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SUMMARY

The main objective of this work is to identify spurious effects and propose a corrective method when
coupling a particle model involving long-range interaction potentials with a first gradient homogenized
model using the Arlequin framework. The most significant spurious effects are generally created by the
so-called ghost forces that arise in coupling methods based on the minimization of a global energy
functional. They depend as well on the coupling formulation itself, on the notion of representative volume
element, and on the discretization of the continuum model. The proposed corrective technique is based
on post-processing of the approximate solution by introducing dead forces that can be systematically
evaluated and consistently inserted within the Arlequin formulation. Efficiency of the corrective procedure
is demonstrated on 1D and 2D examples. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computer simulations at the atomic scale have drawn the attention of many scientists during the
last decade [1-4] due to advances in nanotechnologies and the need to access fine-scale details in
the simulation of nanoprocesses. Needless to say, fully molecular computations are yet out of reach
with current computing resources, as realistic applications of engineering interest would require
an excessive number of degrees of freedom. To circumvent this issue, multiscale approaches have
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been advanced in recent years that allow to significantly reduce the size of such problems. To name
a few, one can list the handshake method [5], the bridging-scale method [6], or the bridging-domain
method [7], which can be viewed as an extension of the Arlequin framework proposed in [8].
Another class of multiscale methods for blending particle and continuum scales is that produced
by the quasi-continuum approach [9, 10]; however, this class of methods can be viewed as model
reduction (or coarsening) methods rather than genuine coupling methods. More recently, another
atomic-to-continuum coupling method based on the Arlequin framework has been developed for
the simulation of polymerization processes [3, 11-14]. In the static regime, the latter enforces in
the overlap zone the equality between the continuum displacement and an interpolation of the
atomistic one by means of a H !-type coupling (rather than the L2-type used in the bridging-domain
method, as it was shown in [11] that only the former does yield a well-posed problem, see also [15]
for clarifying comments). Moreover, the partition of energy is adapted to cope with the discrete
character of the atomistic model. The Arlequin framework actually provides an attractive method
for blending highly heterogeneous atomic models with continuum models as it does not assume
that the so-called Cauchy—Born hypothesis be satisfied. We note that the standard bridging-domain
method has recently been modified in [16] to be able to deal with composite materials. The
authors considered in the paper periodic structures for which they identify primary and secondary
sublattices. Only the primary particles are then constrained on the overlap region following
the Cauchy—Born rule and the secondary particles are let free with respect to the continuum
solution.

Coupling methods for atomic-to-continuum simulations may exhibit spurious effects in the
vicinity of the coupling region that may result in inaccurate numerical solutions. Spurious effects
are for example those induced by so-called ghost forces which were first observed in the context of
the quasi-continuum method [17] and numerical corrective methods [18-21] have since then been
proposed that modify the original version of the quasi-continuum method in order to reduce these
effects. The objective of the present paper is to analyze the sources and magnitude of spurious
effects for atomic-to-continuum coupling methods based on the Arlequin framework [7, 11, 12, 22]
and to propose corrective techniques, if necessary, to reduce their influence. For example, as in
the quasi-continuum method, we show that the Arlequin formulation is not immune against the
presence of ghost forces. It has also been observed that spurious effects in Arlequin-type coupling
may arise from a local loss of coercivity of the method [15]. We propose here a corrective method
that involves the introduction of extra forces that can be automatically calculated from the current
state of the particle and continuum displacements. These extra forces are added to the Arlequin
formulation by means of a partition of unity and iteratively updated until convergence through an
iterative procedure. This correction technique leads to significant improvements of the Arlequin
coupled solution when applied to one-dimensional and two-dimensional numerical examples. We
also analyze the effect of the corrective method in the case when an adaptive Arlequin approach
[13] would be considered. The question is whether it is more efficient to simply enlarge the
molecular region in order to decrease the influence of the spurious effects on the accuracy of local
quantities of interest or to employ the corrective method at an extra cost.

The paper is organized as follows. We present in Section 2 the particle and continuum models.
The Arlequin framework is briefly reviewed in Section 3. Section 4 is devoted to the descrip-
tion of the various sources of the spurious effects encountered in the Arlequin method. The
proposed corrective method to control the spurious effects is introduced in Section 5 and its effi-
ciency is demonstrated on numerical examples in Section 6. Concluding remarks are provided in
Section 7.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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2. PARTICLE AND CONTINUUM MODELS

2.1. Particle model problem

We consider a domain  in [R{d, d=1, 2, or 3, which represents a structure modeled at the
particle scale (see Figure 1). The structure consists of a set of N, particles connected to each
other by means of interatomic potentials. The initial position of particle i, i.e. its position in
the unloaded configuration, is defined by vector x;, i=1,..., N,. The system of particles in Q
is subjected to pointwise forces f; applied to each particle i, 1<i<<N,. We also suppose that
Np < N, patticles are subjected to Dirichlet boundary conditions. The new position of particle
i in the deformed configuration is defined by vector r; € R?. The displacement of the particles
is conveniently represented in compact form by means of vector z=[z;,2y,...,2ZN,] € RA*Np,
where z; =r; —X;. Throughout the paper, pairwise interactions between particles are modeled by
harmonic potentials V;;:

Vij (@i 2)) = 5kij(rij = i)’ (1)

0 is the equilibrium distance between particle i and particle j (we assume here that the

where r; i
initial configuration is at equilibrium, i.e. r?j =|x; —X;|), r;; is the current distance between particle
i and particle j (i.e. rjj=|r;—r;|=|X;+2z; —X; —%), and k;; is a positive stiffness coefficient.

