations of chemical kinetics only provide the global spe-
cies concentrations as functions of time (and the initial species dis-
tributions). To determine the molecular structure at the
termination of the polymerization process, one must follow the
likely chemical reactions that can occur between the molecular
components. The possible conformations resulting from reactions
of a given initial distribution of constituents can be generated
through a Monte-Carlo-like algorithm that shall be referred to here
as the kinetic Monte-Carlo process. This process was introduced in
[13] and is discussed here for completeness. The key to simulating
the polymerization process in this way is to observe that the rate
coefficients from chemical kinetics for each reaction is related to
the classical Arrhenius law. Within this context, the Arrhenius
law provides the probability of reaction occurrence:

P ¼ Ce�Ea=jT / k; ð13Þ

where Ea is the activation energy and k is the reaction rate constant.
We introduce a three-dimensional regular lattice L where the
number of lattice sites is set equal to the estimated number of con-
stituent molecules in a cube X of the initial etch barrier mixture.
There are five constituents in the SFIL process under study: the
monomer M1, the monomer M2, the cross-linker XL, the initiator
I, and possible voids V. The voids are introduced to allow diffusion
of the constituents during the model process. Let the concentra-
tions by volume of each of these constituents before photo-curing
(UV exposure) be denoted by CM1 , CM2 , CXL, CI , and CV , respectively.
Then

CM1 þ CM2 þ CXL þ CI þ CV ¼ 1:0: ð14Þ

Five disjoint subintervals of I ¼ ½0;1� are defined with length equal
to the fraction of each constituent:

IM1 ¼ ½0;CM1 �;
IM2 ¼ ½CM1 ;CM1 þ CM2 �;
IXL ¼ ½CM1 þ CM2 ;CM1 þ CM2 þ CXL�;
II ¼ ½CM1 þ CM2 þ CXL;CM1 þ CM2 þ CXL þ CI�;
IV ¼ ½1� CV ;1�:

Let N denote the number of cells in L and let j be an index which
specifies the constituent types j ¼ fM1;M2;XL; I;Vg. Then a molecu-
lar constituent is assigned to each cell as follows.

(i) Boundary cells are assigned either a template molecule or a
transfer layer molecule, depending on the location of the
part of the boundary where the cell is located.

(ii) Each lattice site is visited in order and a uniform random
number, r, is selected such that 0 6 r 6 1. If r 2 Ij, then the
cell is assigned constituent j.

(iii) A random swapping procedure of the cells is used to further
‘‘randomize” the lattice.

Fig. 2 illustrates the lattice placement process schematically.
The following Monte-Carlo type algorithm describes the poly-

merization of the now populated lattice [13]. Let Nc be the number
of cycles, Nci

be the number of iterations per cycle, and Ni the num-
ber of initiation cycles. Then, for each cycle C, an initialization loop
and a propagation loop is executed.

(i) Initialization loop

(a) Select a random lattice site and check if the constituent

randomly assigned to the cell is an initiator.
(b) If the site is an initiator, select a uniform random number

r, 0 6 r 6 1. If r 6 PI , PI being the probability of an initi-
ator reacting, the initiator reacts and the cell is now
labeled a free radical R; otherwise the initiator does not
react and the cell label is unchanged.

(c) Repeat Ni times.
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(ii) Propagation loop
P.T. Bauman et al. / Comput. Methods
Fig. 3. A schematic of the kinetic Monte-Carlo polymerization algorithm. Initiation –
if an initiator is randomly selected that is not a free radical, then it is made a free
radical if the reaction is determined to occur. This is depicted in (a) from left to
right. Propagation – if a free radical is randomly selected, then a random neighbor is
selected. If a bond has not been formed, then a bond is formed if the reaction is
determined to occur. This is depicted in (b) from left to right. Void diffusion – if an
unreacted particle is randomly selected, then a random neighbor is selected. If that
neighbor is a void, then the cell location of the void and the neighbor is switched.
(a) A random site is selected and the cell label j identified.
(b) If j is a void, then no reaction occurs and the loop is

incremented.
(c) If j is an initiator, a random number r, 0 6 r 6 1, is

selected. If r 6 PI , a reaction occurs; otherwise no reac-
tion occurs.

(d) If j is a radical (or a polymer chain with an active radical),
a random neighbor is selected, where a neighbor is
defined as an adjacent site in one of the six axial direc-
tions, and the label of the neighbor n determined. If the
neighbor has an available bond (monomers can have
one covalent bond, cross-linkers can have two), then a
random number r, 0 6 r 6 1, is selected. If r 6 Pn, Pn

being the probability of a reaction occurring between
the free radical and the particle type n, a reaction occurs;
otherwise no reaction occurs.

(e) If the reaction is to occur and n represents a site with no
attachment to a free radical, then a bond is formed
between j and n; this represents the propagation reac-
tion. If n possesses a free radical, a bond is formed and
the free radical is eliminated; this represents the termi-
nation by combination step.

(f) If j represents an unbonded particle and j is not a void, an
initiator, or an active racial, then a random neighbor n is
selected. If n is a void, then the positions of n and j are
switched. This allows diffusion of the constituents.

(g) This procedure is repeated for Nci
times.
This is depicted in (c) from left to right.

Fig. 4. A configuration generated by the kinetic Monte-Carlo polymerization
algorithm with dimensions of 21� 101� 21. Green spheres denote the transfer
layer particles, red the monomer 1 and monomer 2, blue the cross-linkers, yellow
the initiators, and white denote voids. The zoomed portion shows the configuration
of the covalent bonds following relaxation of the lattice. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
The polymerization process is illustrated schematically in Fig. 3
and an example of a resulting configuration is given in Fig. 4.

At the conclusion of the kinetic Monte-Carlo process, the loca-
tion of the site of each constituent and the connectivity of bonds
forming the polymer chains is known. It is observed experimen-
tally that upon completion of the polymerization process, a volume
shrinkage of approximately 20% occurs upon removal of the quartz
template. To account for this densification effect, bond potentials
must be assigned to the polymerized etch barrier and a mathemat-
ical model must be formulated to describe the motion of the mol-
ecules due to the formation of the bonds. To this end, it is assumed
that the bulk deformation of the polymer is a quasi-static process
that can effectively be modeled using molecular statics.

2.2. Mechanics of the polymer – molecular statics

The goal of molecular statics is to minimize the global energy
function as described in (2) with respect to admissible displace-
ments. For the remainder of this work, it is assumed that the
potentials are pair potentials and that there is no external loading,
i.e. f i ¼ 0. This leads to a system of nonlinear equations:

Bðu; vÞ ¼
XN0

j¼1

Xnj

i¼1

@Eij

@uj
� vj ¼ 0; ð15Þ

where nj is the number of particles neighboring particle j, and Eij is
the (pair) potential function between particles i and j. Letting x0

j be
the initial position of particle j, xj ¼ x0

j þ uj be the current position
of molecule j, and rij ¼ kxj � xik the Euclidean distance between
particles i and j, then for all pair potentials

@Eij

@uj
¼
@Eij rij
� �
@rij

ðx0
j þ ujÞ � ðx0

i þ uiÞ
kðx0

j þ ujÞ � ðx0
i þ uiÞk

: ð16Þ

The term @Eij=@rij represents the magnitude of the force between
particles i and j while the remaining term represents the direction
of the force. Note that, even though the derivatives of the potential
function may be linear, the second term induces a geometric
nonlinearity.

The covalent bonds between molecules are modeled here with
harmonic spring potentials:

EH
ij ¼

kij

2
ðrij � r0

ijÞ
2
; ð17Þ

where kij is the spring stiffness and r0
ij is the unstretched length of

the spring connecting molecules i and j. Weaker harmonic springs
have also been used to describe van der Waal’s interactions. The
van der Waal’s potentials are only assigned to the nearest neighbors



Table 1
Spring constants kv

ij used for bonds between polymer molecules.

