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Adaptive Real-Time Bioheat Transfer Models for
Computer-Driven MR-Guided Laser Induced

Thermal Therapy
David Fuentes, Yusheng Feng, Andrew Elliott, Anil Shetty, Roger J. McNichols, J. Tinsley Oden, and R. J. Stafford∗

Abstract—The treatment times of laser induced thermal ther-
apies (LITT) guided by computational prediction are determined
by the convergence behavior of partial differential equation (PDE)-
constrained optimization problems. In this paper, we investigate the
convergence behavior of a bioheat transfer constrained calibration
problem to assess the feasibility of applying to real-time patient
specific data. The calibration techniques utilize multiplanar ther-
mal images obtained from the nondestructive in vivo heating of
canine prostate. The calibration techniques attempt to adaptively
recover the biothermal heterogeneities within the tissue on a
patient-specific level and results in a formidable PDE constrained
optimization problem to be solved in real time. A comprehen-
sive calibration study is performed with both homogeneous and
spatially heterogeneous biothermal model parameters with and
without constitutive nonlinearities. Initial results presented here
indicate that the calibration problems involving the inverse solu-
tion of thousands of model parameters can converge to a solution
within three minutes and decrease the ‖ · ‖2

L2 (0 ,T ;L2 (Ω)) norm of
the difference between computational prediction and the measured
temperature values to a patient-specific regime.

Index Terms—Magnetic resonance (MR) temperature imaging,
PDE-constrained optimization, real-time computing.

I. INTRODUCTION

THE FEASIBILITY of developing an adaptive feedback
control system which uses dynamic multiplanar magnetic

resonance imaging (MRI) temperature measurements to adap-
tively conform delivery of therapy to the prescribed treatment
plan in real-time during MR-guided laser induced thermal ther-
apy has been demonstrated [9]. The cyberinfrastructure [1], [6]
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inherent to the control system relies critically on the precise real-
time orchestration of large-scale parallel computing, high-speed
data transfer, a diode laser, dynamic imaging, visualizations,
inverse-analysis algorithms, registration, and mesh generation.
We demonstrated that this integrated technology has significant
potential to facilitate a reliable minimally invasive treatment
modality that delivers a precise, predictable and controllable
thermal dose prescribed by oncologists and surgeons. How-
ever, MR-guided LITT (MRgLITT) has just recently entered
into patient use [4] and substantial translational research and
validation is needed to fully realize the potential of this technol-
ogy [18], [21] within a clinical setting. The natural progression
of the computer-driven MRgLITT technology will begin with
prospective pretreatment planning. Future innovations on the
delivery side will likely involve combining robotic manipula-
tion of fiber location within the applicator as well as multiple
treatment applicators firing simultaneously.

Currently, the workflow of our treatment protocols are di-
vided into data acquisition, computational, and delivery phases.
This paper focuses on the computational aspects of model cal-
ibration. A schematic of the procedure setup and workflow is
provided in Figs. 1 and 2, respectively. Heterogeneous model
calibration involving thousands of model parameters have been
shown to deliver model predictions of unprecedented accu-
racy [7]. The goal of this study is to evaluate the feasibility of
real-time patient specific heterogeneous model calibration for
both linear and nonlinear constitutive models. Such calibrations
are critical for maintaining the predictive power of the simula-
tion during therapy and therefore in maximizing the efficiency
of the therapy control loop. We briefly review the governing
PDE-constrained optimization equations, present our results,
and discuss the higher level implications for real-time control of
MR-guided LITT as well as milestones within the translational
research.

