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9.1	 INTRODUCTION

The computational control system under development at the University of Texas 
at Austin combines a numerical implementation of the Pennes equation of bio-
heat transfer with the precise timing and orchestration of the problems of calibra-
tion, optimal control, data transfer, registration, finite element mesh refinement, 
cellular damage prediction, and laser control. The ultimate goal of this research 
is to provide the medical community a predictive computational tool that may 
be used by a surgeon during a minimally invasive hyper- or hypothermia treat-
ment of a cancer-infected tissue. The tool controls the thermal source, provides 
a prediction of the entire outcome of the treatment, and, using intraoperative 
data, updates itself to increase the accuracy of the prediction. A current working 
snapshot of the entire control system is provided within this chapter. Current 
results demonstrate the importance of modeling the heterogeneity within the 
patient-specific biological domain to the accuracy of the computational solu-
tion. Through inversion of the constitutive nonlinearities, results also reinforce 
the experimentally observed phenomena of decreased perfusion in the damage 
region and hyperperfusion surrounding the damage region.

Minimally invasive treatments of cancer are key to improving posttreatment 
quality of life. Thermal therapies delivered under various treatment modali-
ties are a form of minimally invasive cancer treatment that has the potential to 
become an effective option to eradicate the disease, maintain the functionality of 
infected organs, and minimize complications and relapse. However, the ability 
to control the energy deposition to prevent damage to adjacent healthy tissue is a 
limiting factor in all forms of thermal therapies [1], including cryotherapy, micro-
wave, radio frequency, ultrasound, and laser. The combination of image guidance 
with computational prediction has the potential to allow unprecedented control 
over the bioheat transfer. Image guidance facilitates real-time treatment moni-
toring through temperature feedback during treatment delivery [2,3], and high- 
performance numerical implementations of mathematical bioheat transfer mod-
els can use the current-time thermal-imaging data to predict the outcome of the 
treatment minutes in advance [4].

The cyberinfrastructure under development at the University of Texas at Austin 
is an example of a dynamic data-driven feedback control system wherein the 
digitized bioheat transfer models control the heat transfer while simultaneously 
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using real-time imaging data to update the accuracy of the prediction. The aim 
of the control system is to provide the medical community with a real-time com-
putational tool for visualization of the predicted temperature and damage fields, 
allowing for patient-specific optimized therapy guidance. The current control 
system is applicable to tissues that are stationary during imaging and uses an 
interstitial laser fiber as the thermal source. The purpose of this chapter is to 
provide a working snapshot of the current cyberinfrastructure.

9.2	CONTROL  SYSTEM IMPLEMENTATION

Figure  9.1 provides an outline of the data flow between the major software 
modules of the control system. Communication connecting the software mod-
ules at an actual laboratory at the M. D. Anderson Cancer Center in Houston, 
Texas, to the computing and visualization center in Austin, Texas, is currently 
handled via batch secure file transfer protocol (sftp) over a commercial GigE 
Internet connection. The Level Set Boundary-Interior-Exterior (LBIE) Mesher* 
generates a patient-specific finite element mesh of the biological domain using 
preoperative magnetic resonance imaging (MRI) data. Prior to treatment, the 
location of optical fiber and laser power are optimized to control heat shock 
protein (HSP) expression, eliminate and sensitize cancer cells, and minimize 
damage to healthy cells. During treatment, intraoperative MRI data are used to 
register the computational domain with the biological domain, and real-time  
thermal-imaging MR thermal imaging (MRTI) data drive the calibrations align-
ing the parameters of the bioheat transfer model to the patient’s biological tissue 
values. As new thermal-imaging data are acquired intermittently, the compu-
tational prediction is compared to the measurements of the real-time thermal 
images and the differences seen are used to update the computations of the opti-
mal laser parameters as well as goal-oriented mesh adaptation [5], where appro-
priate. The image acquisition by the computers in Austin implicitly controls the 
power wattage output of the laser in Houston. The software infrastructure is built 
from the Petsc [6] parallel computing paradigm and the Toolkit for Advanced 
Optimization (TAO; Argonne National Laboratory, Argonne, Illinois) [7] parallel 
optimization library. Advanced Visual Systems (AVS; Waltham, Massachusetts) 
[8] is used in conjunction with a virtual network computing (VNC) server for 
remote visualization. AVS coroutines are used to manage and coordinate the 
simultaneous visualization of the MRI anatomical image, the MRTI thermal 
image, and finite element data sets.

*	 Software available at http://cvcweb.ices.utexas.edu/cvc.
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A high-level abstraction of the HP3d* finite element solver is shown in 
Figure 9.2. The finite element solver is run at the Texas Advanced Computing 
Center (TACC), located in Austin. As illustrated in Figure 9.2, the problems of 
real-time calibration, optimal control, and goal-oriented error estimation are 
solved in parallel by separate groups of processors. Periodically during treat-
ment, the groupwise optimization solutions and error estimates are collected on 
the control task. A skeleton of the entire finite element method (FEM) mesh of 
the biological domain is stored on the control task. Using the collective error 
estimates, a mesh refinement strategy is computed on the control task, and both 
the collective optimization solutions and refinement strategy are broadcast to the 
individual computational groups. The data server shown in Figure 9.2 reads in 
the thermal images from disk, filters the thermal images to remove noise, broad-
casts the thermal images to each computational group as needed, and transmits 
the laser power to Houston. The timing of the laser power control is implicit 
through the image acquisition by the HP3d data server in Austin. As new ther-
mal images are written to disk physically in Houston, they are transferred to disk 
at TACC. When the data server detects that the full set of thermal images for a 
time instance is available, the power to be used for the next time interval is sent 
to Houston.

*	  Software available at http://dddas.ices.utexas.edu.
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Figure 9.1  The computational infrastructure has five main modules: heating and imaging, finite ele-
ment mesh generation, finite element computation, cellular damage models, and visualization. The data 
flow between the control system modules is illustrated.
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9.3	 IMAGING TO FINITE ELEMENT MESH PIPELINE

The imaging-to-modeling software system for anatomical MRI data employs both 
image-processing and geometry-processing functionalities to produce a suitable 
linear or higher-order meshed model of the anatomy. Figure 9.3 describes the data 
flow layout. The major algorithmic components of each of the processing units is 
described in this section. The reader must note that the modules are selectively 
used depending on the nature and quality of the imaging data.