M1 M2 XL I Substrate

M1 1.1 0.8 1.2 0.9 1.0
M2 0.8 1.0 0.7 1.3 1.0
XL 1.2 1.3 1.5 0.6 1.0
I 0.9 0.7 0.5 0.6 1.0
Substrate 1.0 1.0 1.0 1.0

Table 2
Spring constants r0v

ij used for bonds between polymer molecules.

M1 M2 XL I Substrate

M1 5.4 5.5 5.7 4.8 5.34
M2 5.5 5.2 4.9 5.9 5.34
XL 5.7 5.9 5.3 5.8 5.34
I 4.8 4.9 5.8 5.1 5.34
Substrate 5.34 5.34 5.34 5.34
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and only 18 of the 26 neighbors are included. See Fig. 5. Tables 1
and 2 summarize the values of the spring constants used for the
molecules discussed previously. The following notation is used:
ð�Þc represent parameters for covalent bonds and ð�Þv are parameters
for van der Waal’s interactions. In this case, all of the covalent bonds
are assigned the values kc

ij ¼ 10:0 and r0c
ij ¼ 3:08.

2.3. Numerical results

In this section, several results are shown illustrating both the
character of solutions of the base model and the convergence prop-
erties of the algorithm used. Only representative results are shown
here; see [6] for more examples and a more thorough discussion on
the robustness of various algorithms. The algorithms for solving
the problems are implemented in the software packages PETSc
[4,3,5] and TAO [12]. In all cases discussed below, the relative
residual decrease required for convergence of the nonlinear solver
is a tolerance of 10�8. All other parameters are the default param-
eters in the PETSc and TAO packages.

At this point, it is worth commenting that boundary conditions
for large-scale molecular models are a perpetual problem, particu-
larly for applications of the type described here where no periodic-
ity or symmetry conditions are readily applicable. In the test
problems described here, the lower boundary of the etch barrier
can be best represented as a number of layers of a substrate poly-
mer. In the examples discussed here, only one such layer is em-
ployed for simplicity.

A 10� 10� 10 polymer lattice is equilibrated using the inexact
Newton trust-region approach. Fig. 6 shows convergence results
and Fig. 7 shows the configurations for several Newton steps.
Based on these images, it would seem that the first few Newton
iterations capture the bulk deformation of the material and the
ensuing steps adjust the small deformations of individual particles.
Furthermore, based on the convergence behavior, a possible chal-
lenge with this problem may be that the minima are very closely
spaced requiring many Newton iterations to find a minimum.
Fig. 5. The bonding configuration for each particle. The green particles represent
neighboring particles which are allowed to bond to the red; they can be convalent
or van der Waal’s bonds. Blue particles are not allowed to bond to the red particle.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Convergence behavior of a 10� 10� 10 polymer lattice using an inexact
Newton with trust-region algorithm. The red curve shows the value of the residual
(gradient) and the black curve is the number of C–G iterations required at each step.
Note that the blue boxes show where the trust-region size restricted the size of the
Newton step while black boxes mean the linear solver converged fully. The
algorithm terminated successfully: the relative tolerance of the residual was
reduced by the specified amount. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Consider now a 30� 30� 30 polymer lattice. Convergence
curves are shown in Fig. 8. The convergence behavior is similar
to the 10� 10� 10 case, but there are many more Newton itera-
tions indicating that perhaps the energy function becomes less
smooth as the dimension of the problem is increased, i.e. larger
samples give many more possible local minima. This notion is also
supported by the 110� 110� 110 lattice results shown in Figs. 9
and 10. This problem consists of over 4.1 million unknowns and
was solved on 64 processors taking a total 65 CPU hours to solve.
Indeed, over 3600 Newton iterations were required to attain
equilibrium.

3. Development of a continuum model

A critical step in the multiscale modeling procedure developed
here is the construction of a continuum model that represents
events at larger scales than the base model, but is compatible to
the base model in some sense. Generally, coarser-scale models
may result from averaging the features of fine-scale models
through various homogenization methods or ensemble-averaging
techniques. In this case, a continuum model is chosen, but one



Fig. 7. Deformations of 10� 10� 10 polymer lattice using the inexact Newton with
trust-region algorithm. Newton steps 0, 1, 5, and 13 are shown. All images of the
base model deformations are rendered using visual molecular dynamics (VMD)
[21].
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Fig. 8. The same information is contained in this figure as in Fig. 6 for the case of a
30� 30� 30 polymer lattice.
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Fig. 9. The same information is contained in this figure as in Fig. 6 for the case of a
110� 110� 110 polymer lattice.

Fig. 10. An equilibrium configuration of a 110� 110� 110 polymer lattice.
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whose corresponding constitutive equation coefficients are un-
known. A scheme is described below that is designed to determine
these unknown coefficients using ‘‘virtual” (numerical) experi-
ments that are performed on a representative volume element
(RVE) of polymer material.

3.1. Virtual experiments on RVE’s

The polymerization process described earlier does not involve
any features that would lead to macroscale inhomogeneities or
anisotropies, and the monomer and crosslinker constituents were
designed to avoid or minimize rate effects. Thus, the assumption
that the process leads to a material behaving as an amorphous
elastomer seems reasonable. The macroscale model of the poly-
merized etch barrier is then that of a homogeneous, isotropic,
hyperelastic material with a stored energy per unit volume W rel-
ative to a reference configuration X0 � R3.

Let X denote the labels of material particles of the body, with Xi

the Cartesian coordinates of particle positions in the reference con-
figuration. The motion u : X0 ! X is a differentiable, orientation
preserving map that takes particles into positions x ¼ uðXÞ in the
current (‘‘deformed”) configuration, and FðXÞ ¼ rXu is the defor-
mation gradient tensor. The right Cauchy–Green deformation ten-
sor is denoted C ¼ FT F. A fundamental condition on the stored
energy function W is that it be form-invariant under all changes
in the observer frame of reference, which, generally, means that
W must depend on invariants of the deformation. One way of guar-
anteeing this invariance is to write W as a function of the principal
invariants of C:

W ¼WðI1; I2; I3Þ; ð18Þ

where

I1 ¼ trC ¼ k1 þ k2 þ k3;

I2 ¼
1
2
ðtrCÞ2 � 1

2
trðCÞ2

¼ k1k2 þ k1k3 þ k2k3;

I3 ¼ det C ¼ k1k2k3;

ð19Þ

and ki are the principal stretches of material line elements.
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The following forms for W are considered:

W ¼ C1ðI1 � 3� ln
ffiffiffiffi
I3

p
Þ þ C2ð

ffiffiffiffi
I3

p
� 1Þ2;

W ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ þ C3ð
ffiffiffiffi
I3

p
� 1Þ2

� ð2C1 þ 4C2Þ ln
ffiffiffiffi
I3

p
:

ð20Þ

These equations represent the compressible versions of the classical
Neo–Hookean and Mooney–Rivlin materials [16]. The development
of these constitutive equations is inspired by early work in the sta-
tistical mechanics of polymer networks and to arguments related to
macroscale experiments on elastomers [31,32].

The virtual testing procedure, depicted in Fig. 11 involves the
following steps:

(i) A cube D � R3 of polymerized material, initially of size
L0 � L0 � L0 with Nx � Ny � Nz ¼ ND particles, is generated
using the kinetic Monte-Carlo algorithm described in Section
2.1, and is allowed to assume a relaxed (densified) equilib-
rium configuration after constraints sufficient to eliminate
rigid translations and rotations are applied. The cube D is
the initial RVE.

(ii) Uniform tractions are applied over opposite faces of the cube
by assigning values of the net force on molecules residing on
the near-planar boundaries of D.