II. CALIBRATION PROBLEM

The problem of bioheat transfer model calibration is to
determine the set of thermal parameters that minimize the
L2(0, T ;L2(Ω)) norm of the difference between the predicted
temperature field, u(x, t) and the temperature field observed
in vivo thermal images of the experiment uMRTI(x, t). In our
experiments, the MR temperature imaging (MRTI) data is ac-
quired using a 2-D multislice temperature sensitive echo planar
imaging sequence collecting five planes of temperature sensi-
tive images every 5 s [19] on a 1.5 T MRI scanner. The cost
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Fig. 1. Schematic diagram of in vivo MR-guided LITT calibration procedure
in a canine model of prostate. Contrast-enhanced T1-W MR images have been
volume rendered to better visualize the relationship of the target volume and
applicator trajectory to the surrounding anatomy. As displayed, the subject
was stabilized in the supine position with legs upward. A stainless steel stylet
was used to insert the laser catheter consisting of a 700 µm core diameter,
1 cm diffusing-tip silica fiber within a 2-mm diameter water-cooled catheter
(light gray cylinder). A nondestructive calibration pulse is applied under MR
temperature monitoring. A volume rendering of the multiplanar thermal images
(in ◦C) is registered and fused with the 3-D anatomy to visualize the 3-D volume
of therapy.

function is then

Q(u(x, t)) =
1
2
‖u(x, t) − uMRTI(x, t)‖2

L2 (∆T ;L2 (Ω))

=
1
2

∫
Ω

∫
∆T

(
u(x, t) − uMRTI(x, t)

)2
dtdx (1)

where dx = dx1dx2dx3 being a volume element and the time
interval of interest is denoted by ∆T . The simulation of the
time evolution of temperature field within the biological domain
is constrained by the classical Pennes model [16] of bioheat
transfer with a isotropic laser heat source.

Pennes model has been shown to provide very accurate pre-
diction of bioheat transfer [5], [14], [23] and is used as the basis
of the finite element prediction. The full initial boundary value
model is defined by the following system:

ρcp
∂u

∂t
−∇ · (k(u,x)∇u)

+ ω(u,x)cb(u − ua) = Qlaser(x, t), [in Ω]

Qlaser(x, t) = 3P (t)µaµtr
exp(−µeff ‖x − x0‖)

4π‖x − x0‖

µtr = µa + µs(1 − g), µeff =
√

3µaµtr

− k(u,x)∇u · n = G, on ∂ΩN

− k(u,x)∇u · n = h(u − u∞), on ∂ΩC . (2)

The initial temperature field u(x, 0) = u0 is taken as the mea-
sured baseline body temperature. The density of the contin-
uum is denoted ρ and the specific heat of blood is denoted
cb [J(kg · K)−1 ]. On the Cauchy boundary ∂ΩC , h is the coef-
ficient of cooling and u∞ is the ambient temperature. The pre-
scribed heat flux, on the Neumann boundary ∂ΩN , is denoted
G. The optical-thermal response to the laser source, Qlaser(x, t),
is modeled as the classical spherically symmetric isotropic so-
lution to the transport equation of light within a laser-irradiated
tissue [22]. P (t) is the laser power as a function of time, µa

and µs are laser coefficients related to laser wavelength and
give probability of absorption and scattering of photons, respec-
tively. The anisotropic factor is denoted g and x0 denotes the
position of laser photon source. The scalar-valued coefficient of
thermal conductivity is modeled with a nonlinear temperature
relation

k(u,x) = k0(x) + k1 atan(k2(u − k3))

where k0(x)[J(s · m · K)−1 ], k1 [J(s · m · K)−1 ], k2 [1/K],
k3 [K] ∈ R. Perfusion is modeled with a nonlinear dependence
on temperature (see Fig. 3)

ω(u,x) = ω0(x) +
wN + wD

2

+
2
π




wI − wN

2
atan(w2(u − wN I ))

−wI − wD

2
atan(w2(u − wID ))




where ω0 [kg/(s · m3)], ωN [kg/(s · m3)], ωI [kg/(s · m3)],
ωD [kg/(s · m3)], ω2 [1/K], ωN I [K], ωID [K] ∈ R. The assumed
perfusion model is an extension of the constitutive model used
in [15] and attempts to recover the observed physiological ef-
fects of perfused tissue.