9.3.1	 Image Processing

The input raw imaging data are often of poor quality, which makes it difficult to 
build a quality meshed model of the anatomy under investigation. In order to 

Control Task
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Model parameters
Visualization

Data Server
Broadcast thermal images

Laser control

Computational Group
Element computations
Linear system solver
Optimization solver

Computational Group
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Linear system solver
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t = 0.0

Austin (HP3d)

Houston (Laser source/imaging)

Figure 9.2  The finite element computations are performed on a parallel computing architecture using 
multiple groups of computed tasks to simultaneously solve disjoint numerical problems of the con-
trol system. A control task is used to gather and broadcast the individual solutions of the computa-
tional groups. A data server broadcasts filtered thermal images to individual computational groups as 
requested. The imaging implicitly controls the laser power output. As a new thermal image is acquired by 
HP3d in Austin, the power wattage for the next time interval is transmitted to the laser.
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improve the image quality, we have developed a suite of image-processing func-
tionalities that facilitate further processing. The modules encapsulated in the 
image-processing units are as follows:

	 1.	 Contrast enhancement: Improves the contrast of the image to help 
extraction of the domain of interest [9].

	 2.	 Filtering: Removes the noise by modifying the input image using bilat-
eral filtering coupled with an anisotropic geometric diffusion partial 
differential equation (PDE) [10].

	
∂ - ∇ ∇

∇




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=t div Df f f
f
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0

	 3.	 Segmentation: Segments an image into anatomically separate regions 
of interest using a fast marching method [11]; each region can then be 
extracted from the raw image [12].

	 4.	 Image skeletonization: Extracts lower-dimensional features from the 
image by analyzing the critical points of the imaging data [13,14].

Raw imaging
data

Image processing
unit

Image processing
unit

Geometry
processing unit

Meshing

Surface extraction
Segmentation
Curation
Skeletonization
Alignment

Linear B-Spline A-Spline

Geometry
processing unit

Geometry
processing unit

Template
geometry
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Meshing
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Figure 9.3  Data flow of imaging-to-meshing software system: There are two major processing units: 
image processing and geometry processing. The image-processing unit consists of modules for contrast 
enhancement, classification and segmentation, filtering, skeletonization, and alignment. The geometry-
processing unit consists of surface extraction, curation, segmentation, skeletonization, alignment, and 
meshing; meshing is further subdivided into linear and higher-order boundary element and finite ele-
ment mesh generation components. The three-dimensional (3D) anatomical magnetic resonance imag-
ing (MRI) data are first passed through the image-processing unit for improvement of image quality, 
and are then processed by the geometry-processing unit for extraction of a clean geometry annotated 
with the present features. Finally, the clean geometry is converted to a linear or higher-order mesh. 
Occasionally, to deal with incomplete or low-quality imaging data, a twin data-processing pipeline is 
employed where a template geometry is processed to extract vital geometric information.
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	 5.	 Flexible alignment: Performs affine transformation to best fit an image 
of a biological system onto a different instance of the same [15].

9.3.2	 Geometry Processing

After passing the input raw image through the modules of the image-processing 
unit, an improved image is obtained on which the geometry-processing routines 
are applied. The modules encapsulated in this unit are dedicated to better under-
standing the features of the model in order to improve the topological and geo-
metric qualities that help in producing a correct meshed model of the domains 
of interest.

	 1.	 Surface extraction: Geometry extraction from the imaging data is done 
either by using contouring [16,17] or by reconstructing a piecewise tri-
angulated or higher-order surface model from the boundary voxels of 
the segmented regions [18–20].

	 2.	 Curation and filtering: The initial surface model extracted from the 
imaging data has topological anomalies, namely, small components, 
spurious noisy features, and the like. The algorithms developed to cure 
the model of such anomalies include point cloud regularization [21], 
and volumetric primal and dual space feature quantification [22,23].

	 3.	 Segmentation: Geometric segmentation of an initial model often leads to 
better understanding of the quality of the model in terms of its topology 
N-d geometry. We have developed a geometry segmentation module 
based on the distance function induced by the geometry under investi-
gation [22].

	 4.	 Skeletonization: The skeletal feature of a model provides a lower-di-
mensional description of a geometry that is helpful in building further 
meshed models of the anatomy, as was utilized in Zhang et al. [24]. We 
have developed a skeletonization algorithm that extracts a polylinear or 
polygonal skeletal structure from the geometric model [25] and further 
helps in annotating the shape into tubular or flat regions.

	 5.	 Meshing: The task of meshing is primarily divided into two parts—
boundary element and finite element meshing. Each part has three sub-
parts depending on if the resulting mesh is linear or higher order. For 
boundary element meshing, we have three options, namely, triangle or 
quadrilateral meshing [26], B-spline meshing, and A-spline meshing 
[27]. Similarly, for finite element meshing, we also have developed three 
different meshing modules, namely, tetrahedral or hexahedral meshing 
[26,28], solid nonuniform rational B-spline (NURBS) meshing [24], and 
A-spline meshing [29].

© 2009 by Taylor & Francis Group, LLC
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9.4	GO VERNING EQUATIONS

The governing state equations of the control system are built around the Pennes 
bioheat transfer model.

Find the spatially and temporally varying temperature field u(b,x,t) such 
that

	
r b ω bc u
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where cp and cblood are the specific heats of the tissue and blood, respectively; ua 
is the arterial temperature; ρ is the density of the tissue; and h is the coefficient 
of cooling. The constitutive equations for the thermal conductivity, k J

s m K[ ],⋅ ⋅ and 
blood perfusion, ω[ ],kg

s m3 assume a nonlinear form, as shown in Figure 9.4.
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Note that w0(x) is allowed to vary over the spatial dimension, as the blood per-
fusion within the necrotic core of a cancerous tumor or within a damaged tissue 
is expected to be significantly lower than that within the surrounding healthy 
tissue. k0(x) is also allowed to vary over the spatial dimension to capture the bio-
logical tissue heterogeneity. The isotropic laser source term, Qlaser, is of the form
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where ma and ms are laser coefficients related to laser wavelength and give the 
probability of tissue absorption and scattering of photons, respectively. P(t) is the 
laser power wattage as a function of time. For the defined bioheat transfer model, 
let b denote all the model parameters:

	 b ω ω ω ω m m≡ , , , , , , , , , ,( ( ) ˆ ( ) ˆ ( )k k k k P t a s0 1 3 3 0 1 3 3x x� � ,,x0 )
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The variational form of the Pennes equation is given below:
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(9.1)

The test function is denoted v(x,t). Notice that each of the above integrals 
is well defined given that the thermal conductivity k(u,x,b) and the perfusion 
w(u,x,b) are bounded and assuming that ∂

∂ ∈u
t L2( ).W

The goal of the temperature-based optimal control and calibration problems 
within the control loop is to find the set of model parameters that minimize 
the space–time norm of the difference between the computed temperature field 
u(b,x,t) and an ideal field uideal(x,t). The mathematical structure is formally stated 
as follows.

