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Abstract This chapter describes the development of a canonical dynamic data
driven predictive control system for MR-guided laser induced thermal therapies
(MRELITT) of focal cancerous lesions within soft tissue. The predictive ability of
computational models combined with advanced clinical imaging modalities is ex-
ploited to plan, predict, control, and optimize the treatment outcome. The system
is under continual development and embodies a cyberinfrastructure comprised of
Magnetic Resonance Thermal Imaging (MRTI), computer visualization, laser op-
tics, high-speed networks, nonlinear dynamic bioheat transfer models of heteroge-
neous tissue, adaptive meshing, high-performance parallel computing, cell-damage
models, inverse analysis, calibration, model validation, signal processing, optimal
control algorithms, and error estimation and control. These diverse technologies
and systems are connected across a high-speed computational grid connecting re-
mote sites 150 miles apart and is an excellent example of a Dynamic Data Driven
Application System (DDDAS).
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1 Introduction

Laser induced thermal therapy (LITT) is a minimally invasive procedure that re-
places the scalpel of conventional surgery and the ionizing radiation of radiosurgery
with a <2mm laser diode applicator minus the typical side effects and morbidity. A
specially designed laser fiber is delivered stereotactically or under real-time image-
guidance to the site of a tumor and the fundamental idea is that when the laser heats
the tumor cells to a certain point, the cells are damaged and die. The heating portion
of the procedure takes only a few minutes. MR-guided LITT (MRgLITT) is per-
formed under thermal image monitoring using magnetic resonance thermal imaging
(MRTTI). The thermal images provide a quantitative treatment time estimate of the
lethality of the thermal dose received by the tumor and surrounding healthy tissue.
MRgLITT has recently entered into patient use [4]; multiple clinical trials within
the United States are currently on-going for an FDA cleared MRgLITT system that
utilizes real-time temperature imaging feedback and dosimetry (Visualase®), Visu-
alase, Inc. Houston, TX) and at least one trial for another system (AutoLITT, Mon-
teris Medical, Cleveland, Ohio) is being conducted under an investigational device
exemption (IDE).

While real-time temperature monitoring provides invaluable treatment-time
feedback that makes the procedure safe and feasible once a laser applicator
has been placed, innovations in human assisted high performance computa-
tional tools using this feedback are under development to plan, control, pre-
dict, and optimize the anticipated biological response to dramatically increase
treatment efficacy and reduce associated treatment morbidity and even reduce
recurrence of the disease.

DDDAS aims at developing a computational system that dynamically interacts
with medical imaging technology for the predictive guidance and control of medical
procedures. It is a monumentally important development that could enhance many
fields of medical science. The unique dynamic closed loop control system presented
by the predictive capabilities of computational simulation coupled with real-time
multi-planar image guidance as feedback has significant potential to facilitate a
reliable minimally invasive treatment modality that delivers an optimized thermal
dose prescribed by the physician. The control system developed in this work, Fig-
ure 1, employs a cyberinfrastructure [1] of magnetic resonance thermal imaging,
computer visualization, laser optics, high-speed networks, nonlinear dynamic bio-
heat transfer models of heterogeneous tissue, adaptive meshing, high-performance
parallel computing, cell-damage and heat-shock protein models, inverse analysis,
calibration, model validation, signal processing, optimal control algorithms, and er-
ror estimation and control. A computational grid connects two remote arenas over
a high bandwidth network; an imaging and laser treatment arena that manages the
thermal data and laser source and a computational arena that uses parallel com-
puting algorithms to generate and solve computational models of bioheat transfer
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Fig. 1 Computer driven MRgLITT communication architecture applied to in vivo canine prostate.
A data server is the central point of interaction with the physical surgical procedure. The data
server retrieves the multi-planar thermal imaging data and modulates the laser power. The data
server sends thermal images to the compute server and receives laser power updates over time. The
thermal images are used by the compute server to update model predictions and optimize control
parameters. A visualization of the multi-planar thermal images is provided at the top left. The
finite element prediction of the temperature field and the desired treatment objective with multiple
temperature versus distance profiles is shown at the top right.

and visualization software to interactively visualize the procedure. The governing
Pennes bioheat transfer constrained optimization equations are reviewed in Sec-
tion 2. The workflow and treatment protocols of the computer driven MRgLITT
DDDAS research are described in the Section 3. Milestone results of current MR-
gLITT DDDAS research is recapitulated in Section 4. This chapter concludes with
the authors’ vision of the future direction towards realizing this technology within a
general clinical setting.