The global strain energy of the system is then given by:

Np Np Np Np
E@=) ) Vij(li,lj)=52 > Vij(zi,zj) 2
i=1 j=it1 i=1j=1

The energy of the system is often approximated by introducing a cut-off distance around each
particle i. We then restrict interactions to a set .4"; of particles located in a neighborhood of
particle i such that:

Np

1
E(Z)=§Z Y Vij(zi,z)) (3)

i=1jeN;

We denote by Z'p the set of admissible displacements, that is, the subset of RY*Np made of the
displacements that verify the Dirichlet boundary conditions, and by % the subset of displacements
in R?*N» that vanish on the Dirichlet boundary. The displacement y is then obtained by solving
the minimization problem:

y=argmin W, (z) 4

ZEZfD

Figure 1. The particle domain Q.
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where W, is the potential energy of the system:

Np
Wy@)=E@)—) fi-z o)

i=1

By differentiation, the weak form of problem (4) becomes:

Find ye Zp such that B(y;z)=F(z) VzeZ (6)

where the semilinear form B(-;-) and linear form F(-) are defined as:

Ny 0E(
Byiz) =Y. — L
i=1 OYi

. ™
F(z)=) f;-7
i=1

As a model example, we shall consider throughout this work a simple 1D particle structure.
The domain QC R is made of N, particles, separated by length ¢ in the unloaded configuration,
so that

xi—xi1=f, Vi=2,...,N, 8)

We assume in this paper that the chain of particles is held fixed at x; with prescribed displacement
v1,p =0, in which case Z p = Z. Using above notations, (4) or (6) lead to the system of equations:

Y kiji—yp)=/fi, Yi=2,...,N, )

j eN;

where AN ;j={i—M;,...,i—1,i+1,...,i+M;} is the set of neighbors around particle i that lie
within the cut-off distance for the calculation of the interaction potentials. In the following, we
only consider the case where M; is the same for all particles, i.e. M;=M, i=1,...,N,. The
definition of ./"; is of course adjusted for those particles in the vicinity of the boundaries of Q.

2.2. Homogenization and continuum model

The minimization problem (4) or (6) usually becomes intractable for large numbers of particles.
However, we believe that the calculation of specific quantities of the solution can be accurately
approximated by replacing the particle model by a coarser model (e.g. continuum model) in a
subregion Q. C Q away from the region of interest. In doing so, the role of the continuum model
is to propagate only the large-scale information through Q.. The choice of this continuum model
depends on the nature of the material but should be selected as a ‘compatible’ model with the
particle model in some homogenization sense.

We suppose in this section that the loading of the particles is such that only ‘large-scale’
displacements are observable in the whole domain 2. We then describe how the particle model
can be replaced in Q by a continuum model that is derived from the former. The main idea is to
replace the discrete displacement y by a continuous field u=X—X, where X and X represent the

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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initial and current position of a point in Q. We then introduce a strain energy density w° so that
the global strain energy in the continuum region Q reads

E¢=E‘(u) =/ o (F(u))dX (10)
Q

where = 65(/ 0X =104 Vxu is the deformation gradient tensor. Selecting here linear elasticity as
our continuum model, assuming small deformations, and a linearly elastic material, the strain
energy density o is given by:

o =0 ) =1Ce):e), ew)=31(Vu+Viu) (11)

where C is the Hooke tensor and ¢ the linearized strain tensor. Other forms of strain energy,
depending on material behaviors (hyperelasticity, viscoelasticity, etc.), could alternatively be
employed (for instance, a Mooney—Rivlin material is considered in [3]).

The homogenized continuum model is obtained by assuming a specific form for C based
on macroscopic properties of the particle network (isotropy, orthotropy, etc.) and calibrating the
corresponding parameters using local measurements of the particle strain energy. When the Cauchy—
Born rule is assumed to hold, the density ° can be straightforwardly derived by interpolating the
displacements of the interior particles of an infinite structure subjected to a uniform deformation
gradient [. The density ¢ then corresponds to the averaged strain energy over a given volume of
the material. However, in cases where the Cauchy—Born rule is known not to hold, we resort to the
concept of Representative Volume Element (RVE): a macroscopic deformation gradient is applied
to the boundary of the RVE and the associated strain energy E€ is numerically computed solving
the particle model, from which the strain energy density o° is estimated. These two approaches
are illustrated on a 1D structure, for which we consider four cases (see Figure 2):

1. In the first two cases, bond stiffness coefficients are assumed uniform and the unit cell is taken
of length £. In Case 1, only nearest neighbor interactions are considered (cut-off distance

i-2 i-1 i i+1 i+2
N ~ 4 N /
B & B & B & B
ko ko kh kp ki ky kp

Figure 2. Configurations of the interatomic potentials: Cases 1 and 2 represented by bond stiffnesses k
and/or ky (top), Cases 3 and 4 represented by bond stiffnesses (k7, kf ) and/or (k“,kg) (bottom).

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
DOI: 10.1002/nme



1086 L. CHAMOIN ET AL.

Table 1. Equivalent Young’s modulus obtained with Methods 1 and 2 for the four cases considered.

Case 1 Case 2 Case 3 Case 4
ay 1B o .B
Cauchy-Born rule approach k14 (k1 +4kp)t %Z (klzkl +2k§+2kg)£
2kiky 2K | o b
RVE approach k1€ (k1 +4kp)L P (ka? +2k3+2k5)¢

equal to ¢, i.e. M =1), with inter-atomic stiffness equal to k;. In Case 2, both nearest and
next-nearest neighbor interactions are involved (cut-off distance equal to 2¢, i.e. M =2), with
inter-atomic stiffnesses equal to k; and k; respectively.

2. Inthe other two cases, a periodic distribution of the bond stiffness coefficients along the atomic
chain is assumed. In Case 3, M =1 as in Case 1, but the stiffness values are alternatively set

to k;‘ and kf . In Case 4, M =2 and the stiffness values are alternatively set to ki‘ and k{g for

the nearest neighbor interactions, and to k5 and kg for the next-nearest neighbor interactions.
The unit cell has thus a length equal to 2¢. We note that Case 1 and Case 2 are special
instances of Case 3 and Case 4, respectively.

Values of the equivalent Young’s modulus obtained from the Cauchy—Born rule (Method 1) or
from the notion of RVE (Method 2) are shown in Table I. We observe that both approaches give
identical moduli in Cases 1 and 2. In the last two cases, Method 1 provides erroneous values as the
structure fails to reach an equilibrium configuration under a homogeneous deformation. Although
it is sometimes unclear how to rigorously define a RVE for more general materials, the continuum
model will always be calibrated using the RVE approach in what follows. Two-dimensional and
three-dimensional calibration examples can be found in [3, 13].