Find the model coefficients, b* ∈P, that produce the temperature field, u* ∈V ,  
such that
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Figure 9.4  The temperature dependence of the blood perfusion and thermal conductivity material 
data used in the Pennes model are plotted against the left axis and right axis, respectively. The values 
shown were computed using inverse techniques applied to thermal imaging.
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satisfies
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The ideal field for the calibration problem is the experimentally determined 
temperature field uexp(x,t). The ideal field for temperature-based optimal control 
is given as follows:
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The function Φ(b) is a penalty term added to the objective function used to 
keep the model parameters within physically acceptable bounds.
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The dimension of the parameter space is denoted Nparams. bi denotes a particu-
lar parameter. The physically acceptable lower and upper bounds of the param-
eter, bi, are denoted by bi

LB and bi
UB , respectively. The penalty term is scaled by  

γ = 1000.0.

9.4.1	 Discretization of Equations

The optimization problem in Equation (9.2) is solved using an adjoint method to 
compute the gradient of the quantity of interest. The following Galerkin repre-
sentation of the temperature field and adjoint variable is assumed:
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where Nstep is the number of time steps, Ndof is the number of Galerkin coefficients, 
and φi’s are the finite element shape functions of polynomial order p = 1,2,3…
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The time discretization of the power is assumed to be piecewise constant in 
time.
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The spatial variation of the parameter fields is assumed to have the following 
Galerkin representation:
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where Ψ(x) are piecewise constant across elements.

9.4.1.1	 Time Stepping

Assuming that the test function is piecewise constant in time,
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The governing equations (Equation 9.1) are solved with the following Crank-
Nicolson time-stepping scheme.
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where (using Einstein summation notation)
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The discretization (Equation 9.3) is of the form
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9.4.1.2	 Adjoint Gradient

The Adjoint Gradient of the quantity of interest is constructed from the deriva-
tive of the discretized equations with respect to a single model variable. The chain 
rule is used to compute the gradient of the quantity of interest for the optimiza-
tion. The initial condition does not depend on the model parameters, ∂

∂ =u
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The same Galerkin representation is used for uideal as u.
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Derivatives are taken with respect to the numerically computed quantity of 
interest.
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The derivative of the discretized state (Equation 9.3) with respect to a single 
model variable yields the following:
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Solving for the adjoint variable, Pk, such that
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implies that the numerical gradient of the quantity of interest may be computed 
as follows:
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9.4.2	 Calibration Results

The computational results presented in this section revisit the thermal-imaging 
data studied in Feng et al. [30] and Oden et al. [4]. The calibration algorithm pre-
sented in Section 9.4.1 is applied to these data sets to invert for the constitutive 
equation nonlinearities as well as the heterogeneity of the biological domain.

The effect of calibrating the nonlinear perfusion, w(u,x,b), and the thermal 
conductivity, k(u,x,b), parameters in the Pennes model was studied. Calibration 
was done with respect to MRTI thermal-imaging data of in vivo heating of canine 
brain tissue. The thermal-imaging data were acquired in the form of five two-
dimensional (2D) 256 × 256 pixel images every 6 seconds for 120 time steps. The 
spacing between images was 3.5 mm. A manual craniotomy of a canine skull 
was performed to allow insertion of an interstitial laser fiber to provide the heat-
ing. A template base [32] finite element mesh was generated from 36 2D 256 × 
256 pixel MRI images of the canine brain. The field view was 200 mm × 200 mm, 
with each image spaced 1 mm apart. The FEM prediction using CRC Handbook 
[31] linear material coefficients, k u W

mK( ) [ ], , = .x b 0 527  and ω b( ) [ ],u kg
sm, , = .x 6 0 3

is shown in Figure  9.5. Figure  9.6 shows the FEM prediction using calibrated 
nonlinear coefficients. A plot of the material coefficients obtained is shown in 
Figure  9.4. The data shown in Figures  9.5 and 9.6 illustrate a particular time 
instance. The upper-right windows in Figures  9.5 and 9.6 each show a cutline 
comparison of the filtered MRTI data with the unfiltered data. The upper-left 
windows in Figures 9.5 and 9.6 display an overlay of the MRTI thermal image 
onto the anatomical MRI image. The lower-left window in Figures 9.5 and 9.6 
shows a 2D temperature slice through the 3D domain. The lower-right window is 
a cutline comparison of the filtered MRTI data to the FEM prediction. The accu-
racy of the predicted FEM solution shown in Figure 9.6 was obtained by invert-
ing for the constitutive nonlinearities. The damage of the tissue is reflected in 
the decrease in perfusion for high temperatures within the damaged region and 
hyperperfusion surrounding the damaged region. As shown in Oden et al. [4], 
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the linear case captures the early time heating well, but the cutlines in Figures 9.5 
and 9.6 illustrate that the material nonlinearities are necessary to model the late 
time heat dissipation. The results presented in Figure  9.8 indicate that a spa-
tially varying inversion for the perfusion field should provide a means to further 
increase the accuracy of the FEM temperature prediction of the canine brain data 
(Figure 9.6).