2 Governing Equations

The equations of bioheat transfer and light transport within laser-irradiated tissue
are the fundamental equations used in this work. Elements of continuum mechan-
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ics, thermodynamics, anatomy, and physiology are coalesced within the field of bio-
heat transfer. Biological heat transfer may include conduction, convection, radiation,
metabolism, and evaporation. However, the defining characteristic is the biological
heat transfer between blood and tissue; blood flow through the complex vascula-
ture networks embedded in tissue may act as a significant heat sink in MRgLITT.
The seminal development of the equations of bioheat transfer are attributed to the
work of Pennes [20] in 1948. The original Pennes model describes bioheat transfer
as the conservation of energy applied to a motionless non-deforming homogeneous
mass of human tissue. The model does not allow mass flux across the boundary and
assumes a uniform heat source based on on the perfusion of blood throughout the
tissue. Pennes model has been shown to provide very accurate predictions of bio-
logical heat transfer [5, 8, 10, 18, 22, 27]. We employ a nonlinear modification of
the Pennes model and allow the thermal conductivity and perfusion model parame-
ters to vary spatially. The initial boundary value model is defined by the following
system:

0 .
pcpa—l: =V (k(x)Vu) + ©(X)Cprood (4 — ug) = Qaser(X,1)  in Q2

exp(—Hess X —xo[|) Her = Ha+ is(1—g)
47||x — xo| Lers = \/3taller
—k(u,x)Vu-n=h(u— o) on dQ¢ (1)
—k(u,x)Vu-n=9¥¢ on dQy
u(x,0) = u° in Q

Qlaser(xvt) = 3I')(t),ua.lJ«tr

The measured baseline body temperature is taken as the initial temperature field, u°.
The density of the continuum, p, is homogeneous and the cp;,,4 denotes the specific
heat. On the Cauchy boundary, dQ¢, u.. is the ambient temperature and # is the co-
efficient of cooling. ¢ denotes the prescribed heat flux on the Neumann boundary,
dQy. The classical spherically symmetric isotropic solution to the transport equa-
tion of light within a laser-irradiated tissue [26] is used to model optical-thermal
response to the laser source, Qjus.r(X,#). The anisotropic factor is denoted g and xg
denotes the position of laser photon source. P(¢) is the laser power as a function
of time, U, and U are laser coefficients related to laser wavelength and give prob-
ability of absorption and scattering of photons, respectively. The perfusion, ®(x),
and thermal conductivity, k(x), are allowed to vary spatially within a local region of
interest, r &~ 1c¢m, around the laser source.

ko(x) = ko, x¢ P (x) ®) y, x & Br(x)
ko(x), x€ Br(x) wy(x), x € B (x)

The main problems of the control system are the optimal control of the laser
source and the calibration of the model parameters with respect to thermal imaging
data. The mathematical structure of the calibration and optimal control problems
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both fall within the framework of PDE constrained optimization: Find the set of
model parameters 3*, that minimizes a given objective function, Q, over a parameter
manifold, P,

Find B* € Ps.t.
Q(u(B*),B") = ég{)Q(u(ﬁ)yﬁ)

Where  may represent any subset of the model parameters available for optimiza-
tion, perfusion, thermal conductivity, and laser parameters are highlighted in (1),
and the objective function, Q, is of the form of the L,(0,7;L,(£)) norm of the
difference between the predicted temperature field, u(x,#) and an ideal temperature
field u'9ea!(x,1).

1 .
0u(1)) = 3 )~ ,0) 2 47 ()
= %/_Q/ (u(x,t) —uideal(x,t))2 dtdx
AT

where dx = dx;dx>dx; is a volume element and the time interval of interest is de-
noted AT. 1'% may represent the thermal imaging data for the calibration problem
or a desired thermal dose for the optimal control problem. A quasi-Newton opti-
mization solver [3] is used for the PDE constrained optimization problems. The
gradient of the objective function (2) is computed using an adjoint method. The
derivation of the gradient may be found in [11, 19].