During a thermal therapy, the applied heat begins to dilate the
vasculature at a temperature of ωN I and the normal value of the
perfusion ωN increases to a state of hyper perfusion ωI . Beyond
a critical threshold temperature ωID , the vasculature is damaged
and a reduced amount of perfusion is seen, which is denoted by
ωD . In addition to modeling the vasculature breakdown above a
temperature threshold, the perfusion model attempts to capture
the expected hyper-perfusion under hyperthermia conditions.
The linear components of the perfusion, ω0(x), and thermal
conductivity, k0(x), are allowed to vary spatially within a local
region of interest r = 1cm, around the laser source

k0(u,x) =
{

k0 , x /∈ Br (x)
k0(x), x ∈ Br (x)

ω0(x) =
{

ω0 , x /∈ Br (x)
ω0(x), x ∈ Br (x).

Constitutive model data used is summarized in Table I. For the
data in this study, the heating is localized to a ≈1 cm diameter
region about the diffusing interstitial fiber tip and is not sig-
nificantly influenced by the boundary during delivery. Hence,
zero flux boundary conditions are used, G = 0 and ∂ΩC = ∅.
The perfusion and thermal conductivities, highlighted in (2),
are recovered from the calibration computation. The linear het-
erogeneous model and the nonlinear constitutive models are
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Fig. 2. Schematic diagram of procedure workflow. An axial slice cut from the principle treatment plane demonstrates a 2-D representation of the local heating
in that slice. The full field of view shown is 240 mm × 240 mm (scale on image in mm). Multiplanar thermal image data is projected onto a finite element
representation of the prostate and used to calibrate a model of the bioheat transfer. The predictive power of the calibrated model may be exploited for further
planning and treatment optimization.

TABLE 1
CONSTITUTIVE DATA [8], [22]

included in the parameter space explored by the optimization
scheme.

We employ a limited-memory variable metric that arises in a
quasi-Newton optimization method [3] to drive the calibration
problem. Using an adjoint method, the gradient of the objective
function (1) with u the solution of (2) can be written as [15]

∇Q =




−
∫ T

0

∫
Ω

∂k(u)
∂k0

∇u · ∇p k̂0(x) dxdt

−
∫ T

0

∫
Ω

∂k(u)
∂k1

∇u · ∇p k̂1 dxdt

−
∫ T

0

∫
Ω

∂k(u)
∂k2

∇u · ∇p k̂2 dxdt

−
∫ T

0

∫
Ω

∂k(u)
∂k3

∇u · ∇p k̂3 dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ω0

(u − ua)p ω̂0(x) dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ωN

(u − ua)p ω̂N dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ωI

(u − ua)p ω̂I dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ωD

(u − ua)p ω̂D dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ω2

(u − ua)p ω̂2 dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ωN I

(u − ua)p ω̂N I dxdt

−
∫ T

0

∫
Ω

∂ω (u)
∂ωI D

(u − ua)p ω̂ID dxdt




.

Here p is the solution to the adjoint problem and k̂0(x), k̂1 , k̂2 ,
k̂3 , ω̂0(x), ω̂N , ω̂I , ω̂D , ω̂2 , ω̂N I , ω̂ID are model parameter test
functions.

III. EXPERIMENTAL SETUP

In vivo MR-guided LITT experiments were performed
at The University of Texas M.D. Anderson Cancer Center,
Houston, Texas. Handling of the canine was in accordance with
an Institutional Animal Care and Use Committee approved pro-

Fig. 3. Nonlinear dependence of perfusion on temperature. As shown
ω0 (x) = 0.

tocol. General anesthesia was induced utilizing meditomidine
(0.5 mg/kg, intramuscular) and 2% isoflurane was used to main-
tain general anesthesia throughout the duration of the experi-
ment. The experimental configuration for the calibration study
is illustrated conceptually in Fig. 1. A finite element method
(FEM) mesh of the full prostate anatomy for treatment planning
(see Fig. 1) was created using preoperative axial imaging data of
the canine prostate and the neighboring anatomy. Two first-order
hexahedral meshes were used in the study. The lower resolution
mesh consisted of 8817 elements and 9344 nodes and the higher
resolution mesh consisted of 22 376 elements and 24 539 nodes.
The meshes consisted of 8 and 12 elements across the diameter
of the heating region, respectively. An example of the lower
mesh resolution is provided in the cutplanes shown in Fig. 4(a).