(iii) The resulting principal stretches k1; k2; k3 are calculated by
computing the length of the stretched RVE and by taking
the ratio with the initial length of the relaxed RVE:
k1 ¼ Lx=Lx

0, etc. These lengths are calculated by averaging
the positions of the particles on each face and computing
the difference of these averages. Furthermore, the Jacobian
J ¼ det F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3
p

is measured (calculated) from the RVE.
(iv) The total energy ED in D is computed in the relaxed and

stretched configurations.
(v) The total energy density in D is equated to the continuum

stored energy density in D:
ED

V0
¼W: ð21Þ

Furthermore, for the cases of uniaxial and biaxial extension,
exact solutions can be formulated for the continuum model
and the measured stretches ki can be compared to the ex-
pected values.

Some important aspects of this process are noted:

(i) The constants determined by this process should be inde-
pendent of the size of the RVE; thus the dimension of the
domain D, i.e. Nx � Ny � Nz, should be increased until the
computed values of the material parameters do not change.
1. Relaxation
2a. Uniaxial Stretch

2b. Biaxial Stretch

3. Measure

4. Calibrate

0.9 0.95 1 1.05 1.1 1.15
0.9
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Fig. 11. RVE testing procedure. Step 1. Relaxation of the polymer lattice. Step 2.
Deformation (uniaxial and biaxial stretches). Step 3. Measurements of V ; k1; k2; k3; E.
Step 4. Determination of the continuum parameters by curve fitting.
(ii) A single molecular model of the RVE represents only one
realization of the polymeric structure. Thus, a large number
of such realizations should be generated to determine the
statistical variations of the material parameters with suffi-
cient accuracy.

(iii) The form of W assumed in the process should represent a
stable characterization of the material, relatively insensitive
to small perturbations in the molecular model.

3.2. Numerical RVE experiments

3.2.1. Determination of RVE size
Following the previous discussion, the size of the RVE must

be determined so that the constants computed for the contin-
uum model are stable with respect to increase in the RVE size.
To determine the RVE size, an RVE is subjected either to uniaxial
extension with lateral contraction or biaxial extension. Since the
material behaves as an isotropic homogeneous material on the
scale of the RVE, it is expected that certain symmetries will hold.
In the case of uniaxial extension in the x-direction, k2 ¼ k3. In
biaxial extension in the x-direction and y-direction, k1 ¼ k2. Fur-
thermore, in both cases, the ratio of the volume change
V=V0 ¼

ffiffiffiffi
I3
p

, and it is expected that the energy density should
converge as the RVE size is increased. Thus, in the RVE experi-
ment, k1; k2; k3 are computed by taking the ratio of the deformed
length in each direction with the original length, and the volume
of both the deformed and original configurations are calculated.
This procedure was executed on polymer RVE’s of size
10� 10� 10, 20� 20� 20, and 30� 30� 30. Fig. 12 shows the
energy density and the volume comparison for uniaxial loading
tests while Fig. 13 shows the symmetry tests for uniaxial and
biaxial loadings.

As can be seen, as the RVE size is increased to 30� 30� 30, the
properties converge as expected to quite tight tolerances. The only
exception is the case of symmetry of the biaxial loading of the RVE.
Here, the curves do not converge as expected, but the ratio is still
very close to one and, thus, is considered acceptable. Based on
these numerical experiments, an RVE size of 30� 30� 30 is con-
sidered adequate to determine the continuum coefficients for each
realization of the polymer structure.

3.2.2. Parameter fit from RVE Data
With the RVE size determined and data collected from deforma-

tions on the RVE, a least-squares fitting procedure is used to deter-
mine the parameters for the continuum constitutive equation.
There are three sets of data used to fit the parameters: the energy
density for both uniaxial and biaxial deformations, the relationship
between k2 and k3 in the unaxial deformation, and the relationship
between k1 and k2 in the biaxial deformation for the different load-
ing values. In the first case, this merely means fitting
WðI1; I2; I3Þ ¼ E=V0 where I1; I2; I3 are computed from the measured
stretches. In the latter two cases, these relationships come from the
exact solution to the uniaxial and biaxial deformations. For this fit-
ting procedure, the body is stretched 30% in 20 incremental steps
for the uniaxial and biaxial deformations. The resulting parameters
are collected in Table 3 and the corresponding curve fits are shown
in Figs. 14 and 15.

3.3. Finite element formulation

Here, we introduce the classical formulation for finite elements
in nonlinear elasticity in order to lay down notation for subsequent
use in the formulation of the coupled model.

Let X0 � R3 be an open, connected, bounded set representing
the reference configuration of an undeformed body B in free space
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Fig. 13. RVE’s of the polymer are deformed under loading. The top curve illustrates
the ratio k2=k3 for the 10, 20, and 30 cubes under uniaxial loading; if the polymer
was perfectly symmetric, the ratio would be one. The bottom set of curves
correspond to the cubes under biaxial loading and shows the ratio k1=k2. Again, if
the RVE was perfectly symmetric, this value would be one.

Table 3
Results of parameter fit for the compressible Neo–Hookean and the compressible
Mooney–Rivlin materials based upon the RVE experiments on one representative
sample of a 30� 30� 30 polymer lattice.

Model C1 C2 C3

Compressible Neo–Hookean 0.72 0.57
Compressible Mooney–Rivlin 0.67 0.23 0.22
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with boundary C. Let the material points of B be labeled by X 2 R3.
Under the action of body forces b acting on all of X0, applied trac-
tions t acting on CN , the body undergoes a motion uðXÞ : X0 ! X,
where X is the current configuration.

Let PðuÞ be the total energy function of body B. Furthermore,
let WðruÞ be the given stored energy density function of the body.
Then

PcðuÞ ¼
Z

X0

WðruÞdX�
Z

X0

q0b � udX�
Z

CN

t � udCN ; ð22Þ

where dX ¼ dX1dX2dX3.
The goal is to solve the following minimization problem:

Find u	 2 V : Pcðu	Þ ¼min
u2V

PcðuÞ; ð23Þ

where

V ¼ fu : X0 ! R3 : WðruÞ 2 L1ðX0Þ; det ru > 0 a:e: in X0g:
ð24Þ

See [16].
The function u is approximated by tri-linear hexahedra.

Throughout, repeated indices are to be summed according to the
Einstein summation convention. If repeated indices are not to be
summed, the indices will be underlined: i. Lowercase i; j; k; . . . de-
note spatial coordinate indices, while uppercase I; J;K; . . . denote
material coordinate indices. The indices A;B denote global basis
function indices. Then, the discretized gradient and Hessian of
the energy function are

@Pc

@diA
¼
Z

X0

FiISIJN
i
A;JdX�

Z
X0

q0BiN
i
AdX�

Z
CN

TiN
i
AdCN

@2Pc

@diA@djB
¼
Z

X0

N
j
B;ISIJN

j

A;J þ FiICIJKLFjK Ni
A;JN

j
B;LdX

ð25Þ
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where diA are the coefficients of the shape functions approximating
ui, SIJ is the second Piola–Kirchoff stress tensor, and CIJKL is the elas-
ticity tensor. Both quantities can be written in terms of the invari-
ants of the deformation and are given by

SIJ ¼ 2
@W
@I1

dIJ þ
@W
@I2

I1dIJ � CIJ
� �

þ @W
@I3

I3C�1
IJ

� �� �
; ð26Þ

and

CIJKL ¼ 4
@2W

@I2
1

ðdIJdKLÞ þ
@2W

@I2
2

ðI1dIJðI1dKL � CKLÞ þ CIJðdKL � CKLÞÞ
 

þ @
2W

@I2
3

ðI2
3C�1

IJ C�1
Kl Þ þ

@2W
@I1@I2

ðI1dIJðdKL � CKLÞ þ I1dKLðdIJ � CIJÞÞ

þ @2W
@I1@I3

I3ðdIJC
�1
KL þ C�1

IJ dKLÞ þ
@2W
@I2@I3

I3ðC�1
KL ðI1dIJ � CIJÞ

þC�1
IJ ðI1dKL � CKLÞÞ þ

@W
@I2
ðdIJdKL � dIKdJLÞ

þ @W
@I3

I3 C�1
IJ C�1

KL �
1
2
ðC�1

IK C�1
JL þ C�1

IL C�1
JK Þ

� ��
; ð27Þ
where dIJ is the Kronecker delta. The gradient and Hessian of the en-
ergy function are provided to the software packages TAO [12] and
PETSc [4,3,5] which use inexact Newton with trust-region to find
a minimum of the energy Pc .