We now establish the weak formulation of the continuum problem in domain Q. We assume
that Dirichlet boundary conditions u=up are prescribed on part 9QP of the boundary and that the
structure is subjected to tractions F€ on QY and to a body force density ¢ in Q. We introduce the
space of admissible solutions ¥ p={ve (H @)4; v=up on QP } and space of test functions
Vo={ve(H (Q))?: v=0 on QP }. The formulation of the continuum problem, when ignoring
the particle region, reads:

Find ue ¥ p such that BS(u; v)=F¢(v) VYve? (12)

with

oF
B€(u; v)=/ P): —(v)dX
Q ou

(13)
FC(V):/fC-VdX+/ F¢.vdS
Q oM
and P=0w°/0F being the first Piola—Kirchhoff tensor.
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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3. DESCRIPTION OF THE COUPLING METHOD

3.1. The Arlequin framework

The Arlequin method, which was originally developed as a general framework for coupling different
models [8, 23], has been recently applied to the case of continuum and particle models in [3, 11].
We briefly recall the main features of the approach:

1. The computational domain Q is first divided into two overlapping regions, i.e. a particle
region €, and a continuum region Q.. The overlap region is denoted by Q,=Q,NQ;
2. In Q,, energy contributions from the two models are added together by means of a partition
of unity;
3. The continuum and discrete displacements are matched in Q, with respect to some measure
defined below.
dx N,

Let N, be the number of particles in Q,, such that N, < N, and let %" p = R‘Ii)x Na and 0=R,
be the sets of trial and test functions, respectively. For the continuum model, we introduce the space
of admissible solutions as #p={ve (H (Q.))?; v=up on 6QCD } and space of test functions as
Uy={ve(H" Q)% v=0on 6Q5 }. The global potential energy of the coupled system reads:

Wl (w,u) = / o o () dx — / B u, dx — / BF-u ,dS
Q. Q. QN
1 Ny Ny '
+§Z > oA Vig(wy =) Bifi-wi, Y(W.w) e pxUp (14)

i=1jet; i=1

Parameters (oc?j, ) and (ff, ) are weight coefficients that will be described below. In order to
define the coupling operator, we introduce the space of Lagrange multipliers .# =(H LQ,))9 as
well as the following operators:

1. The prolongation operator I1: %" p —> .# which maps the discrete particle displacement into
a continuous piecewise linear displacement on Q,;

2. The restriction operator R:% p—> .# which restricts the continuous displacement field
to Q,;

3. The difference operator D: % p X % p — # such that D(w,u) = Ru—I1Iw.

We consider here a coupling operator based on the H'-norm of the displacement such that
1D (w, ll)ll?////=/Q [(D(W, u))*+7(VD(w,w)*]dX 15)

where y is a scaling factor, with corresponding inner product in ./#:

Cu. )= fQ -2y Vi Vi1dX (16)

The problem consists in searching the saddle-point of the Lagrangian:
L@ v, ))=W,"(z.v)—C(n, D(z,V)) (17)
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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It is recast as follows:

Find (w,u, )€ # p x%p x 4 such that :
By (w;z)+ B (w;v) —C(4, D(z,V)) = Fg()+ Fg(v) V(z,v)eWoxUo (18)
C(u,D(w,u)) =0 VYuet

where
1 Na Ng Vi (W)
By(w;z) == Y > al-“j#-zk
25 31is e, 0z

N
Fg(@) =3 fifi-z
=1 (19)

ow°

Bc(‘)—/ ‘ ()‘%()dX
LW v) = Qcoc o Wi

Fg(v) =/ ﬂCfC~VdX+/ BFC.vdS
Q. v

s

Well-posedness of Problem (18) has been studied in [11,15,24] in the case of linear prob-
lems. The Arlequin problem can be solved using a finite element discretization of the continuum
displacement and Lagrange multiplier fields. One of the key points of the Arlequin method is the
choice of the approximation space for the Lagrange multiplier field. Studies reported in [11, 25]
show that for the constraint operator given in (15), the mesh size used to discretize the Lagrange
multipliers should be at least equal to the one used in the continuum region, and that it should be
related to the RVE size considered to calibrate the continuum model.

3.2. Averaged partition of the energy

The weights (o, oc?j) and (f°, B) enable to blend the energies of concurrent models in the overlap
region Q,. Functions «¢(X) and °(X) are required to satisfy:

X)X 1 ¥XeQ\Q, 2
wX)=pX) = 0 VXcQ,\Q, (20)

In Q,, «¢(X) and 8°(X) may be chosen constant, piecewise constant, linear, cubic, or as higher-order
polynomial functions. Generally, we take o€ = 3. We then derive (ac;’j, p¢) with the formula

o (X) dx
|Sij1 Jsi; (21)

B =1—p(xi)
so that the weights for the particle and continuum models define a partition of unity (in an average

sense). S;; denotes the physical region of influence of the bond between particle i and particle j.
In the 1D case, §;; merely corresponds to the bond support itself, and |S;;|=|x; —x;|. In 2D and

a —
ocl.j_l

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Figure 3. Examples of regions S;; used to compute the weight coefficients oci“j between particle i and

particle j. The bond is represented by a thick segment while the region §;; is the domain colored in light

grey. The top row of figures shows cases of nearest neighbor interactions, while the bottom row considers
next-nearest neighbor interactions.

Figure 4. Three examples of weight function o¢: cubic function (left), piecewise linear function (center),
and piecewise constant function (right).

3D cases, S;; corresponds to the region adjacent to the bond between particle i and particle j, as
illustrated in Figure 3.

The definition of ocf’j. through an average is a consistent way to weigh particle energy, implicitly
defining an energy density at the particle scale. This is an extension of the choice made in
the previous work [11], i.e. ocl.“jzl—occ ((x; +x;)/2). Differences between these approaches are
observed when considering high-order polynomial weights, or long—range interactions, as illustrated
in the three 1D examples of Figure 4. The first case considers a cubic polynomial function o€ (x)
in the overlap region Q,, and deals with the weighting term oc?j associated with a bond between

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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nearest neighbors. It is easy to show that in that case:

1 i Xi+x;
oy =1— / aC(x)dx#£1—of | —L (22)
1Sij | Jx; 2

In the second case, we consider a linear function o€ (x) in Q, and deal with a bond between next-
nearest neighbors, which overlaps the discontinuity. We have in that case 1—o‘((x; +x;)/2)=1
whereas the value of, computed with the integral is less than one and is consistent with the
coupling. In the third] case, we deal with the same bond as in case 2, but consider a piecewise
constant function «¢(x) (discontinuous at the midpoint of the bond). In that case, the value of o¢
at midpoint is not defined but the definition of ocf.‘j as an average remains valid and leads naturally
to the value oc?j =0.75.

