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1. Introduction

The idea of solution verification concerns the processes of deter-
mining if results produced by a numerical approximation of a
mathematical model represent the exact solutions with sufficient
accuracy. It is generally accepted that this question can only be
addressed through a posteriori error estimation. For deterministic
systems, the use of so-called goal-oriented methods has provided an
approach to develop a posteriori estimates of specific quantities of
interest and to, therefore, provide solution verification for specific target
outputs. In the present workwe develop goal-oriented approaches for a
class of stochastic partial differential equations governing transport
phenomena: the linear advection–diffusion problem.

The conception of goal-orientedmethods for the numerical solution
of partial differential equations was introduced in [1,2] as a family of
computational procedures aimed at accomplishing the principal
mission of computer modeling and simulation: the calculation of
specific quantities of interest, or target outputs. While error estimation
and control in traditionalfinite element schemes, for example, dealwith
global features of solutions, such as total energy (e.g. [1,2]), goal-
oriented methods are designed to control approximation error in local
features of the solution, generally defined by linear functionals on the
trial space containing the solution. Over the last decade, goal-oriented
methods have been developed for estimating and controlling approx-
imation error in a broad class of models characterized by deterministic
partial differential equations (see [1–6]). More recently, goal-oriented
methods have been extended to techniques for controlling relative
modeling error and have been used in adaptive modeling algorithms
(see, e.g. [5–7]).

In the present investigation, we consider extensions of the theory
of goal-oriented methods to a model class of stochastic partial
differential equations describing the transport of a scalar-valued
species concentration in time over a fixed spatial domain. Of specific
interest are cases in which the model parameters (velocity field and
diffusivity coefficient) and the sources are random fields. The general
approach involves the calculation of adjoints and residuals, as in the
deterministic case, but here the added complications of solving the
stochastic forward problem and backward problem arises.

Thenumerical solutionof stochastic partial differential equationshas
undergone significant development in the last two decades and several
newapproaches have been contributed. These include spectralmethods
[8], Galerkin finite element methods [9–12] (so-called stochastic
Galerkin or stochastic finite element methods), stochastic collocation
methods [13–16] and stochastic fastmultipolemethods [17]. References
to additionalworks can be found in [8,18]. A common aspect of many of
these studies is to lay downassumptionson the randomcoefficients that
makes possible the introduction of a finite (truncated) Karhunen–Loève
approximation of random fields, which reduces the dependence of the
random features of the solution to a finite number of random vectors.
Furthermore, these vectors can bemapped into bounded intervals of R,
which reduces the analysis to essentially a large deterministic system.
We adopt a similar approach in the present study.

Following this introduction, we review the structure of the
deterministic forward problem and its adjoint for specific quantities
of interest. We then extend the formulation to stochastic systems in
which the velocity field, the diffusion coefficient and the source terms
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are random variables. We invoke several assumptions concerning the
random parameters and sources which render them representable by
a truncated Karhunen–Loève expansion, which we demonstrate
allows the forward and adjoint problems to be reformulated in
terms of a joint probability density ρ and N real random variables
representing the maps of N random vectors appearing in the
Karhunen–Loève expansion. We go on to develop finite element and
stochastic collocation approximations of the stochastic system and
then a posteriori estimates of errors in the quantities of interest. These
allow one to develop adaptive algorithms that control mesh size,
polynomial interpolation order and even the number of terms in the
Karhunen–Loève expansion so as to meet preset tolerances in errors
in quantities of interest. The results of preliminary experiments on
model problems are given.

2. Linear advection–diffusion in a deterministic setting

A class of physical phenomena encountered in many important
applications, ranging from environmental remediation, dispersion
of toxic substances, or transport of biological species in the
atmosphere, involves the transport of a species in time through
diffusion and advection over a spatial domain. One is interested in
the concentration of that species over specific time intervals at
specific locations in the domain. Understandably, there may be
significant uncertainties in physical parameters and in environ-
mental conditions involved in such events. One of the simplest
models that captures the essential features is that of linear, time-
dependent advection–diffusion process.

The classical deterministic model of the transport of a species with
concentration u(x, t) at a point x and time t through an open bounded
domain D⊂ℝd with Lipschitz boundary ∂D is characterized by the
initial boundary-value problem of finding u such that

Au x; tð Þ = f at x; tð Þ∈D × 0; Tð Þ;
Bu x; tð Þ = g at x; tð Þ∈ΓN × 0; Tð Þ;
u = 0 at x; tð Þ∈ΓD × 0; Tð Þ;
u 0ð Þ = u0 at x∈P

D; t = 0;

ð1Þ

where ΓD and ΓN denote portions of the boundary such that Γ
�

D∪Γ
�

N=∂D,
Γ
�

D∩Γ
�

N=t, and

Au = ∂tu + w·∇u−∇·K∇u;
Bu = n·K∇u;
u 0ð Þ = u x;0ð Þ;x∈P

D:
ð2Þ

Here, ∂t(⋅)=∂(⋅)/∂t,∇ is the gradientwith respect to x, f= f(x, t) is
the given source intensity,K=K(x) a diffusionmodulus,w=w(x, t) a
prescribed velocity field over D, g a prescribed flux, n is a unit exterior
normal vector on ∂D, and u0=u0(x) is the initial data.