3.4. Initial strain formulation

The difficulty here is that the equations of continuum mechan-
ics do not inherently contain the stretch in the lattice: by default
the reference configuration of the continuum body is strain free.
Thus, additional information must be supplied to provide this ini-
tial strain to the continuum body. Consider the case of the lattice
model which is composed of a network of harmonic springs. Impli-
cit in the spring model is a reference length to which any deforma-
tion is compared. Thus, when the bonds are formed during the
polymerization process and the molecules form a perfect lattice,
the springs are stretched from the reference length and, therefore,
the dimensions of the body shrink under the action of the stretched
springs and not due to external loading. See for example, Fig. 7.

The main idea to incorporate this information into the contin-
uum model is to consider three configurations of a material body:
the reference configuration X0 in which the polymer assumes the
prismatic form defined by the lattice boundaries after the polymer-
ization process (generally cubic), the current configuration X in
which boundary conditions are imposed and densification takes
place (due to the initial strain), and a ‘‘strain-free” configuration



X x

Fictitious Equilibrium
Configuration

Reference Configuration Current Configuration

Fig. 16. Incorporating initial strain into nonlinear elasticity.
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X̂ in which no external forces act on the body so it is in equilibrium
with zero boundary tractions. The latter shall be referred to as the
fictitious equilibrium configuration.

Let X denote a material point in the reference configuration and
X̂ the material point in the fictitious equilibrium configuration.
These are related by a differentiable, invertible map û : X̂! X0

such that X ¼ ûðX̂Þ. The spatial positions of x in the current config-
uration are x ¼ uðXÞ;u : X0 ! X. Fig. 16 represents this process
schematically. Thus

x ¼ u 
 û ¼ uðûðX̂ÞÞ; ð28Þ

and, using the chain rule:

rX̂x ¼ rXuðXÞrX̂ûðX̂Þ ¼ FF̂: ð29Þ

Therefore, the gradient (25)1 and Hessian (25)2 become

@P
@diA

¼
Z

X0

FiK F̂KISIJN
i
A;MF̂MJdX�

Z
X0

q0BiN
i
AdX�

Z
CN

TiN
i
AdCN;

@2P
@diA@djB

¼
Z

X0

N
j
B;K F̂KISIJN

i
A;MF̂MJdX

þ
Z

X0

FiMF̂MICIJKLFjNF̂NK Ni
A;OF̂OJN

j
B;PF̂PLdX

ð30Þ

The task now is to supply F̂. In general, F̂ ¼ F̂ðX̂Þ, but in the present
case, F̂ is the result of a homogeneous deformation of the RVE of the
form:

F̂ ¼ kI; ð31Þ

where I is the identity matrix and k is a constant to be determined.
The form (31) is justified for the case of the polymer under consid-
eration as the bonds are random in direction so that there is no pre-
ferred direction for the deformation. Therefore, numerical
experiments on RVE’s of the polymer material can be used to deter-
mine the constant k. Note that, in the case of F̂ ¼ kI

Ĉ ¼ F̂T F̂ ¼ k2I; ð32Þ
Fig. 17. A 1000 element simulation of a compressible Mooney–Rivlin material
subjected to initial strain. In this case, k ¼ 1:25.
so that k2 ¼ k1 ¼ k2 ¼ k3. Thus, the stretch of the body can be mea-
sured on an RVE of polymer when being equilibrated; that is, the
stretch from the equilibrated configuration to the lattice configura-
tion. Actually, what is measured is the inverse k�1 since in the
molecular RVE experiments, the lattice shrinks from the cubic refer-
ence configuration to the relaxed ‘‘fictitious equilibrium configura-
tion”. Fig. 17 shows an example of the incorporation of initial strain
into the finite element formulation.

4. Arlequin coupling

This section details the development of a general scheme to sys-
tematically couple particle and continuum models in order to pro-
duce surrogates of the molecular base model. The strategy involves
enforcing the displacement and derivative constraints between the
two models. The constraints are achieved using Lagrange multipli-
ers on a region of overlap between the continuum and particle
models. This scheme is an adaptation of the Arlequin method
[8,10,11,9] used for coupling two continuum models with differing
scales of finite element discretization (a global coarse mesh and a
local fine mesh). A mathematical development is given in [7]
showing well-posedness for a one-dimensional problem coupling
a harmonic spring model with a linearly elastic rod. Here, we ex-
tend the formulation to the coupling of the three-dimensional,
nonlinear polymer model and the nonlinear, elastic continuum
model discussed previously. Some details of the solution algorithm
are presented followed by several numerical experiments illustrat-
ing the behavior of the solutions.

4.1. Continuous formulation

Let X � R3 be open and bounded. Let Xc � X be the continuum
region of the body and let Xd � X be the region containing M dis-
crete particles (representing the lattice polymer model in this con-
text). Let Xo ¼ Xc

T
Xd be the region of overlap (see Fig. 18) and let

Vc ¼ v : Xc ! R3 :

Z
Xc

WðruÞdx
				

				 <1; c0v ¼ 0 on CD
c


 �
;

Vd ¼ fz 2 R3M : z ¼ 0 on CD
d g;

Vo ¼ fl 2 H1ðXoÞ3g:

ð33Þ

Then, the Arlequin method proposes to solve the following saddle
point problem:

inf
ðv;zÞ2Vc�Vd

sup
l2Vo

Lðv; z;lÞ; ð34Þ

where

Lðv; z; lÞ ¼ EcðvÞ þ EdðzÞ þ bðl; ðv; zÞÞ; ð35Þ

and

EcðvÞ ¼
Z

Xc

acWðrvÞdX;

EdðzÞ ¼
XM

m¼1

Xnm

n¼1

adEmnðkxm � xnkÞ �
XM

m¼1

f � ðxm � x0
mÞ;

bðl; ðv; zÞÞ ¼
Z

Xo

l � ðv � IzÞ þ rl : rðv � IzÞdX;

ac;ad 2 R : ac þ ad ¼ 1 in X;

ac ¼
1 in Xc=Xo;

0 in Xd;



I : Vd ! Vc;

ð36Þ

where xm is the position of particle m and I : Vd ! Vc is the piece-
wise tri-linear interpolation operator. Fig. 19 illustrates the weight-
ing functions ac and ad for the one-dimensional case. In particular,



Fig. 20. The discretization of the geometry in Fig. 18 from an angle view and a side
view.

Fig. 18. Example of a geometry for the Arlequin method. The solid green represents
the continuum model while the red, blue, and yellow particles represent monomer,
cross-linker, and initiator, respectively. Notice that the zoomed shows the particle
region, while the particles contained in the green region define the overlap region.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 19. Examples of ac and ad in one-dimension. Constant, linear, and cubic
weighting functions are shown in the overlap region.
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note the many choices in the overlap region (only the constant case
is considered here).