(@)

3 Simulation Guided MRgLITT Workflow

An overview of the continually evolving treatment workflow is provided in Table 1.
T and T>-weighted MRI is the definitive imaging modality for seeing the prostate
anatomy and surrounding critical structures. This, in addition to the ability to pro-

Table 1 Treatment Workflow

Image Acquisition Geometry Extraction
Pretreatment Optimizations Surgeon Interaction
Model Predictions
Registration Patient Specific Calibrations

Treatment Setup Model Predictions Treatment Day Updates

Real-Time Monitoring
Model Updates Model Control of Delivery
Post Treatment Prediction Validation

Inter-operative

vide real-time feedback and post-treatment imaging verification of delivery make
it an ideal “one-stop-shop” for thermal therapy in the prostate. Several days prior
to treatment, the anatomy, the prostate in this case, is scanned using a clinical MR
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scanner. This pre-operative, anatomical data is used to create a 3D finite element
representation of the geometry of the anatomy, Figure 2. A pipeline of software is
used to segment the anatomy, create a faceted surface representation, and generate
a high-quality finite element mesh. An experienced user must identify and extract
the geometry from the pre-operative images. The facetted surface represents a 3D
manifold that is then used to create a volumetric finite element mesh.

3D prostate

coronal sagittal

Fig. 2 Anatomical imaging to hexahedral finite element mesh pipeline. The anatomy of interest is
labeled for segmentation. The prostate is labeled using a subset of the axial images. The anatomy
labels are displayed in the coronal and sagittal planes as well to ensure 3D conformity to the
boundary of the anatomy. The labeled voxels corresponding to the prostate are displayed in 3D and
a facetted triangulation representing the boundary of the prostate is generated. The intersection of
a structured grid and the volume enclosed by the interior of the facetted surface is the base of the
hexahedral mesh. The surface of the initial hexahedral mesh is projected toward the boundary of
the prostate and the mesh is smoothed.

Given the finite element mesh of the anatomy, initial optimal laser parameters are
identified such as the location of the endpoint of the optical fiber and laser power as
a function of time. Prior to treatment, mock simulations of the therapy are performed
using tabulated bioheat transfer data, Figure 3, and allow the physician to tune the
computed optimal delivery. The laser is placed in the prostate using a stereotactic
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guide. An actively cooled applicator with 980nm diffusing tip fiber is used to de-
liver therapy. Laser power is controlled by sending updated powers to the Visualase
control system in real-time. The guide, laser, and Visualase control system are all
manufactured by BioTex, Inc., Houston, TX. The initial parameters are corrected

Temp °C
40.000

Fig. 3 Computer guided treatment planning. A fiducial marked treatment template is registered
to planning images and used to guide the laser applicator. Prior to the procedure, trial simulations
of the thermal delivery may be simulated to evaluate the effect of the desired thermal dose to
surrounding critical structures. Virtual repositioning of the laser reduces the morbidity associated
with physically repositioning the applicator.

during the calibration phase of the process using MRTI generated thermal imaging
data. Developed over the past decade, MRTI technology is a modification of ex-
isting MRI technology to use temperature sensitive echo planar imaging sequences
to acquire larger imaging volumes in the same time with comparable temperature
sensitivity and to provide a time varying multi-planar temperature field in the living
tissue. The treatment control system is guided by simulations performed at the com-
putational modeling arena. The simulation tools embed thermal imaging data within
a Pennes bioheat transfer model constrained optimization framework. Through ac-
curate computer prediction, the bioheat transfer response may be controlled through
a collection of imaging based measurements about how the complex physiological
system is responding to the surgery and make treatment plan updates based on an
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intelligent understanding of the physiological pathways to affect the surgical out-
come.

U

Tirrie; 140.0

Fig. 4 Model calibration using homogeneous and heterogeneous model parameters. A particular
time instance of the thermal imaging data used to drive the model calibrations is shown at the top.
The uncalibrated model begins with homogeneous model parameters with different coefficients
in the neighborhood of the laser tip, left center. Isotherms of the initial uncalibrated temperature
prediction are spherical, as expected from a homogeneous media with a isotropic source term,
lower left. As the optimization process recovers spatially varying thermal parameters, center right,
isotherms of the model prediction are no longer spherical and are in significantly much better
agreement with the thermal imaging data. The difference in the temperature profiles are provided
in Figure 5.

4 Results

The DDDAS infrastructure for MRgLITT has been successfully tested in vivo ca-
nine prostate. The laser induced thermal therapy was performed at M.D. Anderson
Cancer Center (MDACC) in Houston, Texas. A non-destructive calibration laser
pulse was used to acquire intra-operative real time thermal imaging data of the heat-
ing and cooling and calibrate the computational models of bioheat transfer. The bio-
heat transfer was controlled to within 5°C of the predetermined treatment plan us-
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ing the calibrated models implemented on supercomputers over a distance of 150mi
from the treatment site. Real-time remote visualization of the anatomical data, ther-
mal imaging data, FEM prediction, and model parameters of the on-going treatment
was provided. The computational requirements imposed an 18 minute treatment
time; 3 minutes for delivery of a low power training pulse, 5 minutes of actual ther-
apeutic exposure, and the rest for synchronization and computational overhead. Post
operative histology of the canine prostate reveals that the damage region was within
the targeted 1.2cm diameter treatment objective. See [11, 13] for further technical
details.