Axial and coronal planning images were acquired and used
in conjunction with fiducials on a planning template to guide
the position of the laser fiber before applying the power.
All images were acquired on a clinical 1.5-T MR scan-
ner (Excite HD, GEHT, Waukesha, WI) equipped with high-
performance gradients (40 mT·m−1maximum amplitude and
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Fig. 4. (a) Cutplane though the FE prostate model illustrating the postcalibration temperature prediction of Pennes model. The cutplane shown is intersecting
and coplanar with the catheter. The temperature is given in (◦C). Mesh lines illustrate the mesh resolution. Profiles along the x-, y-, and z-axis are taken with
respect to the displayed orientation. The thermal image history along the y-axis is shown in Fig. 5(b). The postcalibration error between the predicted temperature
and the thermal image temperature along the x-axis is shown in Fig. 5. A cutplane through the error field u − uM RTI is shown in (◦C). (b) Precalibration and (c)
postcalibration errors for comparison. The plotted error is seen to be significantly reduced postcalibration.

Fig. 5. Time-varying plots of the postcalibration pointwise error in the model
prediction, u − uM RTI , along the x-axis of Fig. 4(a) and of the thermal image
data along the y-axis of Fig. 4(a). The temperature and distance are given in
degree Celsius and millimeter, respectively. The units of time are provided with
respect to the time duration of the 5 W calibration pulse = 60 s = ∆t. Iso-error
lines (a) and temperature isotherms (b) are projected onto the time-distance
plane. The DICOM coordinate of the laser tip along each cutline x0 =−3 mm
and y0 =−5 mm, is labeled as a reference.

150 T · m−1 · s−1 maximum slew rate) and fast receiver hard-
ware (bandwidth± 500 MHz). A stainless steel stylet was used
for inserting the laser catheter, 400 µm core diameter silica
fiber in a water-cooled diffused tip catheter (Visualase Inc.
Houston, TX). The location of the laser, in DICOM coordinates,
was established from the intra-operative images and used in the

calibration simulations. A region of the prostate of an anes-
thetized dog was heated with a nondestructive test pulse from
an interstitial laser fiber (980 nm; 5 W for 60 s) housed in an
actively cooled applicator≡ ∆t. The diffusing interstitial laser
source is expected to emit a uniform and homogeneous fluence.
Real-time multiplanar MRTI based on the temperature depen-
dence of the proton resonance frequency (PRF) [11] monitored
the heating and cooling phases of the laser test pulse. The ON/OFF

times of the laser were known and controlled by the software
so that a priori knowledge of beam on and off time was known.
The pulse-repetition frequency (PRF) technique uses a complex
phase subtraction technique; each consecutive phase image is
subtracted from a baseline image that was acquired prior to
heating [19]. These phase difference images are proportional
to temperature difference ∆u. To convert phase to temperature,
other factors including echo time (15 ms), water proton reso-
nance frequency (63.87 MHz), and the temperature sensitivity
of the water proton (−0.0097 ppm/◦C [11]) are required. The
image acquisition time of the thermal imaging data in this study
is five planes of complex image data every 5 s. In addition to a
spatial median-deriche filtering pipeline, a space-time filter was
also applied to the thermal imaging data; if the thermal data at a
pixel changes by more than 11 ◦C it is considered noise and fil-
tered. The 11 ◦C threshold is based on rates of heating observed
in previous in vivo experiments in conjunction with the a priori
knowledge that we are acquiring via a low power test pulse.