4.2. Discrete formulation

Let Vh
c � Vc and Vh

o � Vo be finite-dimensional subspaces pro-
duced by discretizations of the continuum and Lagrange multiplier
function spaces (see Fig. 20). In all examples that follow, the La-
grange multiplier finite elements will correspond to the continuum
finite elements in the overlap region. The discrete formulation is as
follows:

Lðuh; x; khÞ ¼ inf
ðvh ;zÞ2Vh

c�Vd

sup
lh2Vh

o

Lðvh; z;lhÞ; ð37Þ

where, as before

Lðvh; z;lhÞ ¼ EcðvhÞ þ EdðzÞ þ bðlh; ðvh; zÞÞ: ð38Þ

Let Ni
A represent the finite element basis functions for the contin-

uum model, A being the global node number and i the component
of the vector (i.e. x; y; z), Ni

B the basis for the lagrange multipliers,
and Ni

m the basis functions for interpolating the particles in Xo.
Then,

uh
i ¼

XNc

A¼1

diANi
A; kh

i ¼
XNl

B¼1

liBNi
B; Ixi ¼

XNI

m¼1

ximNi
m: ð39Þ
Thus, the Lagrangian can be rewritten as

LðdiA; xim; liBÞ ¼
Z

Xc

acW r
XNc

A¼1

diANi
A

 ! !
dX

�
Z

CN
c

Ti

XNc

A¼1

diANi
A

 !
dCN

þ
XM

m¼1

XNm

n¼1

adEmn kxim � xinkð Þ �
XM

m¼1

fimðxim � x0
imÞ

þ
Z

Xo

XNl

B¼1

liBNi
B

 ! XNc

A¼1

diANi
A �

XNI

m¼1

ximNi
m

 !
dX: ð40Þ

A necessary condition for a saddle point is that the derivative be
zero. In particular, set

@L
@djD

¼ 0;
@L
@xim

¼ 0;
@L
@ljE
¼ 0: ð41Þ

Thus, (41) yields the following system of nonlinear equations:Z
Xc

acSIJFiIN
i
D;JdXþ

Z
Xo

XNl

B¼1

ljBN
j
B;I

 !
Nj

D;IdX ¼
Z

CN
c

TjN
j
DdCN

XNm

n¼1

adE0nmðkxim � xinkÞ
ðxim � xinÞ
kxim � xink

�
Z

Xo

XNl

B¼1

ljBN
j
B;I

 !
Ni

m;IdX ¼ fim

Z
Xo

N
j
E;I

XNc

A¼1

diANi
A �

XNI

m¼1

ximNi
m

 !
dX ¼ 0: ð42Þ

Note that the initial strain can easily be incorporated into the con-
tinuum as in Section 3.4.

The Newton with line search algorithm is used to solve the
above system. Repeating the differentiation procedure to arrive
at (42), the Jacobian is

J ¼
Jc 0 Jkc

0 Jd Jkd

JT
kc JT

kd 0

2
64

3
75; ð43Þ

where

Jc ¼
@2L

@djD@dkF
¼
Z

Xc

ac N
j
F;ISIJN

j
D;J þ FjICIJKLFkK N

j
D;JN

k
F;L

� �
dX;

Jkc ¼
@2L

@djD@lkG
¼
Z

Xo

Nk
G;IN

k
D;IdX;

Jd ¼
@2L

@xim@xjn
¼
XNm

m¼1

XNm

n¼1

adHmn;

Jkd ¼
@2L

@xim@dkG
¼ �

Z
Xo

Nk
G;IN

k
m;IdX;

ð44Þ



 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250  300  350
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

N
ew

to
n 

R
es

id
ua

l

N
um

be
r 

C
G

 I
te

ra
tio

ns

Newton Iteration

Convergence History

CG Iters.
Residual

TR-Radius
Neg-Curv

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  2  3  4  5  6  7  8
 74

 76

 78

 80

 82

 84

N
ew

to
n 

R
es

id
ua

l

N
um

be
r 

G
M

R
E

S 
It

er
at

io
ns

Newton Iteration

Convergence History

GMRES Iters.
Residual

Fig. 21. Convergence behavior of a 51� 51� 51 and its approximation by an
Arlequin model coupling the particle with a nonlinear elastic continuum. The red
curve shows the value of the residual and the blue curve is this number of C–G
(GMRES) iterations required at each step. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Equilibrium configuration of an Arlequin approximation to a 51� 51� 51
polymer lattice. The mesh is colored by elements of the zz-component of the Cauchy
stress while the slice is the interpolated zz-Cauchy stress. Red particles correspond
to monomers, blue to crosslinkers, and yellow to initiators. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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and Hmn correspond to intermolecular Hessians. The Hessian of the
energy for a harmonic bond is

Hmn ¼ kmn 1� r0
mn

rmn

� �
Iþ kmnr0

mnDx� Dx: ð45Þ

See [6].
4.3. Numerical example

For the following numerical example, ac ¼ ad ¼ 1=2 in the over-
lap region Xo, the polymer model used corresponds to that intro-
duced in Section 2, and the continuum model is the nonlinear
elastic Mooney–Rivlin material with parameters given in Table 3.
Consider the approximation of a 51� 51� 51 polymer lattice by
an Arlequin surrogate consisting of 139 tri-linear finite elements
with 17 more for Lagrange multiplers and 21� 21� 10 particles.
This corresponds to 18,228 unknowns, compared to the 375,000
unknowns for the full polymer model: a factor of almost 21 in sav-
ings. The shrinkage parameter k ¼ 1:3 for this case. The conver-
gence results for both the base model and the surrogate are
shown in Fig. 21 and the equilibrium configuration of the surrogate
is in Fig. 22.

The total solve time was approximately 1.4 CPU hours on 32
processors for the base model while the surrogate model con-
verged in under 5 min on a single processor, a factor of roughly
17. Aside from the system being much smaller, the continuum part
of the coupled model appears to smoothen the residual function as
only 8 Newton iterations were required to attain convergence
while over 300 were required for the base model. This represents
a substantial performance gain.

5. Goal-oriented error estimation and adaptivity

5.1. Adjoint problem and calculation of residual

The adjoint problem for the base model is given in (5). However,
in the case of the Arlequin surrogate, the exact solution u is un-
known; only the surrogate solution u0 is known. Thus, the primal
surrogate solution exists on the space X ¼ Vc � Vd (the displace-
ment of particles and continuum) and Vo (the Lagrange multipli-
ers). A projection P : X ! V must be used in order to compute
the adjoint solution for the base model problem. In this case, the
following map is used:

(i) Particle part of Arlequin model: assign the value of the dis-
placement to the corresponding particle in the base model

(ii) Continuum part of Arlequin model:

– Loop over all particles contained in the continuum region
– Determine element location of particle i in finite element

mesh reference configuration.
– Obtain master element coordinates ðn;g; fÞ by solving

x0
i � Xðn;g; fÞ ¼ 0 in the reference configuration where

x0
i is the initial position of particle i.

– Evaluate uhðn;g; fÞ and assign the value to particle i in the
lattice.
(iii) Overlap part of Arlequin model: there are several choices,
but the combination acuðx0

i Þ þ adxi is taken here.

Fig. 23 illustrates the results of the above projection from an
Arlequin approximation of a uniform lattice.



Fig. 23. The result of projection P on an Arlequin approximation of a 21� 21� 21
uniform lattice. In the overlap region, the particle position is used for projecting the
displacement, as opposed to the continuum.

Fig. 24. A 103 discretization of a cube. A uniform axial load is applied on the
external (free) x-face while the zero x-face is fixed in all directions. A slice is taken
to show the interior stress distribution.
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Finally, the Lagrange multiplier is superfluous in the context of
this projection and is neglected.