4. ANALYSIS OF SPURIOUS EFFECTS IN THE ARLEQUIN FORMULATION

Because the Arlequin problem is based on a global energy formulation, it creates ghost forces
along the overlap region, as in the quasi-continuum method [9], when the interaction potentials
involve next-nearest neighbors. The notion of ghost force was introduced for the quasi-continuum
method in [17] and analyzed in several works thereafter (a general overview can be found in [20]).
Ghost forces are non-physical forces that arise in coupling models based on the minimization of a
global energy, i.e. on a minimization of a functional biased with non-symmetric interactions due
to the presence of local and non-local particles. Even in the case where only nearest neighbors
are considered, other spurious effects may arise in the Arlequin framework depending on the
definition of the coupling operator and discretization scheme. For example, it was shown earlier
[11, 15,25] that the finite element space for the Lagrange multipliers had to be carefully chosen to
avoid non-physical effects (locking, etc.). In particular, it has been established that the associated
element size had to be at least larger than the representative cell used to define the continuum
problem (RVE) and could not be smaller than the size of the finite elements in the continuum
region (assuming that the representative particle scale is smaller). In the following, we ensure that
the Lagrange multiplier is discretized on a finite element mesh that coincides with the mesh used
in the continuum region while selecting a mesh size equal to a multiple of the RVE size. However,
under these conditions, we may still observe spurious effects [11]. We now review these effects on
the one-dimensional model problem described in Figure 5. We will propose corrective methods in
the next section.

Figure 5. The 1D Arlequin method with constant (dash-dotted line), linear (solid
line), and cubic (dash line) weight functions.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Assuming that only the particle region €, is subjected to loading and using linear elasticity for
the continuum model, the continuous 1D formulation of the Arlequin problem (18) reads:

Find (u,w,A)€%Up x W p x .# such that:

du dv 1 Na
/ af(x)E*— —dx+ = Z Z fxljklj(wj w)(ZJ Zi)
QL d d 21 1‘]6/1/

(23)

Na
—C(4,D(z,v) =) fizi Y@ v)eWN oxU
i=1

—C(u, D(w,u)) =0 Vued

We introduce the finite element spaces %3 CUo and 4" C M of continuous piecewise linear
functions for the continuum solution and the Lagrange multiplier, respectively. The discrete version
of (23) then reads:

Find (up, wn, An) e@ll}) x W p x A" such that:

E®©4 1 Na
ZO‘ (”hl uy ) (V) — th)"‘zz > okij(wn,j—wn,i)(Zh,j —2n,i)

i=1 Ny
e (24)

Ng
—CUn, D(@p,vn)) = Y fizi V@n,vp) €Wox U
i=1

~C(ty, D(Wp,up)) =0 Y, e M"

where of = [ . 0€(x)dx is the weight associated with the continuum energy in element e, E°9 is
the Young’s modulus derived from homogenization, 4, is the element size, N, is the number
of elements in Q, and u¢ i and uh , are the degrees of freedom associated with the nodes of
element e. The weight function o and o in the overlap region Q, will be alternatively chosen as
the constant, linear, or cubic functions such as those shown in Figure 5. We will denote by s the
number of nearest neighbor bonds lying in each element. The parameter s takes the same value in
all elements as we shall consider uniform meshes only. We also recall that £ refers to the distance
separating two consecutive particles in the reference configuration of the one-dimensional chain.

We first consider the ideal case where only nearest-neighbor interactions with homogeneous
bond coefficients k;j =k =100 are involved (M =1). The chain of particles is fixed at x =0 and
subjected to a traction force F=E®/L at x=L=8. We take Q.=(0,4.8), Q,=(3.2,8), and
Q,=0Q,NQ.=(3.2,4.8). Furthermore, we set £=0.2 and s =1. As expected, the displacement at
L is equal to unity for the three types of weight function and the strain field is constant (see left
plot of Figure 6). Only the Lagrange multipliers vary whether we choose «¢ constant, linear, or
cubic (see right plot of Figure 6).

4.1. Free modes
In order to illustrate the presence of free modes, we use the same example as above in the case

where «¢ is constant or linear. We however select here s =4. We observe in Figure 7 that the

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Displacement and strain fields

Lagrange Multiplier

T T T T 0.25 -0.16 : : T T
1.2 —— Continuum model —e— constant
—=— Continuum model - — - Particle model -0.17 {{—e—linear
—o— Particle model —o— cubic
1 0.2
-0.18
2 o8
& 0.15 < -0.19
% .% Q2
————————— g o -02
g 06 & % 0
g 0.1 S o021
0 04
0.05 022
0.2 -0.23
0 0 -0.24
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
X X
Figure 6. Displacement and strain fields (left) and Lagrange multiplier field with
respect to the weight function (right).
Displacement and strain fields Displacement and strain fields
0.25 0.2
1.2 /=== Continuum model —— Continuum model 0.7 H[—=— Continuum model —— Continuum model
—e— Particle model - - - Particle model —e— Particle model - - - Particle model
1 0.2 0.65 : :
@ o 06
< 08 c
2 015 . 2 o055 c
o - e © 9] ©
5 06 5 & 05 &
o 0.1 o
2 k2]
a 04 a 045
0.2 0.05 0.4
0.35
0 0 0.05
0 1 2 3 5 6 7 8 3 32343638 4 4244 46 48 5
X X

Figure 7. Displacement and strain fields obtained with a linear (left) or a constant (right) weight function
of. Displacement and strain fields for a constant weight function have been zoomed in the overlap region.

displacement at L is 1.0078 for «¢ constant and exactly 1.00 for o¢ linear. This is due to the fact
that the particle solution oscillates around the continuum displacement in the overlap region when
of is constant. Such a phenomenon is not seen for «¢ linear nor for a cubic weight function. These
modes did not arise in the previous example as the particle solution was locked to the continuum
solution through the Lagrange multipliers.

4.2. Local loss of coercivity

We repeat the previous experiments with s =2, 4, and 8 in the case «° is cubic (see Figure 8).
We observe that the continuum and particle solutions deteriorate as s increases. This is due to the
fact that the problem becomes locally ill-posed as the energy of the particles is weighted by a
coefficient that tends to zero in the left most bond of the overlap region. In general, local loss of
coercivity is noticeable when the mesh size and bond size are very different and when the weight
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Figure 8. Strain field obtained with a cubic weight function, in the cases s =2
(left), s=4 (center), and s =8 (right).
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Figure 9. Strain field obtained with 2 =1, for linear (left) and constant (right) weight functions.

function ‘quickly’ tends to zero in part of the overlap region. This effect does not arise for instance
with linear weights for s =2, 4, or 8. This effect was previously analyzed in [15] in the case when
two continuum models are coupled together.