Allowing the perfusion and thermal conductivity model parameters to vary 
as a spatial field is seen to have a tremendous effect on the model calibrations. 
Inverting for the spatial variation in the parameters embeds the biological tissue 

Figure 9.5  Thermal images of in vivo heating of a canine brain were taken every 6 seconds over a 
period of 12 minutes. The top left shows the anatomy with a particular time instance of the thermal 
images overlaid. The linear Pennes equation was solved using CRC Handbook [31] perfusion and thermal 
conductivity values for the canine brain, and the bottom left shows the linear finite element method  
(FEM) prediction at the same time instance for comparison. The temperature range shown is from 307 K  
to 325 K. The top right shows a cutline through the thermal image data. The unfiltered and filtered 
image data are plotted along the cutline. The bottom right compares the FEM predicted temperature and 
filtered thermal image along a cutline through the FEM mesh.
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heterogeneity within the Pennes model. Imaging data of an external laser applied 
to a tumor grown on a mouse’s hind leg were used to study the effect of the 
parameter field inversion. Sixty thermal images were acquired at an interval of 
5 seconds. A single time instance of the data is shown in Figures 9.7 and 9.8. The 
field of view is 4 × 6 cm2, and the thickness associated with the MRI and MRTI 
images is 3 mm. Figures 9.7 and 9.8 compare the FEM prediction using textbook 
linear material coefficients to the calibrated heterogeneous material coefficients 
applied to the in vivo heating of a tumor grown on a mouse. The upper-right win-
dows in Figures 9.7 and 9.8 each show a cutline comparison of the filtered MRTI 

Figure 9.6  Thermal images of in vivo heating of a canine brain were taken every 6 seconds over a 
period of 12 minutes. The top left shows the anatomy with a particular time instance of the thermal 
images overlaid. The Pennes equation was solved with a set of nonlinear perfusion and thermal con-
ductivity material coefficients that were calibrated to the thermal images, and the bottom left shows 
the nonlinear FEM prediction at the same time instance for comparison. The temperature range shown 
is from 307 K to 325 K. The top right shows a cutline through the thermal image data. The unfiltered 
and filtered image data are plotted along the cutline. The bottom right compares the FEM predicted 
temperature and filtered thermal image along a cutline through the FEM mesh.
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data with the unfiltered data. The upper-left windows in Figures 9.7 and 9.8 dis-
play an overlay of the MRTI thermal image onto the anatomical MRI image. The 
images are 49 × 56 pixels. The lower-left window in Figures 9.7 and 9.8 shows a 
2D temperature slice through the 3D domain. The lower-right window is a cut-
line comparison of the filtered MRTI data to the FEM prediction. The agreement 
between the predicted FEM solution and the MRTI thermal images shown in 
Figure 9.8 illustrates the importance of inverting for the field of material hetero-
geneity. Figure 9.8 represents a ≈4100 parameter optimization problem. Figure 9.9 

Figure 9.7  Thermal images of in vivo heating of a tumor grown on the hind leg of a mouse were 
taken every 5 seconds over a period of 5 minutes. The top left shows the anatomy with a particular time 
instance of the thermal images overlaid. The linear Pennes equation was solved using CRC Handbook of 
Mechanical Engineering [31] perfusion and thermal conductivity values for the tissue, and the bottom 
left shows the linear FEM prediction at the same time instance for comparison. The temperature range 
shown is from 307 K to 350 K. The top right shows a cutline through the thermal image data. The unfil-
tered and filtered image data are plotted along the cutline. The bottom right compares the FEM predicted 
temperature and filtered thermal image along a cutline through the FEM mesh.
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shows the optimizer evolution of the material heterogeneity inversion for the 
thermal conductivity fields and blood perfusion fields. The initial guess for the 
material coefficients was assumed homogeneous, and the optimizer determined a 
sufficient field variation of the parameters that allows the Pennes model to accu-
rately predict the temperature field seen in the thermal images. The values of the 
thermal conductivity field found by the optimizer are above the physical range 
seen in the CRC Handbook of Mechanical Engineering [31]. Future work includes 
correlating the computed inverted parameter field with the physical tissue.

Figure 9.8  Thermal images of in vivo heating of a tumor grown on the hind leg of a mouse were 
taken every 5 seconds over a period of 5 minutes. The top left shows the anatomy with a particular time 
instance of the thermal images overlaid. The Pennes equation was solved with a spatially varying field 
of perfusion and thermal conductivity material that were calibrated to the thermal images, and the bot-
tom left shows the nonlinear FEM prediction at the same time instance for comparison. ≈4100 model 
parameters were optimized to recover the material heterogeneity. The temperature range shown is from 
307 K to 350 K. The top right shows a cutline through the thermal image data. The unfiltered and filtered 
image data are plotted along the cutline. The bottom right compares the FEM predicted temperature and 
filtered thermal image along a cutline through the FEM mesh.
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Figure 9.9  Thermal-imaging data were used to drive an inverse problem to recover the biological 
tissue heterogeneity. ≈ 4100 model parameters representing the blood perfusion and thermal conduc-
tivity fields of the biological domain were optimized to allow the Pennes model to accurately predict 
the temperature field seen in the thermal images. As shown at the top of the figure, the parameter 
fields are initially assumed homogeneous. The evolution of the optimizer’s inversion for the parameter 
fields is shown. (a) and (b) show the evolution of the thermal conductivity  and blood perfusion  fields, 
respectively.
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9.5	CELL  STUDIES

Damage and heat shock protein (HSP) optimizations are based on in vitro cellu-
lar data. Due to the role of HSPs in posttraumatic cell survival, one needs to have 
proper data determining the changes in HSP expression induced by the thermal 
stress. HSPs are molecular chaperones responsible for protecting the cells from 
damage. They are normally present in both prokaryotic and eukaryotic cells in 
minimal quantities. Various stressful stimuli can lead to increased expression of 
HSPs, including, but not limited to, high or low temperature, acidosis, ischemia, 
hypoxia, and ultraviolet (UV) irradiation [33]. Denatured proteins, if bigger 
than 100 to 150 amino acids in size, cannot refold properly by themselves [34]. 
HSPs prevent improper aggregation of these damaged proteins and direct newly 
formed proteins for final packaging, degradation, and repair [35]. As mentioned 
earlier, exposure to sublethal stimuli would cause an increase in production of 
HSPs, which, in turn, would cause increased tolerance to further stress. This is a 
very important protection mechanism for cells [36]. Some members of the HSP 
family are inhibitors of apoptosis proteins. Therefore, an increase in expression 
of HSPs would lead to blocking pathways that lead to apoptosis. The preven-
tion of apoptotic death of the damaged cells would increase cell survival rates 
[37]. In cancer treatment, it lowers the response of the cells to chemotherapeutic 
agents.