Thus, the following approximation to the adjoint problem is
made:

Find p̂ 2 V such that B0ðPu0; v; p̂Þ ¼ Q 0ðPu0; vÞ 8v 2 V ;

ð46Þ

where p̂ is the adjoint solution corresponding to the projected sur-
rogate solution Pu0. This notation is introduced in order to differ-
entiate this approximate adjoint solution from the exact adjoint
solution p. The only approximation made here is the use of Pu0

in place of u.
With the calculation of the adjoint solution, the residual can be

computed and errors in quantities of interest can be estimated. Re-
call that the error estimate is

E ¼ Rðu0; p0Þ þRðu0; p� p0Þ þ D: ð47Þ

In this case

Ê ¼ RðPu0; p̂Þ þRðPu0; p� p̂Þ þ D: ð48Þ

The D term is neglected in all examples that follow. The effect of
neglecting the term Rðu0; p� p̂Þ is investigated in the numerical
examples.

5.2. Numerical examples: error estimation

5.2.1. Polymer lattice, continuum surrogate
Preliminary results are given here to illustrate the solution of

the finite element problem and preliminary error estimation calcu-
lations. Fig. 24 shows a block under uniaxial loading in the positive
x-plane and fixed in the zero x-plane.

Corresponding loading and boundary conditions are applied to a
20� 20� 20 realization of the polymer lattice model (post relaxa-
tion). As an example, the quantity of interest is selected to be the
length of the body. In particular, the differences in the average of
the x-position of the positive and zero x-faces is taken as the quan-
tity of interest:

QðxÞ ¼ 1
Nxþ

XNxþ

i¼1

x1
i �

1
Nx�

XNx�

i¼1

x1
i : ð49Þ

Thus, the right-hand side of the adjoint problem (5) is

Q 0ðxÞ ¼

1
Nxþ

if particle on xþ face;

� 1
Nx�

if particle on x� face;

0 otherwise;

8><
>: ð50Þ

There is no approximation here to the adjoint solution so that the
error in the quantity of interest is given by (8)2.

Results of this test of the model error estimation are as follows:
exact quantity of interest: QðxÞ ¼ 78:41; surrogate approximation:
Qðx0Þ ¼ 74:65; estimated error QðxÞ � Qðx0Þ � RðPx0;pÞ ¼ 3:58;
effectivity index geff ¼ jRðx0;pÞj=jQðxÞ � Qðx0Þj ¼ 0:95. The effec-
tivity index of 0.95 establishes a quite acceptable error of only five
percent in the estimated error in the quantity of interest. This re-
sult also suggests that for problems of this type, a continuum mod-
el may well be adequate for calculating such global quantities of
interest.

5.2.2. Uniform lattice, Arlequin surrogate
In this case, a 21� 21� 21 uniform lattice is approximated by

an Arlequin surrogate model. The parameters for the bonds in
the base model are kij ¼ 3:0, r0

ij ¼ 3:0 for axial springs and
kij ¼ 3:0, r0

ij ¼ 3:0
ffiffiffi
2
p

for diagonal springs; the initial lattice spacing
is 4.0 units. The Arlequin surrogate model consists of 174 tri-linear
elements, 17 tri-linear Lagrange multiplier elements (for the over-
lap region), and 1183 particles. The constitutive equation for the
continuum is the compressible Mooney–Rivlin material with coef-
ficients C1 ¼ 1:0;C2 ¼ 1:0;C3 ¼ 1:0. The shrinkage parameter
k ¼ 1:33. The quantity of interest is the ‘‘slump”: the average z-dis-
placement of a 3� 3 patch on the positive z-face of the body. That
is

Qðu0Þ ¼
1
jPj

X
i2P

uz
i ; ð51Þ

where P is the set of particles in the 3� 3 patch and uz
i is the z-com-

ponent of the displacement of particle i. Note that we do not need to
project the surrogate solution to evaluate the quantity of interest
because it is defined within the particle region. Fig. 25 displays
the adjoint solution and Fig. 26 the residual. Table 4 summarizes
the results of the calculation. The effectivity indices g and ĝ are de-
fined as

g ¼ RðPu0;pÞj j
QðuÞ � Qðu0Þj j ;

ĝ ¼ RðPu0; p̂Þj j
QðuÞ � Qðu0Þj j :

ð52Þ

In this example, the remainder jDj is seen to be approximately 8% of
the total error in the quantity of interest.

5.2.3. Polymer lattice, Arlequin surrogate
In this case, a 21� 21� 21 polymer lattice is approximated by

an Arlequin surrogate model. The discretization of this surrogate
model is exactly the same as was used in the previous example.



Fig. 26. (Left) the residual RðPu0; p̂Þ corresponding to an Arlequin approximation
of a 21� 21� 21 uniform lattice. The position of the particles is in the equilibrated
current configuration. The value of RiðPu0; p̂Þ=maxiRiðPu0; p̂Þ, where
RiðPu0; p̂Þ ¼ ð@EiðPu0Þ=@uÞ � p̂i , for each particle i is assigned a color in the figure,
with red the highest values and blue the lowest. (Right) here, the substrate particles
are shown along with particles that have RiðPu0; p̂Þ=maxiRiðPu0; p̂Þ > 0:4. This
represents the region that most strongly contributes to the error in the quantity of
interest. In this case, the error is primarily at the interface of the particle and
continuum models, as expected.

Table 4
Results of an Arlequin approximation of a 21� 21� 21 uniform lattice with the
quantity of interest being the average z-displacement of a 3� 3 patch on the positive
z-surface of the body.

QðuÞ Qðu0Þ RðPu0;pÞ RðPu0; p̂Þ g ĝ

�24.5 �22.2 �2.49 �2.17 1.08 0.94

Fig. 27. Analogous results to Fig. 25 for the case of a 21� 21� 21 polymer lattice.

Fig. 28. Analogous results to Fig. 26 for the case of a 21� 21� 21 polymer lattice.

Table 5
Analogous results to Table 4 for the case of a 21� 21� 21 polymer lattice.

QðuÞ Qðu0Þ RðPu0;pÞ RðPu0; p̂Þ g ĝ

�55.63 �35.0 �30.3 �14.8 1.47 0.72

Fig. 25. (Left) the adjoint solution p̂ corresponding to an Arlequin approximation of
a 21� 21� 21 uniform lattice. The position of the particles is in the equilibrated
current configuration. The value kp̂ik=maxip̂i for each particle i is assigned a color in
the figure, with red the highest values and blue the lowest. (Right) here, the
substrate particles are shown along with particles that have kp̂ik=maxip̂i > 0:3. This
represents the region that most strongly influences the value of the quantity of
interest.

Fig. 29. The partition of the Arlequin domain. Red cells denote regions modeled
using the particle model, green cells use the continuum model, and the yellow cells
represent the overlap region between the two. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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The constitutive equation for the continuum is the compressible
Mooney–Rivlin material with coefficients given in Table 3. The
shrinkage parameter k ¼ 1:3. The quantity of interest is the slump
(51). Thus, this example serves to illustrate the effects of inhomo-
geneity in the lattice. Fig. 27 displays the (projected) adjoint solu-
tion and Fig. 28 the residual. Table 5 summarizes the results from
the calculation.

The inhomogeneity has affected the quality of the error esti-
mate by approximately 20%. This is likely due to the fact that the
projection is smooth in the overlap region where the actual particle
positions in the base model are much more irregular. It would
seem that, for the polymer model, a more robust projection meth-
od could improve the error estimate, but this is not studied in the
present work.

5.3. Adaptive algorithm

The adaptive modeling algorithm to be applied in the Goals
algorithm involves first partitioning the domain into cells that will
be labeled by the model used within that region. For simplicity, the
partition will coincide exactly with the finite element discretiza-
tion of the continuum that covers the particle model. Fig. 29 is
an example of such a partition.

Furthermore, the residual error estimate (48) must be parti-
tioned in the same manner:

RðPu0; p̂Þ ¼
XNp

c¼1

RcðPu0; p̂Þ; ð53Þ

Np being the number of partitioned cells, c labels each cell, and
RcðPu0; p̂Þ is the value of the residual in cell c. The value of
RcðPu0; p̂Þ is computed by



Table 6
Results of the Goals algorithm for a 21� 21� 21 uniform lattice with an Arlequin
surrogate model. A total of five adaptive steps were needed to bring the error in the
quantity of interest to within 5%.