4.3. Spurious effects in the case of long-range interactions

Ghost forces arise in the Arlequin approach whenever the particle model involves long-range
interactions, as in the quasi-continuum method [26]. These ghost forces are created from truncating
the particle domain in the overlap region, which incurs a loss of symmetry in the formulation of
the problem. For example, we show in Figure 9 the strain fields obtained with s =1 but considering
nearest and next-nearest neighbor interactions (M =2) with spring constants k; =100 and k =50,
respectively. We recall that the continuum and particle displacements are locked together on the
overlap region (), as the finite element mesh for the Lagrange multiplier exactly coincides with
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Figure 10. An example of interaction creating ‘ghost force’ type effects in the Arlequin framework.
The energy of the interaction between particles i and j is split into a local contribution with weight of
and a nonlocal contribution with weight cx;‘j.

the fine scale lattice as s=1. We observe that the presence of long-range interactions induces
distinctive phenomena at the two extremities of the overlap region:

1. Left side of Q,: here the particles near the boundary of the atomic region €, do not ‘see’
the neighboring particles that they would normally interact with if the full particle system
were considered. This induces surface perturbations due to the non-locality of the particle
model. Note that such a behavior is also observed for the same reason at the boundary
x = L. We nevertheless observe that these effects attenuate as the weights associated with the
missing bonds become small, which is the case when linear and cubic weights are used (see
Figure 9).

2. Right side of Q,: effects which occur near the right side of Q, can be attributed to ghost
forces as revealed in the case of the quasi-continuum method. They are due to the fact that
the energy contribution from the continuum model is local while that from the particle model
is essentially non-local. Therefore, the energy of the closest bonds to the interface between
Q, and Q,\Q, (see Figure 10) is a combination of a non-local energy, weighted by ozf.’j, and
a local energy, weighted by of, which creates unsymmetric contributions between the two
interacting particles of each bond. The distribution of energy is therefore non-symmetric,
which locally affects the global stiffness matrix and leads to spurious effects.

As a result of these experiments, it is clear that linear or cubic weight functions are better suited
than constant functions to control some of the spurious effects (particularly free modes and long—
range interaction effects). However, the use of such weight functions is not sufficient to cancel all
spurious effects. We propose to develop some corrective methods in the next section in order to
remedy this issue.

5. CORRECTIVE TECHNIQUES FOR THE ARLEQUIN COUPLING METHOD

5.1. Formulation with phantom particles

In order to avoid surface effects, an idea is to add phantom particles in the continuum subregion
Q./Q, and close to the interface. The role of these particles is similar to the one played by the
so-called pad atoms in the quasi-continuum method [17,20] and in the standard bridging-domain
method [27]. In doing so, we modify the total energy of the system, but the perturbation can be
kept minimal if these particles are assigned a very small energy by means of an infinitely small
weight coefficient € >0. We consider two possible approaches for the definition of the modified
weight functions «¢ and o due to these extra particles, as shown in Figure 11. On the left sketch,
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Figure 11. Extra particles added to the Arlequin formulation and corresponding
weight functions: of (solid line) and a* (dash-dotted line).

we show the case where the coefficient o is defined as a“(x) =1—a(x), Vx € Q, so that the global
energy is rigorously conserved. On the right sketch, we consider the case where the energy of the
phantom particles is simply added to the global energy, which obviously yields a non-conservative
method. However, for very small ¢, the latter is almost consistent and we use, for practical reasons,
the second approach in the numerical examples presented below.

We now consider an example in which s=1, ¢ is constant, and interactions between parti-
cles involve nearest and next-nearest neighbors. We compare the strain and Lagrange multiplier
computed with or without inserting two phantom particles. The value of ¢ is set to 107>, The
results are shown in Figure 12. We observe that the method somewhat attenuates the surface effects
on the left of Q,. We actually show below that the addition of phantom particles proves to be
essential for the corrective technique that we propose. We expect that these phantom particles help
provide an accurate approximation of the location of the particles in Q./Q, without resorting to
the Cauchy—Born rule. However, this fact is not guaranteed; indeed, replacing s=1 by s=2 in
the previous example, we observe that the strain exhibits large oscillations around the phantom
particles that propagate far into the particle region (see Figure 13). Another situation for which
we may fail to predict the correct position of the phantom particles is the case of heterogeneous
lattices. In order to get a better approximation of the physical position of the phantom particles,
we prefer to resort to a method in which the strain field of the phantom particles is duplicated
from the nearest RVE as shown in Figure 14.

Remark 1

The method may lead to positions of phantom particles that do not coincide with the actual ones.
Nevertheless, a reasonable approximation of these positions is sufficient as they have a limited
impact in the proposed correction method.

5.2. Computation of dead forces

Using the discrete Arlequin Equations (24), we can compute the resulting forces at each node of
the finite element mesh and at each particle of the discrete system. Indeed, given the displacements

(un, Wn),

1. The resulting force F; acting at a given node k in the continuum region €, is:

2 E® 0C (up,, D(wWp,up))
e k Hps hyUp
F,f:Zocgi h (uy, ; —up)+ P (25)
i=1 e; u,
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Figure 12. Influence of phantom particles on the strain and Lagrange multiplier fields:
without (left) and with (left) extra particles.

Displacement and strain fields

0.8 T T T T T T T 0.25
—&— Continuum model Continuum model
—o— Particle model - - - - Particle model /
07T o2
@ 0.6 | 1 ! R 1
S ol b o 1 0.15
IS b Ny : i £
g 05 ‘ A o U g
® ot iy 2]
& : r 10.1
© o4t ; :
— 4
03l 1 0.05
0.2 . . . + . . . 0
2 25 3 3.5 4.5 5 5.5 6

X

Figure 13. Displacement and strain fields with phantom particles for s =2.

where e and e; provide the indices of the left and right elements connected to node k and
u'fl is the nodal displacement of node k;
2. The resulting force F;* acting at a particle 7 in €, is:
JC (y,, D(Wp, up))
Fiaz Z oc%kij(wj—wi)+ h
jen; ow;

+B; fi (26)
When solving the coupled problem (notice that the problem is linear in 1D, but nonlinear in 2D
and 3D due to geometric nonlinearities, in which case we use the steepest-descent or Newton
method), particles and nodes are at equilibrium, so that F,f:O, Vk, and F;’:O, Vi. Using
the approach developed for the quasi-continuum [17,20], we can introduce the so-called dead
forces representing the difference between the actual forces acting at the nodes and particles and
the forces calculated as if the nodes or particles were in a fully continuum or particle region.
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Figure 14. Duplication of the strain field of the last RVE to get the position of the phantom particles.