The goal of thermal therapy is to ablate malignant tissue while preserving nor-
mal tissue as much as possible. To make a correct estimate of damage in malig-
nant and normal areas, one needs to have prior knowledge of the mechanics and 
kinetics of thermal damage in the appropriate cell types. This information can 
be acquired by conducting controlled stress experiments in model systems such 
as cell cultures. The subject culture can be obtained either from established cell 
lines or by establishing primary cultures from harvested tissue. These procedures 
are widely reported in the literature [38–40].

9.5.1	 Heating Protocol

The heating experiments were done on primary cultures of prostate stromal cells 
isolated from canine prostate tissue following the protocol described by Srinivasan 
et al. [38]. Controlled thermal stress is applied to culture systems by immersing 
them in a heated liquid bath. The heating medium used in our experiments con-
tains no L-glutamine, to prevent cellular damage due to production of ammonia 
secondary to breakage of L-glutamine. The heating is done in a water bath for only 
one culture flask at each given time to prevent a drop in temperature of the bath. 
In order to induce a sharp increase in the temperature of the samples, the heating 
medium is preheated to the same temperature as is desired for the heating experi-
ment itself. The flasks are washed with 37°C PBS. Preheated medium is added to 
the flasks, which are submerged in a heated water bath for the desired duration 
of heating. Then the heating medium is replaced with 37°C growth medium, and 
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the flasks are returned to the 37°C incubator. Samples are checked for viability 
60 hours postheating. At the end of this time, samples are trypsinized, and the 
cells are removed and washed in cold PBS twice and resuspended in binding 
buffer at 10 g/ml concentration. Annexin V and PI (BD Biosciences) (Franklin 
Lakes, New Jersey) are used to detect apoptotic and dead cells, respectively. The 
samples are analyzed using BD FACSCalibur (BD Biosciences). This flow cytom-
eter is used primarily for cell analysis with simultaneous acquisition of forward 
scatter, side scatter, and fluorescence. On the forward-scattering (FS) versus side-
scattering (SC) plot, the events with a low level of SC or FS are considered to be 
dead cells or debris from disintegrated cells. These events are later distinguished 
from each other using the fluorescence detected by FL 1 (filter 1 detects fluores-
cence emission centered at 530 nm; this would be able to detect the emission from 
Annexin V) and FL 2 (detects emission centered at 585 nm; this corresponds to 
emission from PI). On a dot plot of FL 1 versus FL 2, events negative for both 
are considered to be debris, whereas the events positive for either Annexin V or 
PI are counted as dead cells. Furthermore, on the FS versus SC plot, the events 
with a high level of SC and FS are considered to be live or dead cells, which later 
on would be distinguished from each other using the dot plot of FL 1 versus 
FL 2; events negative for both are considered to be live cells, and the events posi-
tive for either Annexin V or PI (or both) would be considered dead cells. Data 
analysis is performed using FlowJo 8.0 (BD Biosciences). HSP expression data 
presented here are based on the work done by Rylander et al. [35]. To determine 
the relationship between HSP expression and thermal stress, after heating the 
cell flasks by the method described above, cells lysed were in a buffer solution 
16 to 18 hours postheating, and then the supernatant was analyzed using Western 
blotting. Later, a spectrophotometer at 595 nm (Beckman DU 530) (Beckman 
Coulter, Fullerton, California) and protein dye assay (Bio-Rad 500-0002) 
(Bio-Rad, Hercules, California) were used, and the relative concentration of HSP 
to actin in the cell lysate was measured.

9.5.2	 Cell Study Results

Figure 9.10 shows the viability data for heating done at 45°C, 50°C, and 56°C for 
time durations of 5, 10, and 15 minutes. Cell viability is defined as the percentage 
of live cells in the cell culture flasks 60 hours after thermal stress. As expected, 
the higher the temperature and duration of heating, the lower the cell viability.

Rylander measurements for HSP70 (i.e., 70 kilodalton heat shock proteins) 
expression at different durations and temperatures are shown in Figure 9.11 [35]. As 
can be seen, the HSP expression increases for each given temperature up to a cer-
tain duration of heating, after which it drops sharply. Figure 9.12 shows Rylander 
et al. [35] cell viability data for different time durations and temperatures.

The goal of our experiments is to find the ideal duration and temperature that 
maximizes trauma in tumoral cells and minimizes damage in the normal region. 
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To study the effect of cell viability and HSP expression, Rylander et al. [41] have 
introduced a figure of merit (FOM), which is defined as follows:
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9.6	CELL  DAMAGE MODELS

Thermal damage processes in cells and tissues are usually quantified by kinetic 
models based on a first-order rate process to characterize pathological transfor-
mation to specific states by observable alterations such as coagulation or desicca-
tion. While the Arrhenius law is commonly used to describe the rate of chemical 
reactions involving temperature [42,43], Henriques and Moritz were the first to 
propose a model of this form in 1947 to quantify thermal damage specifically for 
tissue [44,45]. The thermal injury associated with exposing cells to hyperthermia 
conditions is generally predicted using the Arrhenius law based on the assump-
tion that the rate of cell damage is proportional to exp(–Ea/Ru), where Ea is the 
activation energy (or the heat of activation), R the universal gas constant, and u 
the temperature in degrees Kelvin [46], with a few exceptions (e.g., Roti Roti and 
Henle [47]).

Although thermal damage models based on the Arrhenius law are widely 
used, the model possesses some inherent limitations, which include its inabil-
ity to predict cellular injury over a wide hyperthermic temperature range and 
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Figure 9.12  Cell viability following variable duration of thermal stress for temperatures of (a) 44°C, 
(b) 46°C, (c) 48°C, and (d) 50°C measured at t = 1, 24, 48, and 72 hours postheating. The average error 
is ±3%, and the number of samples = 3 [35].
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throughout the entire heating process, its sensitivity to small changes in parame-
ters, and the ambiguity in interpretation of model parameters characterizing the 
cell damage formulation. In fact, several basic questions can be raised. How do 
cells essentially respond to temperature? Why does the rate of thermal damage 
follow the first-order unimolecular chemical reaction? What is the biophysical 
interpretation of both parameters in the Arrhenius model? Some answers related 
to these questions may be found in Lepock [48], Pearce and Thomsen [49], and 
Philibert [50]. However, further investigation is warranted due to the complexity 
of these questions.