Adaptive step Er (%) g ĝ

0 9.77 1.08 0.94
1 8.24 1.09 0.93
2 7.71 1.10 0.93
3 6.75 1.11 0.92
4 5.08 1.16 0.88
5 4.74 1.10 0.92

Table 7
Results of the Goals algorithm for a 21� 21� 21 polymer lattice with an Arlequin
surrogate model. A total of five adaptive steps were needed to bring the error in the
quantity of interest to within 6%.

Adaptive step Er (%) g ĝ

0 42.2 1.47 0.71
1 30.8 1.41 0.67
2 18.6 1.52 0.59
3 13.5 1.56 0.51
4 10.2 1.45 0.48
5 5.34 1.37 0.36
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RcðPu0; p̂Þ ¼
X
i2c

Xni

j¼1

@EijðPu0Þ
@ui

� p̂i: ð54Þ

Note that if the particle i is on a boundary between cells, it is scaled
by the number of cells it overlaps. For instance, if a particle is on a
face and belongs to two cells it is scaled by 1/2. Fig. 30 shows an
example of the distribution of error.

Thus, the adaptive algorithm proceeds as follows.

(i) Specify the error tolerance for the quantity of interest, ctol

and the refinement parameter aa.
(ii) Solve the primal surrogate problem (4).

(iii) Compute the projection Pu0 of surrogate problem. Solve the
adjoint problem (46).

(iv) Compute the residual (48). If RðPu0; p̂Þ=Qðu0Þ < ctol, then
stop. Otherwise, goto step (v).

(v) Partition the residual: compute RcðPu0; p̂Þ for each cell c.
(vi) Relabel cells as ‘‘particle” cells if: RcðPu0; p̂Þ >

aamaxcRcðPu0; p̂Þ. That is, if a cell c has a residual a fraction
aa of the maximum, then that cell is ‘‘refined” and relabeled
as particle, i.e. the particle structure is supplied to this cell.

(vii) Reconfigure overlap region to be consistent with new
particle configuration.

(viii) Goto step (ii).

5.4. Numerical examples: adaptivity

The same data are used here as the example on error estima-
tion. The adaptivity parameters are taken to be aa ¼ 0:4 and
ctol ¼ 0:05. Table 6 lists the error and effectivity indices computed
during the five adaptive steps for the uniform case while Table 7
lists these quantities for the polymer case. The quantity Er is de-
fined by

Er ¼
RðPu0; p̂Þ

Qðu0Þ
: ð55Þ

Figs. 31 and 32 show the configurations chosen by the adaptive
algorithm and Fig. 33 shows the partition of the residual for each
configuration for the uniform lattice and Figs. 34–36 depict the
same information for the polymer case.
Fig. 30. The residual partitioned over the domain.

Fig. 31. The configurations chosen by the adaptive algorithm for a 21� 21� 21
uniform lattice with an Arlequin surrogate model and aa ¼ 0:4 and ctol ¼ 0:05. Red
cells denote particle model regions, green cells the continuum model, and yellow
cells denote the overlap regions. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
6. Approximation of adjoint solution and residual calculation

In the previous section, strategies to project the Arlequin solution
onto the full lattice space, solve the adjoint problem, and compute



Fig. 32. Exploded view of the configurations chosen by the adaptive algorithm for a
21� 21� 21 uniform lattice with an Arlequin surrogate model and aa ¼ 0:4 and
ctol ¼ 0:05.

Fig. 33. The residual partition for each step of the adaptive algorithm for a
21� 21� 21 uniform lattice with an Arlequin surrogate model and aa ¼ 0:4 and
ctol ¼ 0:05. In some cases, the image is sliced to expose regions containing the
greatest amount of error.

Fig. 34. The configurations chosen by the adaptive algorithm for a 21� 21� 21
polymer lattice with an Arlequin surrogate model and aa ¼ 0:4 and ctol ¼ 0:06.

Fig. 35. Exploded view of the configurations chosen by the adaptive algorithm for a
21� 21� 21 polymer lattice with an Arlequin surrogate model and aa ¼ 0:4 and
ctol ¼ 0:06.
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the residual were discussed in detail. Furthermore, an adaptive algo-
rithm was introduced. However, in practical applications, alterna-
tive techniques should be considered to compute both the adjoint
and residual for error estimation as the systems of practical interest
would become too large to be modeled by the full lattice. Examples of
such strategies are discussed in the present section.

6.1. Adjoint and residual approximations

Recall that in order to compute error estimates in quantities of
interest using the Arlequin surrogate solutions, a projection



Fig. 36. The residual partition for each step of the adaptive algorithm for a
21� 21� 21 polymer lattice with an Arlequin surrogate model and aa ¼ 0:4 and
ctol ¼ 0:05. In some cases, the image is sliced to expose regions containing the
greatest amount of error.

Fig. 37. Illustration of the enrichment procedure used to approximate the
calculation of the adjoint solution and the evaluation of the residual. A sequence
of one, two, and three layer enrichments are shown here. Red cells denote particle
model regions, green cells the continuum model, and yellow cells denote the
overlap regions. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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operator P was introduced that mapped the mixed particle–con-
tinuum model to the full particle space. However, for applications
of engineering interest, the cost of computing the adjoint solution
and evaluating the residual is prohibitive. Furthermore, it is inef-
fective to compute the adjoint and residual with the same surro-
gate model since:

B0ðu0; v0Þ ¼ F0ðv0Þ 8v0 2 V0; ð56Þ

so that

R0ðu0; p0Þ ¼ F0ðp0Þ � B0ðu0; p0Þ ¼ 0: ð57Þ

Thus, the calculation of the adjoint and residual must involve more
information than that which exists in the surrogate model, while
still being cost efficient.

The strategy proposed here is to enrich the surrogate model by
enlarging the region of the base model only for the calculation of the
adjoint and residual. This strategy is analogous to the one used in
[28]; see also [1]. In the case of the Arlequin method, this simply
means relabeling neighboring cells as particle regions. The param-
eter in this algorithm is the number of layers to enrich the model. A
one-layer enrichment corresponds to relabeling all cells as particle
regions that directly neighbor the current particle regions. Two
layers would transform the nearest neighbors and the next nearest
neighbors. Fig. 37 illustrates the idea of enrichment.

Once cells have been reconfigured, a projection must be applied
so that the surrogate solution is in the correct space. This projec-
tion is denoted ~P : ðX;MÞ ! ð~X; ~MÞ and is discussed subsequently.
First, the surrogate solution corresponding to continuum or parti-
cle cells that were unchanged by the enrichment procedure are left
unchanged; in other words, the value of the displacements are cop-
ied to the new vector. Continuum cells that were converted to par-
ticle or overlapping cells require the addition of particles: this is
accomplished using the procedure discussed in Section 5.1. The ca-
veat here is that, unlike the case of the projection P, the Lagrange
multiplier cannot be ignored. Indeed, Fig. 37 illustrates that this
procedure will always change the overlap region where the
Lagrange multiplier is defined.