We denote by g; and g the corresponding dead forces for node k and particle i, respectively.
They read:

2 E< )
& =- 7 (”Zl,i _”I;z)
i=1 "e (27)
gl =— > kij(wj—w;)—fi
jen;

We emphasize that we do not make use of the Cauchy—Born rule here to compute the dead forces
since phantom particles are explicitly introduced in the formulation. For these phantom particles,
the corresponding dead forces may be incorrectly computed as they do not interact with all their
actual neighbors. We will see however that the dead forces associated with phantom particles are
irrelevant anyway.

5.3. Formulation involving dead forces

From (25) and (26), we see that internal forces are partitioned between the two concurrent models
in the overlap region. Respecting the philosophy of the Arlequin approach, we introduce the dead
forces (27) in a consistent manner in terms of the partition of unity, i.e. with respect to the weight
functions o€ and o®. The Lagrangian at the discrete level is then modified such that (in 1D):

P (@ vn. )= W™ ., vi) — C (. D (i, vp)) (28)

where VT/;,\” is the new potential energy of the coupled system defined by:

(7 Arl Arl k
W, (zn, vi) =W, " (zn, i) — %: o2 (Xp)gvp — 2o (%) g zi (29)
l
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1. Prescribe a value of the stopping criterion ys¢op.

. Solve the corrected Arlequin problem by minimizing the potential energy (29). Dead forces
are initialized to zero at the first iteration.

3. Duplicate the strain field of the last RVEs to get the position of phantom particles.

1. Compute the dead forces gf. (for each node & of the finite element mesh) and g{ (for each
particle i of the discrete system).

. Apply the weight coefficients a® or a® to the dead forces to get weighted dead forces
a(Xy)gp and o (x;)g.

6. Compute the maximal value

[S]

ot

Gmaz = 11]}‘(‘/}((‘041()(1.‘)5/”« | (%) g5 ])

then normalize ¢gimaz 88 Gmazr = Ymaz/9go, Where the normalization term go is the value of a
characteristic force in the problem (for our 1D example, gg corresponds to the traction force
in the chain).

- If Gmaz < Ystop, then stop. Otherwise, go to step 2.

~J

Figure 15. Algorithm for the iterative correction method with dead forces.

where Wﬁrl is the potential energy in 1D corresponding to the one defined in (14). The corrective
procedure is applied in an iterative manner to account for relaxation and an outline of the algorithm
is shown in Figure 15. The potential energy at iteration n+1 involves the dead forces computed
from nodal and particle displacements at iteration n. We will see in the numerical experiments
below that the proposed corrective method allows to reach the correct solution of the problem as
long as the concurrent models are compatible and the choice of the finite element space for the
Lagrange multipliers guarantees that the exact solution does exist. However, we have not studied
the convergence of the method from a theoretical viewpoint, namely, we do not know whether
convergence of the corrective method is guaranteed. This will be the subject of future research
work. Nevertheless, a few remarks are in order:

Remark 2
We emphasize that the dead forces are calculated everywhere in domain €, and not only in the
overlap region, and that they are all included in the corrective formulation (29).

Remark 3

When the weight function «¢ is discontinuous at the location of a node or a particle, weights for
the dead forces may not be conveniently defined. Several limit values may be used, which should
not affect the results.

Remark 4

We clearly see here that, although dead forces for phantom particles may be incorrectly evaluated,
due to missing particles, they are weighted by a very small coefficient and are thus negligible. It
is also interesting to notice that phantom particles are not necessary in some special cases, for
instance when nearest neighbors with linear weights are considered or when the Cauchy—Born rule
applies. In the former case, the dead forces involving the displacement of phantom particles are
multiplied by zero; in the latter case, the position of the phantom particles is implicitly deduced
from interpolation of the continuum displacement field and surface effects are straightforwardly
corrected by the dead forces.
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Remark 5
It is also possible to use ideas similar to QC-GFC (Ghost-Forces Corrected) (see e.g. [19,20])
with a domain decomposition. The problem is split into a continuum problem with energy (in the
1D case):

1 Ne Eed
52
2€=1 le

(“?,2 - ui’ D’
and a particle problem with energy:

Ny
S Y kij(zj—z)?

i=1jeN;

ENE

The two problems are solved iteratively and are constrained to each other. However, the method
tends to converge very slowly, and for that reason, will not be investigated in this paper.

6. NUMERICAL RESULTS

In this section, we apply the corrective method to one-dimensional and two-dimensional problems
to demonstrate the performance of the method. In the examples shown below, we always assume
that the coupling region €, is constructed in such a way that particles and boundaries of finite
elements lie on the boundary of Q,.

6.1. One-dimensional examples with homogeneous bond stiffness

We consider here a homogeneous lattice; phantom particles are thus not required to obtain the dead
forces. We first analyze cases where only nearest neighbors are taken into account and then consider
cases with nearest and next-nearest neighbors. We demonstrate the efficiency of the corrective
method on the test examples of Section 4 using the same numerical setting and modeling options.

1. Correction of free modes: We correct here the effects described in Section 4.1. We show in
Figure 16 the dead forces at each iteration (weighted by «¢ and «?, chosen constant in this
experiment) and the resulting corrected strain field.

2. Correction of loss of coercivity: We now show how the spurious effects due to the loss of
coercivity observed in Section 4.2 can be corrected (recall that the weight coefficients are
chosen cubic here). The weighted dead forces at each iteration and the resulting corrected
strain field are displayed in Figure 17 and should be compared to the results of Figure 8 in
the case where s =4.

3. Correction of effects due to long—range interactions: Effects due to long—range interactions
are those described in Section 4.3. We choose here a constant weight . Two configurations
are considered: (i) in the first case, no phantom particles are introduced. In this case, the
initial Arlequin solution is the one shown on the left plot of Figure 12. Dead forces are then
used to correct the surface effects and ghost forces. Dead forces on the left side of Q, are
computed by employing the Cauchy—Born rule; (ii) in the second case, phantom particles
are considered and the initial Arlequin solution is shown on the right plot of Figure 12. Only
the ghost forces need to be attenuated. Here we use the displacement of phantom particles to
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Figure 16. Weighted dead forces (left) and strain field (right) obtained at each
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Figure 17. Weighted dead forces (left) and strain field (right) obtained at each
iteration of the correction method.
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Figure 18. Strain field obtained at each iteration of the correction method, for a configuration without
(left) or with (right) phantom particles.

compute the dead forces. Finally, we show in Figure 18 the corrected strain fields obtained,
for both cases, after the first three iterations.