IV. RESULTS

A calibration study to refine simulation parameters was per-
formed varying the amount of thermal imaging data used in the
objective function (1) as a function of the heating pulse time
∆t ≡ 60 s. The performance of the metric chosen for the op-
timization process was studied in terms of the time window of
data used and the effect on the final value of the space time norm
between the data and the model prediction over the time window
∆T = (0, 2.0∆t). The metrics considered were the space time
norm between the data and the model over five time intervals of
interest: ∆T = (0, 0.5∆t), (0, 1.0∆t), (0, 1.5∆t), (0, 2.0∆t),
and (1.0∆t, 2.0∆t). The time intervals ∆T = (0, 0.5∆t) and
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Fig. 6. Comparison of cutplanes through the (a) measured MR temperature
image and (b) precalibration and postcalibration calibration finite element pre-
diction is shown. The cutplanes are taken at the same axial position within the
anatomy; the plane is 3 mm from the plane that contains the catheter. The tem-
perature scale is shown in (◦C). A reference of the axial position is provided in
the 3-D insert of (a). At the time instance shown the prostate has been exposed
to a dose of 5 W for 55 s, ≈ 0.9∆t. The calibration problem involves recovering
the spatially varying thermal properties within a small neighborhood around the
laser tip. The illustration shown in (b) represents the inverse problem recovery
of ≈ 3700 model parameters and allows for the non isotropic heating contours
shown. (top, middle, and bottom) Cutlines (a) are used to compare the pointwise
thermal image temperature and precalibration and postcalibration finite element
prediction of the temperature versus cutline distance Fig. 7.

(0, 1.0∆t) were chosen to study the effect of using only the heat-
ing phase for the calibration calculations. The time intervals ∆T
= (0, 1.5∆t) and (0, 2.0∆t) captures the heating and cooling
of the in vivo tissue. The time interval ∆T = (1.0∆t, 0, 2.0∆t)
attempts to eliminate the laser source and isolate the tissue-
specific properties from the calibration problem and account
only for the cooling of the tissue. Moreover, the behavior of
the calibration problem was studied using homogeneous model
coefficients versus heterogeneous model coefficients with and
without the nonlinearities of the constitutive relationships for
the perfusion and thermal conductivity.

A postnonlinear, heterogeneous calibration comparison be-
tween the Pennes model and thermal imaging data projected
onto the finite element mesh is given in Figs. 4 and 5, respec-
tively. Fig. 4 compares a cutplane that intersects the expected

Fig. 7. Cutlines as in Fig. 6(a) are used to compare the pointwise thermal
image temperature and precalibration and postcalibration finite element predic-
tion of the temperature versus cutline distance (top, middle, and bottom). The
profiles illustrate the effect of the heterogeneity. Uncalibrated, the cutlines are
symmetric; calibrated, cutlines demonstrate an asymmetric heating. Graph lines
are color-coded to represent the corresponding profile for thermal image and
FEM prediction.

plane of highest heating pre and postcalibration. The hetero-
geneous tissue property recovery allows for the nonisotropic
heating contours observed in the Pennes model prediction [see
Fig. 4(a)]. The relative position of the temperature profiles and
temperature history (see Fig. 5) are shown in Fig. 4(a). The
temperature–time history during the cooling agrees with the
exponential decay of the temperature expected from a classi-
cal separation of variables solution to the linear heat equation.
The calibrated model prediction shows good agreement with the
thermal images. The main source of disagreement in the point-
wise error [see Figs. 4(a) and 5(a)] can be attributed to noise in
the thermal imaging data away from the laser probe. However,
the average standard deviation of preheating thermal images
measured in a 5 × 5 × 5 pixel ROI within the contralateral lobe
of the prostate was 1.53 ◦C.