To understand the consequences of choosing this projection on
the calculation of the error estimate, the one-dimensional problem
is examined. In this case

~Vc ¼ v 2 H1ð~XcÞ : vð0Þ ¼ 0
n o

;

~Vd ¼ z 2 R
~mþ1� 


;

~X ¼ ~Vc � ~Vd;

ð58Þ

and

~M ¼ H1ð~XoÞ=R; if b1 ¼ 0;

H1ð~XoÞ; otherwise;

(
ð59Þ

where the ð~�Þ symbols correspond to the enriched configuration.
Then, the (enriched) adjoint problem is

Find ~P 2 ~X; ~pk 2 ~M such that :

~að~V ; ~PÞ þ bð~pk; ~VÞ ¼ Qð~VÞ 8~V 2 ~X

bð~l; ~PÞ ¼ 0 8~l 2 ~M;

ð60Þ

where ~P ¼ ð~pc; ~pdÞ and ~pc , ~pd, ~pk are the continuum, discrete, and La-
grange multiplier components of the adjoint solution. Thus, it is
clear that the adjoint solution satisfies the constraint on the overlap
region. In particular, letting ~Pk correspond to the (at this point,
arbitrary) choice of the projection of the Lagrange multiplier,

~Rð ~PU; ~PÞ ¼ ~að ~PU; ~PÞ þ bð ~Pk; ~PÞ þ bð~pk; ~UÞ

¼ ~að ~PU; ~PÞ þ bð~pk; ~PUÞ; ð61Þ

since bð~l; ~PÞ ¼ 08~l 2 ~M. Thus, the choice of ~Pk has no effect on the
calculation of the error estimate for the quantity of interest.

Although the constraint is strongly enforced in the continuous
case, the constraint is only weakly enforced in the discrete case.
Therefore, the constraint will not necessarily be enforced ele-
ment-wise. The implication here is on the adaptive algorithm.



Table 8
Effectivity indices for various levels of enrichment using the approximate adjoint, and
then both approximate residual and adjoint on a 21� 21� 21 uniform lattice with an
Arlequin surrogate. The indices computed using the exact dual and residual are
inserted for comparison.

g ĝ Enrichment level ~g ~~g

1.08 0.94 5 0.69 0.74
4 0.58 0.57
3 0.53 0.37
2 0.45 0.26
1 0.36 0.15

Table 9
Analogous results to Table 8 for the case of a 21� 21� 21 polymer lattice.

g ĝ Enrichment level ~g ~~g

1.47 0.72 5 0.64 0.67
4 0.59 0.57
3 0.48 0.43
2 0.39 0.32
1 0.23 0.16
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When the residual is partitioned over the domain, although the ef-
fects of the term bð~k; ~PÞ will cancel when the residual partition is
summed, it will locally pollute the residual value. For the numeri-
cal results presented, the local pollution is on the order of 1–5% of
the value of the cell residual Rcð ~Pu0; ~pÞ. This effect is considered to
be small and is neglected.
6.2. Numerical results

We repeat the numerical experiments of Section 5.2. In addition
to the previously defined effectivity indices, we also introduce

~g ¼ RðPu0;P~pÞj j
QðuÞ � QðPu0Þj j ;

~~g ¼
~Rð ~Pu0; ~pÞ
			 			

QðuÞ � Qð ~Pu0Þ
			 			 :

ð62Þ

The quantity ~g represents the effectivity index for the case when the
adjoint solution is computed on the enriched configuration, but is
then projected to the full lattice (along with u0) and the full lattice
residual evaluated. Similarly, the term ~~g is for the case when the ad-
joint computed on the enriched configuration and the residual cor-
responding to the enriched Arlequin configuration is evaluated.
Table 8 shows the effectivity indices for various levels of enrich-
ment for the uniform case while Table 9 shows the same results
for the polymer case. Note that in both cases, enrichments greater
than five levels will lead to dual and residual calculations on the full
lattice space.

As the results show, the fidelity of the error estimate can be se-
verely compromised depending on the enrichment level used for
the error estimate. This is particularly true in the uniform case. In
the polymer case, even the moderate level of enrichments yield error
estimates within 15% of the error estimates without approximating
the dual or residual. This may be due to the fact that the quantity of
interest is more global in nature and that more local quantities will
yield better results. This requires further investigation.

7. Summary and conclusions

Our goal in this work was to present computational methods for
multiscale modeling of molecular systems employing both parti-
cle–continuum coupling techniques and error estimation and
adaptive modeling algorithms in order to control modeling error
in quantities of interest. This entailed the specification of a base
model of molecular statics of polymers, the coarse graining of the
particle model to a nonlinear elastic continuum model, the cou-
pling of the two via the Arlequin method, estimating the error in-
curred by using such surrogate models, and adapting the model to
control the error in specific quantities of interest.

The base model is chosen to be a lattice model of polymers
where the polymer network is constructed using a Monte-Carlo
type algorithm that models the chemical kinetics of the material.
Harmonic potentials are assigned to bonds that are formed during
this process. A molecular statics problem is posed on the resulting
lattice of molecules. It is observed that not only is the immense size
of realistic simulations a limiting factor of the model, but also is the
challenge of efficiently finding a solution. Indeed, as the problem
size grows, also does the number of Newton iterations.

Based on arguments from statistical mechanics, as well as
experimental evidence, a nonlinear elastic continuum model is
chosen as a coarse grain representation of the base model. Numer-
ical experiments on representative volume elements (RVE’s) are
used to determine coefficients for the continuum model so that it
is as compatible as possible with the underlying particle model.
Furthermore, a simple augmentation to the classical finite element
approximation is introduced to account for the inherent initial
strain present in the molecular model.

With the particle and continuum models properly defined, the
next step is to couple the two to construct the surrogate model
used to approximate the base model. The coupling here is based
on the Arlequin method where Lagrange mulipliers enforce con-
straints on the displacements and derivatives on a region of over-
lap between the particle and continuum model. This surrogate is
implemented in a three-dimensional setting where the base poly-
mer model is coupled to the nonlinear elastic continuum model
developed previously. It is shown that use of the surrogate model
provides a substantial cost benefit in both computer resources re-
quired as well as simulation time. This is due not only to the smal-
ler size of systems being solved, but also to the smoothing of the
energy landscape of the particle model by use of the continuum
model in appropriate subdomains.

Finally, the Goals framework is implemented employing the
Arlequin surrogate that is constructed. Error estimates are com-
puted for several numerical examples where the adjoint and resid-
ual are computed exactly, as well as the case where the surrogate
primal solution is used in the solution of the adjoint problem. For
uniform lattices, the results are very good with effectivity indices
on the order of 0:92� 1:08. While the results are still acceptable
for the polymer case, the effectivity indices are in the range
0.72–1.4. The error estimates are then used to drive an adaptive
algorithm where the residual is partitioned over the domain and
the cells are selected for refinement, i.e. the model becomes the
particle model in the cells where the contributions to the error
are the largest. It is seen that the adaptive algorithm controls the
error to within the specified tolerance although the refinement
procedure can require many refinements. This indicates that either
the quantity of interest is global in nature or the models are
incompatible.

The same adaptive procedure was also implemented with error
estimates computed with approximate adjoint solutions and resid-
ual calculations. This idea is based on enriching the current model
partition to include more of the base model features just for the
calculation of the adjoint and residual so as to have enough infor-
mation to obtain a reasonable error estimate, but at a much lower
cost than the cost of computing the full adjoint and residual. As
expected, for low enrichment, the effectivity indices suffer, but as
the model is enriched further, the estimates of the error became
comparable to those obtained with the exact dual and residual cal-
culations. This is especially true in the case of the polymer model.
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The results presented here demonstrate that a posteriori esti-
mates of relative modeling error can provide an effective basis
for model adaptivity as well as a basis for decision making on
the influence of features of various scales on specific quantities
of interest. Importantly, we feel that these approaches may prove
to be very useful in designing and optimizing nano-manufacturing
processes employed in imprint lithography.

Although the current work represents a major step in an effort
towards the development of an accurate and robust methodology,
there remains much work to be done. Key to the framework dis-
cussed here is the validity of the base model. The subject of valida-
tion is receiving a great deal of attention at present and we hope to
present progress on the development of statistical methods of val-
idation of the base model in future work. Furthermore, the base
model presented in this work is a stochastic one, but only specific
realizations have been considered heretofore. The incorporation of
stochastic methods to the proposed numerical methods is under
investigation [14,15].
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