Experimental data [41,51] suggest that there are at least two transitional tem-
peratures (“break points”) at 43°C and 52°C in the temperature range from 39°C 
to 60°C. A different injury mechanism may be initiated at each of these tempera-
tures. At the cellular or subcellular level, the sigmoidal phenomenon observed in 
the cell viability profile could be related to the melting of oligomers that occurs 
in DNA molecules [52], or due to the damage of the lipid bilayer of cell mem-
branes. Although phospholipids are the major components of the bilayer, it is 
worth noting that other lipid components in the bilayer such as dodecanoic and 
tetradecanoic acids have melting temperatures of 44.2°C and 53.9°C, respectively 
[53]. Cells initially exhibit resistance to the thermal damage due to the induction 
of heat shock proteins by sublethal temperatures as autoregulatory mechanisms. 
With increases in temperature or extended exposure times, the heat shock pro-
teins that participate in the rescue process are denatured and rendered nonfunc-
tional. This phenomenon can be observed in measured cell viability data in which 
the cell damage rate is initially slow, followed by an injury rate dominated by  
exponential decay [41].

Usually, the Arrhenius model permits fitting of data solely within the expo-
nential decay region of the curve where cell viability is plummeting due to exten-
sive injury, but is not able to accommodate the “shoulder region” characterized 
by sustained high cell viability encountered in the initial stages of the heating 
process for lower temperatures. Cells exposed to u < 54°C experience high via-
bility initially for a range of exposure times until a threshold thermal dose is 
achieved to initiate cellular injury and a corresponding decline in cell viabil-
ity. In general, although it depends on cell line and temperature, cell viability 
profiles in this temperature range initially exhibit a shoulder region where cell 
viability remains high until a threshold lethal thermal dose is achieved to initi-
ate rapid declines in cell viability. The Arrhenius model is capable of predicting 
the complete injury phenomena for cells exposed to u < 54°C, where thermal 
dose is substantial at short exposure times, causing rapid declines in cell viability 
immediately following thermal stress. However, three sets of injury parameters 
are required for different temperature regimes (u < 43°C, 43°C ≤ u ≤ 54°C, and 
u > 54°C) in order to permit accurate fitting of cellular injury data for the entire 
range of temperatures.
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An additional problem with the thermal damage model based on the Arrhenius 
model is its numerical sensitivity of model parameters to small changes in mea-
surement data. As a result, therapeutic outcomes could be compromised if the 
treatment planning is based on such models.

To overcome the weaknesses of the Arrhenius model described above, other 
types of models have been proposed for thermal damage of cells and tissues. 
These include models that are derived using statistical methods [54], an enzyme 
denaturation approach [55], and widely used kinetic theory [51,56–59]. For a dis-
cussion of various cell damage models, He and Bischof [46] provide a compre-
hensive review. Most of these models, however, relate thermal damage to the rate 
process in such a way that the rate of change with respect to temperature and 
time are decoupled.

In a recent study [60], a two-state model of in vitro cell death due to ther-
mal insult is derived based on simple arguments motivated by classical statis-
tical thermodynamics. This model characterizes two populations of viable 
(live) and damaged (dead) cells, which leads to the damaged cell population 
of the form C u t G ku G ku( ) ( ) ( ( ), = -D / / + -D /exp exp1  or, alternatively, C(u,  t) = 
1
2

1
2 2+ -D /tanh( ),G ku where k is the Boltzmann constant and ∆G is interpreted 

as a change in a functional analogous to a classical Gibbs free energy, depending 
on both temperature and exposure time. We postulate that ∆G is a linear function 
of time and is inversely proportional to temperature. To determine ∆G, we use cell 
viability data for human prostate cancerous (PC3) and normal (RWPE-1) cells to 
calibrate the two-state cell damage model derived in this study. Excellent agree-
ment between experimental data and the derived model is obtained through 
least-squares regression. As compared to the Arrhenius model, the two-state 
model captures the damage process more accurately over a wide hyperthermic 
temperature range, including the beginning phase (the shoulder region) when 
cells are first exposed to the heat shock. Also, the model successfully character-
izes the sigmoidal phenomenon of the cell response.

9.6.1	 Two-State Cell Damage Model

Consider a cell population with two distinct states (i.e., a cell is either live or 
dead). We apply classical arguments of statistical thermodynamics to derive a 
two-state model for cell damage under hyperthermia conditions. In an in vitro 
system of the fixed population of total n cells, we assume that there are only two 
species of cells in this population: dead or dying cells (including apoptotic and 
necrotic cells), and live cells.

Based on the standard argument of statistical thermodynamics, the following 
results for a two-state population can be obtained [60]:

	
C u t e

e
D u t

e

G ku

G ku G ku
( ) ( ), =

+
, =

+

-D /

-D / -D /1
1

1
and

	
(9.4)
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or, equivalently,

	
C u t G ku( ) tanh( ), = + -D /1

2
1
2

2
	

(9.5)

	
D u t C u t G ku( ) ( ) tanh( ), = - , = - -D /1 1

2
1
2

2
	

(9.6)

where C(u,t) is the cell viability function and D(u,t) is the cell damage function. 
Inspired by statistical thermodynamics, we let ∆G = ∆H – u∆S and postulate that 
∆H is a constant and ∆S a linear function in time (i.e., ∆S = aot + bo). The notions 
of ∆G, ∆H, and ∆S are chosen to mimic changes in Gibbs free energy, enthalpy, 
and entropy.

Based on the results in Equation (9.4), the cell viability function C(u,t) can also 
be defined as a solution to the following system of partial differential equations:

	

∂ ,
∂

= ⋅ ,
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∂ ,
∂

= ⋅ ,
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2 11+


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

 -D /e G ku 	

(9.7)

where h = ∆H/k, a = ao/k, and b = bo/k are constants. If e–∆G/ku is very small, then 
1 + e–∆G/ku ≈ 1 and Equation (9.7) can be approximated by
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∂
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(9.8)

9.6.2	 Parameter Estimation

To determine ∆G, we let ∆G = ∆H – u∆S and ∆S = aot + bo, where u and t are tem-
perature and time, respectively, and ∆H, ao, and bo are constants. Then the first 
equation in Equation (9.7) can be converted to

	

D = D - D = - ,
,







G
ku

H u S
ku

C u t
C u t

ln ( )
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(9.9)

In other words,
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(9.10)
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For simplicity, let h = (∆H)/k, a = ao/k, and b = bo/k. Suppose that there are 
m × n experimental data points for cell viability C u t m n( , ), , ,� � � …= ×1 (i.e., m 
temperature measurement points with n exposure time for each temperature). 
Denote by z the function z = ln[(1 – C(u,t))/C(u,t)], then the data points ( , , ),u t z� � �  
� …= ×1, ,m n  can be plotted in three-dimensional (3D) space with respect to 1/u 
and t.