The benefit of utilizing spatially heterogeneous techniques
for model calibration is shown in Figs. 6 and 7, respectively.
Corresponding cutplanes through the uncalibrated model pre-
diction with homogeneous coefficients is compared to the cal-
ibrated model prediction with heterogeneous coefficients [see
Fig. 6(b)]. The corresponding thermal imaging data is provided
for a reference [see Fig. 6(a)]. The model prediction with homo-
geneous coefficient is seen to create spherical isotherms; this is
expected from an isotopic source. Model predictions with het-
erogeneous coefficients are seen able to recapitulate the structure
of the isotherms in the thermal imaging data. This phenomenon
is further illustrated in the temperature profiles provided in
Fig. 7. Profiles through the homogeneous case are symmetric
about the axis of heating as expected, but profiles through the
heterogeneous case are asymmetric and better agree with the
thermal imaging data.

A comprehensive summary of the calibration study is pro-
vided in Fig. 8. The study was done at two discretizations
of the geometry, 9344 DOF and 24 539 DOF using linear
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Fig. 8. Summary of a calibration study using various time windows of ther-
mal image information is shown. The power versus time profile of the cal-
ibration pulse is shown in the insert; the pulse is held constant at 5 W for
∆t = 60 s and then turned OFF. The study compares the effect of using
the ‖ · ‖2

L 2 (0 ,0 .5∆ t ;L 2 (Ω )) , ‖ · ‖2
L 2 (0 ,1 .0∆ t ;L 2 (Ω )) , ‖ · ‖2

L 2 (0 ,1 .5∆ t ;L 2 (Ω )) ,

‖ · ‖2
L 2 (0 ,2 .0∆ t ;L 2 (Ω )) , ‖ · ‖2

L 2 (∆ t ,2 .0∆ t ;L 2 (Ω )) norms for the calibration
problem. The metric of the comparison is the full space–time norm
‖ · ‖2

L 2 (0 ,2∆ t ;L 2 (Ω )) of the difference between the thermal image data and
the finite element comparison. The initial preoptimization value of the objective
function is provided as a reference for the relative decrease. Different initial
thermal conductivity and perfusion distributions for the heterogeneous and ho-
mogeneous solve account for the initial discrepancy in the objective function.
The plot demonstrates that the optimal amount of thermal image information
to use in the calibration problem is 1.5× pulse duration. This suggests that the
calibration process can be implemented in near real-time with minimal impact
on latency in the feedback control paradigm.

homogeneous model coefficients, nonlinear homogeneous co-
efficients, heterogeneous linear coefficients, and heterogeneous
nonlinear coefficients. The linear homogeneous, nonlinear ho-
mogeneous, heterogeneous linear, and heterogeneous nonlinear
cases resulted in 2/2 DOF, 11/11 DOF, 937/3723 DOF, and
946/3731 DOF for the optimization problem; respectively, at
the two model discretizations studied. The space–time norm
over the entirety of the data was used as the basis for compar-
ison, i.e., for ∆T = (0, 0.5∆t) the model was calibrated using
the ‖ · ‖2

L2 (0,0.5∆t;L2 (Ω)) objective function and then propagated
over the entire time interval ∆T = (0, 2.0∆t) as a metric for
comparison against other data time intervals. The initial precali-
bration value of the objective function is provided as a reference.
Results indicate that using a data interval ∆T = (0, 1.5∆t) for
the calibration problem provides the greatest objective func-
tion decrease for the least amount of computational work and
is thus optimal in terms of computation efficiently. The benefit
for using the heterogeneous calibration over the homogeneous
calibration is clearly in the difference of the magnitude of the
objective function (1), however, the benefit of the constitutive
nonlinearities is not as dramatic.

The observed objective function convergence history for se-
lected calibration problems is presented in Fig. 9. The graph
is intended to convey the general convergence behavior of
the breadth of the calibration problems studied. The num-
ber function evaluations required for convergence of the cal-
ibration problem for homogeneous and heterogeneous mod-

Fig. 9. Number of function evaluations required for convergence of the quasi-
Newton optimization method used in the calibration study is shown. The graph
is intended to convey the general convergence behavior observed from the
breadth of the calibration problems studied. The PDE constrained optimization
problems are seen to have converged to their minimum within an average of
20 function evaluations. This data can be used to estimate the time required
for a real-time calibration. Surgery protocols should allow time to complete 20
function-gradient computations for the calibration phase. The objective function
values as a function of iteration number is shown in the insert to illustrate the
typical convergence behavior observed.