In vivo experiments thus far have utilized homogeneous parameter calibration
techniques. Heterogeneous model calibration involving thousands of model param-
eters have been shown to deliver model predictions of unprecedented accuracy [6].
Recent work has demonstrated the feasibility of converging to a solution of a het-
erogeneous Pennes PDE constrained optimization problem with thousands of model
parameters on the scale of minutes [12]. Figure 4 shows the effect of calibrating the
tissue models as a heterogeneous linearly conductive media. Allowing the biologi-
cal thermal properties to vary spatially provides a means to achieve patient specific
accuracy in the model prediction. Temperature profiles comparing the difference in
the thermal imaging data and model predictions is provided in Figure 5.

10

temperature [C]

5k
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Fig. 5 The difference in the uncalibrated and calibrated temperature profiles predicted by the
model. The temperature difference and distance are given in units of degrees Celsius and millime-
ters, respectively. The position of the top, middle, and bottom profiles are shown in Figure 4. The
pointwise difference between the thermal image data and finite element prediction pre- and post-
calibration is compared. Similar color graph lines represent corresponding profiles of the calibrated
and uncalibrated predictions.
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5 Discussion and Future Direction

Results have demonstrated the feasibility of designing simulation protocols and
methodologies that interact with thermal imaging modalities and provide real-time
control of thermal therapies for cancer treatment in a clinical setting. Calibration
pulses prior to delivery of the thermal insult can be used to recover heterogeneous
biothermal parameters on a patient specific basis. The predictive ability of com-
putational models can be exploited to predict, control, and optimize the treatment.
All necessary technologies to realize computer driven MRgLITT within a clinical
setting setting currently exist; magnetic resonance thermal imaging, computer vi-
sualization, laser optics, high-speed networks, nonlinear dynamic bioheat transfer
models of heterogeneous tissue, adaptive meshing, high-performance parallel com-
puting, cell-damage and heat-shock protein models, inverse analysis, calibration,
model validation, signal processing, optimal control algorithms, and error estima-
tion and control. A substantial effort is currently underway to package these tech-
nologies into streamlined computational tools similar to those that exist for stereo-
tactic radiosurgery [25].

A suite of hierarchical computational tools for MRgLITT is being developed,
Figure 6. Computational tools for prospective 3D treatment planning of MRgLITT
forms the software foundation. Tools for prospective treatment planning are a neces-
sary precursor to existing online temperature monitoring technologies. A significant
software development effort is needed to streamline protocols and computational
visualization interfaces to interact with existing stereotactic technology for treat-
ment time positioning of the thermal applicator. For example, for thermal therapy of
prostate, fiducials on the applicator can be registered to planning images and three
dimensional visualizations of the anatomy, using either segmented surfaces or vol-
ume visualization techniques. The visualizations can provide depth perception for
applicator insertion superior to current methodologies that use a series of 2D slices
and have led to applicator insertion that can damage surrounding tissues. Further,
given the projected applicator position, the thermal dose to the targeted lesion and
other critical structures, seminal vesicles, rectum, bladder, may be simulated. Visu-
alization of the percentage of target tissue predicted to have a lethal thermal damage
by an Arrhenius model or a two-state model [9] with respect to the desired plan and
visualization of surrounding structures, Figure 7, may reveal the necessity of repo-
sitioning the laser or early laser power cutoff. The software interface is a crucial
component of the system. A user-friendly and portable software infrastructure that
will cleanly interact with a variety of commercial imaging modalities will provide
a reproducible means of therapy and allow the construction of multi-institutional
trials to evaluate this therapy versus conventional modalities.