6.2. One-dimensional examples with heterogeneous bond stiffness

In this section, we apply the method to the case of heterogeneous bond coefficients. We set the
RVE length to 2¢ and we use s =2 to get a consistent coupling when discretizing the Lagrange
multiplier field on the continuum mesh.

1. Nearest neighbors only: We first consider a chain of particles connected by periodically
distributed covalent bonds with stiffness coefficients k; =100 and k; =70. No spurious effects
are noticed using a linear weight function a, but they appear (due to the truncation of the
particle lattice) when using a constant weight function o¢ (see Figure 19). In the latter case,
the spurious effects are attenuated by including dead forces to the formulation. These dead
forces are computed by adding two phantom particles whose positions are constrained to be
equal to those of the particles lying in the neighboring representative volume element. We
obtain the corrected strain fields shown in Figure 20.

2. Nearest and next-nearest neighbors: We take k; =100, k, =70, and k3 =k4 =50, and we
use constant or cubic weight function of. In the case of the constant weight function, the
spurious effects are corrected with the same method as the one used in the previous example.
In the case of a cubic weight function, we do not resort to phantom particles. The results
displayed in Figure 21 clearly show that phantom particles are not necessary since the
weighted dead forces are negligible. Again, we point out that the behavior observed on the
right end of the structure is due to the combined effect of next-nearest neighbor interactions
and truncation of the lattice. We do not modify the formulation there as it pertains to the
modeling of the boundary condition. Finally, we show in Figure 22 a case where the coupling
is overconstrained, so that the corrective method fails to converge to the correct solution. We
choose s =1, i.e. the Lagrange multiplier field is discretized such that we enforce locking
in Q, between the displacements of the continuum and particle models. Such a constraint is
clearly incompatible with the heterogeneous nature of the molecular model.
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Figure 19. Strain field with heterogeneous bonds when using linear (left) or
constant (right) weight function af.
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Figure 20. Corrected strain field at each iteration with heterogeneous bonds
and constant weight function «€.

6.3. Two-dimensional example

In this example, we consider a regular squared lattice Q constituted of 51 x 51 particles with charac-
teristic length £=0.1, as shown in Figure 23. Particles on the boundary 0Q are fixed, and a pointwise
force F is applied to the particle at the center. This induces a localized region Q, with large deforma-
tions in which the particle model should be used as the linear elasticity model is predicted to fail; in
the remainder of Q, we replace the lattice by an equivalent continuum model. Particles are supposed
to interact with first, second, and third range neighbors (see Figure 24). We consider homogeneous
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Figure 21. Corrected strain fields at each iteration with a constant
(left) or a cubic (right) weight function .
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Figure 22. Weighted dead forces (left) and corrected strain field (right) computed at each iteration. The

solution does not converge to the exact solution due to overconstraints.

stiffness coefficients k; = 10, ko =5, and k3 = 10. The large value of k3 enables to study the effects of

long-range interactions.

The linear elasticity model assumes cubical symmetry and a plane stress state. The values of
the material parameters (E, G,v) are thus calibrated with respect to the constitutive relation (in
the (x, y) coordinate system associated with cubical symmetry):

1 A
Exx E E
c _ y 1
vy E E
Exy
0 0

We find E=56.18, v=0.215, and G =24.17.

Copyright © 2010 John Wiley & Sons, Ltd.
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Figure 23. The 2D lattice defining the model problem (left) and the coupling model (right).

Figure 24. Interactions considered between particles: each particle i interacts with first (particles on solid line),

second (particles on dash-dotted line), and third (particles on dash line) neighbors.

¢. The picture

Figure 25. Representation of the piecewise linear weight function o

on the right is a zoom around €.

0.1. This loading enables us to

The loading F is applied in 10 increments of magnitude dF
remain in the linear elasticity regime in Q.. In the overlap region Q,, the concurrent models are

coupled using a coupling term based on the H!-norm (15). The Lagrange multiplier is discretized
on the finite element mesh used in Q.; the mesh is made of quadrilateral elements of size 2¢ x

2¢. Finally, the weight function a(x,y) is chosen as piecewise linear on , (see Figure 25).

Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Figure 26. Strain field in the continuum region €. (top) and in the particle region €, (bottom).

The resulting nonlinear problem is solved by means of the Newton method and the strain fields
associated with the continuum and particle models, in Q. and Q, respectively, are shown in
Figure 26. For the particle model, the ‘strain field’ is computed by constructing a continuous
displacement based on the linear interpolation of the particle displacements. We clearly observe
the spurious effects in the neighborhood of the coupling region Q,, these being due to the same
sources as those described in Section 4 (namely free modes and long-range interactions).

The spurious effects are corrected here by introducing dead forces using one layer of phantom
particles. The dead forces, computed after the first iteration and weighted by the coefficients o¢
and o, are shown in Figure 27. The discrete values of the forces, defined at nodes and particles,
are actually interpolated over Q. and Q,. We observe that these weighted dead forces are non-zero
only in a local neighborhood of the overlap region Q,. Five iterations were necessary to converge
to the final corrected strain field, during which the dead forces were reduced of about two orders
of magnitude. The final weighted dead forces and corrected strain fields (i.e. after five iterations of
the correcting process) are shown in Figures 28 and 29, respectively. Some localized effects, which
slightly perturb the solution, can however still be observed in the particle region, in particular in
the vicinity of the overlap boundary where o is very small. This is due to the fact that the dead
forces applied to the particles in this region have limited influence on the result. Nevertheless,
convergence is improved when using a constant weight function o in Q,.

6.4. Comparison of performance between the corrective technique and a classical model
adaptation procedure

In this last section, we compare the performance of the proposed correcting technique with that of an
adaptive procedure consisting in enlarging the particle zone €, up to a given error criterion [3, 13].

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Figure 27. Interpolation map of the weighted dead forces applied at nodes in Q. (top) and
at particles in €, (bottom) at iteration 1. The x component (resp. y component) of the dead
forces is represented on the left (resp. right).

In the latter approach, the idea is to ignore the spurious effects and to simply design optimal
Arlequin configurations with respect to local quantities of interest.