els coefficients with and without constitutive nonlinearities is
shown for the (0, 0.5∆t), (0, 1.0∆t), (0, 1.5∆t), (0, 2.0∆t),
and (1.0∆t, 2.0∆t) time windows. The insert of Fig. 9 shows
the convergence trend of the optimizer for the linear homoge-
neous case with heterogeneous model coefficients at the highest
resolution considered in this study. The two significant decreases
in the objective function seen in Fig. 9 were typically associated
first with a large change in the thermal conductivity followed by
a change in the perfusion. On average, the optimizer is seen to
have converged by twenty function-gradient computations. As
observed in the insert of Fig. 9, the calibration problem appears
to converge well before the typical relative and absolute value
optimization convergence metrics are reached. The metric used
to report the convergence in Fig. 9 was weakened to a form (3)
that retrospectively looks at the history and uses the relative dif-
ference between the absolute minimum-overconverged function
value obtained Qminimum and the starting value Qinitial

Qinitial − Qconverged

Qinitial − Qminimum
< 1.5%. (3)

For a particular problem, when Qconverged satisfies (3), con-
vergence is reached. Results provide an estimate that the lower
bound wall clock time needed for a real-time patient-specific
calibration computation is 3 min (for this particular study);
90 s worth of simulation for a function-gradient computation
takes 9 s [9], multiplied by twenty objective function-gradient
computations needed for convergence.

V. DISCUSSION AND CONCLUSION

Calibration of the model based on accounting for spatial het-
erogeneities in the tissue produce much greater improvements in
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predicted temperature than upgrading terms in nonlinear consti-
tutive equations assuming homogeneous tissue. This suggests
an effective constitutive alternative to modeling the nonlinear
bioheat transfer observed in soft tissue. In light of the fact that
this study was limited to homogeneous constitutive nonlineari-
ties, the benefit of allowing for a spatially varying constitutive
nonlinearity in the calibration is not clear. Linear model het-
erogeneities provide a dramatic increase in the model predic-
tion. The possible relative increase in model accuracy obtained
by adding spatially varying constitutive nonlinearities does not
seem to be worth the cost of implementation. The tissue behaves
as a heterogeneous but linearly conductive media.

The thermal source in this study was modeled as isotropic. As
illustrated by the agreement in the model prediction (see Fig. 6)
the modeling error in the laser source appears to have been
compensated by the spatially varying thermal parameter field.
Further work is needed to differentiate the extent of effects of
the actual tissue heterogeneity, the photon distribution emitted
from the laser, and the cooling systems typically accompanying
laser applicators. Preliminary computations of the effect of the
laser fiber active cooling system have shown substantial effects
on the resulting thermal distribution.

In summary, results demonstrate that a calibration pulse prior
to MRgLITT can be used to substantially increase modeling
accuracy for delivery prediction. Further, results indicate the
existence of a critical time interval of the calibration objective
function beyond which further use of data provides diminishing
returns. This observation combined with the relatively limited
amount of function-gradient computations needed for conver-
gence (see Fig. 9) provides an achievable strict upper bound
on the computational time needed to converge to a calibrated
Pennes model; this may be used as a reference for computer
guided MRgLITT protocol design. However, within the per-
spective of a clinical setting, the overhead associated with the
computation of the calibration problem needs an order of mag-
nitude speedup. Significant algorithmic changes are needed to
achieve this level of performance. One possible method, that is
even more suitable for dynamic feedback, is suggested by the
presented data. The smaller time windows did decrease the ob-
jective function, even though not dramatically. These relatively
computationally inexpensive problems may be used as initial
conditions for the full calibration problems of interest and the
overhead of implementing the necessary complex data struc-
tures would be beneficial. We hope that these results help guide
independent in vivo experiments and translational research on
the path to realizing the model calibration aspect of computer
guided LITT technology within a clinical setting.
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