At each point ( , , ),u t z� � � Equation (9.10) can be rewritten as

	
h

u
t z m n1 1

�
� � � …







- - = , = , , ×a b
	

(9.11)

where parameters h, a, and b are to be determined by the standard least-squares 
regression using measurement data. Figure 9.13 illustrates that the transforma-
tion by introducing the z-variable converts a curved surface representing cell 
viability into a flat plane in 3D space. The 2D projections on the C – 1/u and C – t 
planes are also presented on Figure 9.13.

We summarize the algorithmic steps of parameter estimation for the two-
state models as follows:

	 1.	 Compute z C u t C u t i m j ni j i j� … … �= - , / , = , , = , , =ln[( ( )) ( )], ; ;1 1 1 11, , ×… m n.
	 2.	 Plot data points z� versus time t and 1/u on a 3D graph.
	 3.	 Use bilinear regression to find the coefficients: h, a, and b.
	 4.	 The resulting coefficients are used directly in the model (Equation 9.4).

Since the range of C u t( ) [ ],, ∈ ,0 1 we need to exclude initial points C(ui,0) = 1, 
i = 1,…, m, in the least-squares regression process. This will not affect the final 
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Figure 9.13  Two-dimensional projections of (a) the Arrhenius model and (b) the two-state model.

© 2009 by Taylor & Francis Group, LLC



		  Computational Infrastructure	 335

results because the initial conditions in the original form (Equation 9.4) are auto-
matically satisfied.

As a comparison, we also list the major steps to establish the Arrhenius 
model:

	 1.	 Plot data points C(ui,tj) versus time for all i m j n= , , = , ,1 1… …; .
	 2.	 Determine time ti such that C u % i mi i( ) ( ), ., = . W = = , ,τ 36 8 1 1�
	 3.	 Plot data points (ln )τi iu, /1  on a 2D graph, i m= , ,1… .
	 4.	 Use linear regression to find the slope and (ln t)-intercept.
	 5.	 The resulting slope is Ea/R, and the (ln t)-intercept is ln A.

Next, we discuss the major differences and similarities between two cell dam-
age models.

9.6.3	 Model Comparison between the Arrhenius Model  
and the Two-State Model

The cell damage index Ω is defined as usual. When the cell viability function 
C(u,t) is normalized and C(u,0) is set to one, we have Ω = –ln C(u,t). Recall that 
the Arrhenius model assumes that the cell damage rate is proportional to the 
rate of reaction k u e

Ea
Ru( ) .= -  Thus, the cell damage index based on the Arrhenius 

model is

	
W = ∫

-

0

t

Ae d
Ea

Ru( )τ τ
	

(9.12)

where t is the total exposure time and A is a constant that is often referred to as 
the frequency factor [49]. If temperature is kept constant during the entire expo-
sure time t, then

	 W =
-

At e
Ea

Ru
	 (9.13)

In order to compare the Arrhenius model with the two-state model, we rewrite 
Equations (9.15) and (9.12) in terms of cell viability in a differential form:
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(9.14)

Therefore, the Arrhenius model is an approximation to the two-state model when 
e G Ru-D / �1 with different choices of parameters.
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Note that both functions C(u,t) and D(u,t) depend on ∆G, which is a func-
tion of temperature and time involving parameters that will be determined by 
experiments. In addition, it is important to recognize that the variable t is treated 
simply as a label for a continuous sequence of quasistatic states during heating.

9.7	SENS ITIVITY STUDY

When creating a high-fidelity bioheat transfer model meant for prediction, a cru-
cial element is capturing the heating source accurately. In the case of laser ther-
apy, this mainly involves modeling the laser fluence in the tissue correctly. While 
there are two standard ways of modeling this—analytically or by using a Monte 
Carlo method—they both depend on three optical parameters of interest: the 
absorption coefficient, ma; the scattering coefficient, ms; and the anisotropic fac-
tor, g. Respectively, these give the average number of photons that are absorbed 
per unit length, the average number of photons scattered per unit length, and 
the expected value of the cosine of the scattering angle. In living tissue, each 
of these parameters is truly a function of space, light wavelength, and tempera-
ture. However, the way in which they are obtained experimentally usually limits 
them to functions of wavelength only, though the temperature can sometimes be 
accounted for. The model being presented in this chapter is currently implement-
ing these parameters as functions of wavelength, and thus (since a single wave-
length is used during treatment) leaving them constant throughout the entire 
simulation. Experiments have been done by Nau et al., however, showing that as 
the temperature increases, these parameters do not remain constant [61]. As the 
treatment being considered is meant to increase the temperature in the modeling 
region, it seems that this effect should most definitely be captured. However, the 
Pennes bioheat transfer model highly diffuses the heat in the domain. Thus, there 
is a question of whether the change in the heat source parameters will affect the 
overall heating profile enough to warrant modeling them as functions of tem-
perature instead of constants. A sensitivity study was conducted to answer this 
question, the results of which are given here.

	
W = ,

,






ln ( )
( )

C u
C u t

0

	
(9.15)

Laser fluence terms are generally obtained in one of two ways: analytically 
or via a Monte Carlo method. When capturing fluence analytically, a diffusion 
theory must be used, and generally many simplifying assumptions are made 
regarding boundary conditions and the source geometry. However, once the 
equation form is found, it is differentiable and easily calculated for different sets 
of parameters. Generally, the diffusion theory assumption, which states that the 
light radiance is mostly isotropic but for a small perturbation in one direction, 
holds when the source is not collimated and far from a boundary of two layers 
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with very different refraction indices or optical parameters (i.e., tissue and air). 
In contrast, the Monte Carlo method allows for a more accurate handling of 
boundary conditions and source geometries.

However, once the fluence is found for one set of parameters, there is no easy 
way to convert it into the fluence for another set of parameters; the entire simula-
tion must be run again. Their differences make them appropriate or necessary 
for different situations; analytic solutions are appropriate for interstitial diffuse 
lasers, while Monte Carlo solutions are necessary, for high accuracy, when mod-
eling laser beams incident to a flat surface.