A substantial amount of work is needed to retrospectively validate and verify the
software predictions in phantoms and in vivo; the validated models can then be used
to answer important therapeutic questions and evaluate the efficacy of the tool for
deciding the placement and number of fibers needed to safely and effectively treat
a target volume and decrease the need for retreatment and repositioning. Models
that recover the patient specific thermal parameters have demonstrated significant
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Fig. 6 The translational research involved to realize computer driven MRgLITT within a clinical
setting will build upon a hierarchy of methodologies and technologies each increasing in complex-
ity. The customized graphical user interface for visualizing and monitoring thermal image feedback
along with computational predictions for pre-treatment planning provides the software foundation.
The natural next layer of technology is provided by robust software for automated control of the
thermal therapy delivery modality and updating the computational models on a patient specific ba-
sis. Software for uncertainty quantification-based decisions and control provides the final step; the
degree of confidence in the treatment success, including percentage of target lesion destroyed and
an estimated damage to nearby critical structures, will allow surgical oncologists to make informed
decisions.

potential in accurately predicting the bioheat transfer and have even been shown to
compensate for modeling inaccuracies in the thermal source term. Experiments can
be conducted that validate the spatially varying thermal parameters recovered by
inverse problems against the actual local physical values. These experiments will
require accurate modeling of the laser fluence distribution beyond that provided the
isotropic source term presented in this work; either a Monte Carlo source [21] or
delta-P[7] model must be used. Physiological factors that locally change the per-
fusion levels can have a dramatic effect on the upper lesion size limits. Given an
expected perfusion rate and the expected upper limit on lesion size, the necessity of
using multiple laser applicators may be evaluated. Further, the efficacy in terms of
conformal thermal dose and cost of multiple laser applicators can be compared to
that obtained using a high laser power from a single applicator. Because of the uses
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of laser for therapy delivery, the use of nanoshells may play an important role in the
future; an effective distribution of nanoshells that enhances the thermal properties
of the media combined with a high laser power may prove to deliver an equivalent
lethal conformal thermal dose as multiple applicators.

Fig. 7 Post Treatment validation. Post treatment contrast that enhances the 7} properties of the
tissue may be used to validate the damage predicted by an Arrhenius damage model. Using 3D
visualization techniques, the damage region may be shown in perspective to the target tissue and
surrounding structures.

As the planning software matures and is clinically validated, the computational
performance and methodologies will be optimized for computer guided real-time
delivery and control. The target of real-time control is to deliver a lethal thermal
dose that conforms to the target lesion. Imaging feedback must be used with laser
applicator(s) to update the bioheat transfer models to the biological thermal proper-
ties of the patient. The models will modulate the power delivered by applicator(s)
to deliver a conformal lethal dose. Problems inherent to computer driven MRgLITT
have been posed as PDE constrained optimization problems; within the perspective
of a clinical setting, the overhead associated with the solution to these inverse prob-
lems requires at least an order of magnitude speedup to allow treatment protocol
design that is able to calibrate and recompute optimal parameters instantaneously.
Alternative frameworks are being explored, such as state space control theory, to
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achieve the required performance. The likely solution will be a coalescence of mul-
tiple frameworks.

Finally, the mathematical modeling and optimization of the treatment must be
extended beyond traditional computational capabilities of single deterministic pre-
diction to realistic stochastic systems. Stochastic computational approaches em-
body useful statistical information within expected values and standard deviations
of predicted treatment outcomes that are clinically familiar to physicians. Computa-
tional methodologies must be developed under an uncertainty quantification frame-
work [24, 14] that anticipates and accounts for potential complications concerning a
given treatment. Uncertainty that may arise in the model prediction from any com-
bination of possible inaccuracies in the probe placement, unaligned registration,
or inaccurate patient model parameters will be propagated in the model prediction
to statistically characterize the treatment. Under the stochastic framework, the MR-
gLITT computational tools will provide a degree of confidence in the computational
predictions directly proportional to the quality of the patient specific model param-
eters known at LITT time.

DDDAS methodologies combined with minimally invasive approaches to
surgery have significant potential to dramatically improve cancer therapies
and enhance the quality of life of cancer patients. A few of the many factors
and complexities that must be overcome to advance this particular DDDAS
implementation within a clinical setting has been presented. Current work fo-
cuses on LITT and MRTT as the thermal and imaging modalities, but the tech-
nology developed is adaptable to other MR-guided thermal therapies, such as
focused ultrasound. Computationally, changing the thermal source or imaging
modality amounts to utilizing a different source term in the governing PDE or
adjoint problem, respectively. We are optimistic that these methodologies of
computer modeling and simulation interacting with medical technologies have
the potential to be extended to many target tissues and significantly enhance
many areas of thermal therapy, including RF, microwave, ultrasound, and even
cryotherapy applicators.
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