We consider here a one-dimensional particle structure Q, made of N p=171 particles, with
£=0.2. Particles interact with nearest and next-nearest neighbors. We assume that the structure Q
is fixed on its left and right end points and that it is subjected to a pointwise force F applied to
the central particle P (see Figure 30). Furthermore, we suppose that the structure is subjected to
a local defect that affects several particles around particle P; the defect is applied by weakening
the stiffness coefficient of the corresponding bonds, i.e. by changing the initial stiffness k; (i=1
or 2) of these bonds to k7 such that:

K_ 1 it (30)
ki 14x(x) 2
where particles b; and by denote the two particles involved in a given bond. The function x is

—2x2

chosen as k(x)=10e so that about 20 particles are involved in the defect (see Figure 31).
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x 1074
1.5

Figure 28. Interpolation map of the weighted dead forces applied at nodes in Q. (top) and
at particles in Q, (bottom) at iteration 5. The x component (resp. y component) of the dead
forces is represented on the left (resp. right).

The objective of the computation is to assess the value of two specific quantities of interest,
namely the horizontal displacement of particle P, Q1 =zp, and the stretching of the bond between
particle P and particle P —1, Q> =(zp —zp—1)/£. We use the molecular model in a small region
Q, around the central particle P and replace the remainder of the structure by a linear elastic
material with equivalent Young’s modulus E®1. We set the size of the two overlap regions equal
to 8¢ and discretize the continuum and overlap regions by means of a finite element mesh with
characteristic size h, =4¢ (i.e. s, =4), as shown in Figure 32. Moreover, the weight function o (x)
is chosen linear in the two overlap regions.

In the first numerical experiment, we set k] = 100 and k> =0 so that particles interact with nearest
neighbors only. We compare the approximate values of Q| and Q; obtained with or without using
the correcting technique in the Arlequin coupling as a function of the size of the particle region
Q,, more precisely the size of Q) =Q,/(Q,NQ.). The reference values are Qr16f=0.5816642672

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Figure 29. Corrected strain field in the continuum region Q. (top) and in the
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Figure 31. Function used to simulate a defect in the middle of the structure.
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Figure 32. Coupling between the particle and the continuum model in the Arlequin framework.
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Figure 33. Approximate displacement solutions obtained using the Arlequin framework with various sizes
of QF: 2¢ (top left), 18¢ (top right), and 42¢ (bottom).

and Qgef=0.27. Figure 33 shows the Arlequin solution in the cases ) equal to 2¢, 18¢, or 42¢
and Table II reports the relative error using the Arlequin method, first without any correction, and
then using the corrective method after 5 and 10 iterations.

In the second series of experiments, we set k1 =100 and k» =50 so that particles interact with
nearest and next-nearest neighbors. Keeping the same configuration as in the previous study, the

new results are reported in Table III. The new reference values are eref=0.2042171911 and

Qrzefz 0.1549328420. Let us point out that in this case the reference values are not the ones given
by a fully atomistic computation but the ones given by an Arlequin coupled solution obtained on

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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Table II. Relative error on the values of Q; and Q» with respect to the size of Q when using the Arlequin
coupling with or without the corrective method.

Relative error for Q1 (%) Relative error for Q7 (%)
Size of
QZ(XE) No correct. Cor. (5 iter.) Cor. (10 iter.) No correct. Cor. (5 iter.) Cor. (10 iter.)

2 11.34 2.76 1.17 0 0 0
10 0.22 8.38x1073 279 x 10~4 0 0 0
18 7.19x 1074 5.41x10~7 6.13x 1078 0 0 0
26 3.44x1077 991x1072  7.79x 10710 0 0 0
34 296x107°  2.14x10710  122x10710 0 0 0
42 832x10719  904x10"11  237x10"!! 0 0 0

Table III. Relative error on the values of Q; and Q» with respect to the size of Q} when using the
Arlequin coupling with or without the corrective method.

Relative error for Q1 (%) Relative error for Oy (%)
Size of
QZ(XE) No correct. Cor. (5 iter.)  Cor. (10 iter.) No correct. Cor. (5 iter.)  Cor. (10 iter.)

2 8.72 1.14 0.26 11.66 2.12 0.97
10 0.14 5.99 x 10~4 2.22x1073 7.80x 1073 6.14x 1073 9.37x 107
18 3.51x107° 9.11x10~7 1.33x 1077 1.48x 1075 451x108 1.19x 108
26 3.92x1077 7.40x 107 1.12x107° 7.47x108 8.33x 1079 2.26x1010
34 9.11x107? 826x10710  452x10710  677x107? 444x10710  821x 10711
42 1.56x 10710 884x10~!11  3.13x107!11  294x10719  737x107!11  9.16x 10712

a sufficiently large (' and using the correction technique with 20 iterations. The reason is that
the two methods would provide different values as an error is made close to the boundaries when
using a nonlocal particle model (long-range interactions) while keeping a local continuum model
in the coupling. A way to avoid this boundary effect would consist of using a nonlocal constitutive
relation for the continuum model.

We conclude from these experiments that the correction technique definitely has a positive effect
on the accuracy of the quantities of interest Q1 and Q> in the sense that a smaller atomic region
is necessary to reach the same accuracy when using our corrective method. We also remark that
depending on the choice of the quantity of interest, the corresponding relative error due to the
spurious effects may be large, negligible, or even zero. However, depending on the computational
cost and prescribed accuracy tolerance, it may be more effective to simply enlarge the particle
region Q, rather than to use the correction technique. A compromise should then be made between
computational cost and accuracy.

7. CONCLUSION

We have presented in this paper a technique for correcting spurious effects that arise in solutions
of the Arlequin coupling method. It involves computing dead forces, obtained from a relatively

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 83:1081-1113
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inexpensive post-processing of the approximate solution, and injecting these into the coupling
formulation in order to counterbalance the non-physical effects. As dead forces depend on the
approximate solution, the procedure takes the relaxation effects into account through an iterative
process. The corrective technique is similar to the one developed for the quasi-continuum method,
but in our case, the dead forces are introduced into the formulation by means of a partition of
unity. Furthermore, the use of the corrective method does not lessen the flexibility of the Arlequin
approach, which in the case of atomic and continuum coupling does not require the use of the
Cauchy-Born hypothesis. Results obtained from several 1D and 2D examples confirm that the
corrective technique is effective in the sense that the approximate solution now converges to
the physical solution, free of spurious effects, provided that the coupling parameters are consistent.
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