In the experiments done for this research, despite the specific interest in inter-
stitial tumors, both topical and interstitial lasers have been used. Since different 
source terms should be used for these situations, the sensitivity study presented 
here considers both an analytic solution as well as a Monte Carlo solution. In 
particular, the analytic fluence term considered is

	
Φ( ) ( )r

r

r

=
-

3
4

P t e
tr

eff

m
π

m

where P is the power, m m mtr a sg= + -( ) ,1  and m m meff a tr= 3 .  This is derived as 
a solution to the transport equation as a spherically isotropic point source. The 
Monte Carlo fluence used follows the algorithm in Welch and van Gemert [62] 
incorporating a Gaussian initialization profile of a 1/r2 radius of 2 cm with 3 million  
photons for each simulation. For each of the source terms, the sensitivity was 
analyzed by running many simulations with each, varying one parameter while 
holding the others constant. Original values of parameters were ma = 2.15 [1/cm], 
ms = 14.2 [1/cm], and g = 0.7. The squared L2 space–time norm of the temperature 
field was then calculated as the quantity of interest and plotted. The squared L2 
norm used is given here:

	 0

2T

u t d dt∫ ∫ ,
W

( )x x

The different simulations were all run on a mesh representing a tumor on the 
leg of a mouse, a setup that is admittedly more appropriate for the Monte Carlo 
approach due to the boundary interface. Use of the isotropic source term, how-
ever, is not inappropriate for the purposes of this study since the general changes 
in the model’s predictions are what are of interest. Figures  9.14 and 9.15 each 
show representative snapshots of the temperature profiles. The snapshots are each 
at time step 40, equivalent to 3 minutes and 20 seconds of heating.

The general effects of changing these parameters, which can be seen in 
Figures 9.14 and 9.15, are the same for both source terms. Higher values of ma 
and ms are associated with an increase in heating, whereas an increase in g is 
associated with a decrease in heating. However, the relative increase or decrease 
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Figure 9.14  All images here show the temperature field generated with a Monte Carlo source term 
at time step 40, equivalent to 3 minutes and 20 seconds of heating. Line (a) contains images from 
simulations using values of ma = 0.44, 3.14, and 5.0 [1/cm], respectively. Line (b) contains images 
from simulations using values of ms = 1, 11, and 25 [1/cm], respectively. And line (c) contains 
images from simulations using values of g = 0, 0.5, and 0.99, respectively. Original values of the 
parameters are ma = 2.15, ms = 14.2, and g = 0.7. Temperature is given in degrees of Kelvin.
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Figure 9.15  All images here show the temperature field generated with an isotropic source term 
at time step 40, equivalent to 3 minutes and 20 seconds of heating. Line (a) contains images from 
simulations using values of ma = 0.44, 3.14, and 5.0 [1/cm], respectively. Line (b) contains images 
from simulations using values of ms = 1, 11, and 25 [1/cm], respectively. And line (c) contains 
images from simulations using values of g = 0, 0.5, and 0.99, respectively. Original values of the 
parameters are ma = 2.15, ms = 14.2, and g = 0.7. Temperature is given in degrees Kelvin.
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in temperature does appear to be different for the two source terms. The graphs 
in Figure 9.16a,b show the values of the quantity of interest, the L2 norm, gen-
erated in each simulation and graphically show the general effects mentioned 
above. As a remark, the Monte Carlo simulations have produced more heating 
than the analogous isotropic simulations because the source is assumed to be 
2 cm in diameter, whereas the isotropic source was merely at a point.
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Figure 9.16  (a) Sensitivity plots for the isotropic source term simulations. (b) Sensitivity plots for the 
Monte Carlo source term simulations.
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These graphs indicate that the model’s sensitivity to the parameters, for both 
source terms, is for the most part linear. For the range tested here, the linear 
regression slopes are given in Table 9.1. It can be argued from these results that 
in the isotropic case, both the parameters ms and ma may be treated as functions 
of wavelength only, but that g may need to be a function of temperature as well. 
However, in the Monte Carlo case, while ms can still remain just a function of 
wavelength, both ma and g should be dependent on temperature.

9.8	CONCLUS IONS AND FUTURE DIRECTIONs

Every aspect of the control system is operational and has been tested on a 1% 
agar phantom material. This testing represents a project milestone. The phantom 
material has provided an animal-free method of testing and debugging the entire 
control system. The phantom is meshed, it is registered, the computers in Austin 
control the heating, thermal images of the heating are acquired and sent to HP3d, 
HP3d calibrates and optimizes the model parameters, and, finally, a visualiza-
tion of the entire process is provided in Houston. Figure 9.17a shows a particular 
time instance of heating of the phantom with an external collimated source. For 

Table 9.1  Linear Regression Slopes of Plotted Sensitivities

Monte Carlo   Isotropic
 

ma 4.95 0.398
ms .071 0.017
g –1.55 –1.09
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Figure 9.17  (a) 3D volume rendering of MRI and MRTI images at a selected time instance. The phan-
tom geometry is shown in grayscale, and the thermal image is overlaid. The color bar illustrates the 
temperature range. (b) Isosurface visualization of MRI images of the geometry of the phantom material. 
The fiducial used to mark the laser probe for the FEM calculations are also shown.
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this particular test, the thermal images were mainly used to periodically update 
the initial condition of the FEM computation in real time. After each update, the 
calculations proceeded to predict all the way to the end of the treatment. On cur-
rent parallel computing architectures, the prediction capabilities seen are that 10 
seconds of computation time at high-performance computing facilities provide 
≈40 to 50 seconds’ worth of prediction. Figure 9.17b conveys the geometry of the 
phantom, as seen by an isosurface visualization of the MRI images. A fiducial 
marking the external laser position is shown above the phantom. This is used to 
obtain the coordinates of the laser tip in the FEM calculations.

The next milestone on the horizon for this multidisciplinary effort is to per-
form an in vivo trial of the control system. Current results indicate that it is indeed 
feasible to accurately control the bioheat transfer through real-time imaging and 
computational prediction. The culmination of adaptive hp finite element technol-
ogy implemented on parallel computing architectures, modern data transfer and 
visualization infrastructure, thermal-imaging modalities, and cellular damage 
mechanisms as cancer treatment tools will provide a very powerful methodology 
for planning and optimizing thermal therapy delivery for cancer treatments.
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