To cast Eq. (1) in a weak or function-space setting, we introduce
the spaces:

Z = z∈H1 Ωð Þ; z = 0 on ΓD
n o

;

V = υ∈L2 0; T; Zð Þ; ∂tυ∈L2 0; T; Z′ð Þ
n o

;

where Z′ is the dual space of Z. Consider the following bilinear form:

a ⋅; ⋅ð Þ : V × V→ℝ;

a z;υð Þ = ∫
T

0

∫
D

∂tzυ + w·∇zυ + K∇z·∇υ½ �dxdt + ∫
D

z 0ð Þυ 0ð Þdx:

ð3Þ
A formal integration by parts of the diffusive term, assuming for
the moment that the integrand functions are smooth enough, yields

a z;υð Þ = ∫
T

0

∫
D

Azð Þυdxdt + ∫
T

0

∫
ΓN

Bzð Þυdsdt + ∫
D

z 0ð Þυ 0ð Þdx ð4Þ

and, with a further integration,

a z;υð Þ = ∫
T

0

∫
D

A4υð Þzdxdt + ∫
T

0

∫
ΓN

B4υð Þzdsdt + ∫
D

υ Tð Þz Tð Þdx; ð5Þ

where the adjoints (A*, B*) are given by

A*υ = −∂tυ−w·∇υ− ∇·wð Þυ−∇·K∇υ;
B*υ = −n·K∇υ + n·wð Þυ: ð6Þ

It follows that if we set z=u in Eq. (3), u being a solution of Eq. (1),
then, ∀υ∈υ, the problem of finding u such that

a u;υð Þ = F υð Þ + ∫
D

u0υ 0ð Þdx;∀υ∈ V ; ð7Þ

where

F υð Þ = ∫
T

0

∫
D

fυdx + ∫
ΓN

gυds

0
@

1
Adt; ð8Þ

is a weak statement of the advection–diffusion problem (1), in which
the initial condition is weakly imposed.

Let Q:V→R be a continuous linear functional on V. The functional
Q will represent a quantity of interest: a target output representing a
goal of the model defined in Eq. (1) (and Eq. (7)). An example of Q is

Q υð Þ = 1
ωj j∫

T

0

∫
ω
q υð Þdxdt;

whereω is a bounded set in D and q:V→L1(0, T;ω) is a bounded linear
operator; for example q(υ)=υ or q(υ)(x)=k�(x, x0)υ(x), x0∈ω, and
kε is a smooth kernel function which vanishes for |x−x0|Nε. The
problem of finding p∈V such that

a υ;pð Þ = Q υð Þ; ∀υ∈ V ; ð9Þ

is called the adjoint (or dual) problem for Eq. (7). Problem (7) is the
forward advection–diffusion problem while Eq. (9) is the backward (in
time) advection–diffusionproblem.The solutionp is the adjoint solution
or generalizedGreen's function corresponding to theparticular quantity
of interest Q. Formally, Eq. (9) is equivalent to the adjoint problem

A4p = q at x; tð Þ∈D × 0; Tð Þ;
B4p = 0 at x; tð Þ∈ΓN × 0; Tð Þ;
p = 0 at x; tð Þ∈ΓD × 0; Tð Þ;
p Tð Þ = 0 at t = T:

ð10Þ

We observe that

Q uð Þ = ∫
T

0

∫
D

A4pð Þudxdt + ∫
T

0

∫
ΓN

B4pð Þudsdt + ∫
D

p Tð Þu Tð Þdx

=∫
T

0

∫
D

∂tup + w·∇u p + K∇u·∇p½ �dxdt

+ ∫
D

u 0ð Þp 0ð Þdx−∫
D

u0p 0ð Þdx

= F pð Þ

ð11Þ

which is the classical property of Green's function p corresponding
to the quantity of interest Q. Note that the time-reversed adjoint
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problem (10) is well-posed only if the initial condition at the final
time T is given so that we set p(T)=0.

3. The stochastic advection–diffusion problem

In more realistic settings, the key parameters in models of
advection–diffusion processes can possess uncertainties due to
random variability or, in particular, due to our ignorance in their
values. It is therefore natural to treat these features as random fields
and the solutions of the forward and adjoint problems as random
fields. To reformulate problems (7) (or Eq. (1)) and (9) (or Eq. (10))
in such a stochastic setting, we must introduce additional assump-
tions and definitions on the mathematical framework and spaces on
which the stochastic weak forms of the forward and backward
problems are constructed. Toward this end, we introduce the
following notations, definitions, and conventions:

• (Ω, U , P) is a complete probability space, with Ω the set of outcomes
θ,U is theσ-algebra of events, andP:U→ [0, 1] a probabilitymeasure;

• w:(Ω×D×[0, T])→Rd, K:(Ω×D)→R, f:(Ω×D×[0, T])→R, the
random velocity field, diffusion coefficient and source, which are
assumed to have continuous and bounded covariance functions, and
w, K and f are measurable with respect to U⊗B(D×[0, T]), U⊗B(D)
and U⊗B(D×[0, T]), where B(D) (respectively B(D×[0, T])) are the
Borel σ-algebras generated by open subsets of D (and D×[0, T]);

• let Y:Ω→RN be an N-dimensional random variable in (Ω, U, P).
Thus, for each Borel set B∈B(RN) we have Y−1(B)∈U and the
distribution measure for Y is given by

μY Bð Þ = P Y−1 Bð Þ
� �

; ð12Þ

• with 1≤qb∞, we define the space

LqP Ωð Þ� �N = fY : Ω→RN jY is a random vector in Ω;U;Pð Þ

such that∑
N

i=1
∫
Ω

jYi θð Þ jqdP θð Þb∞g;

ð13Þ

• assuming μY to be absolutely continuous with respect to the
Lebesgue measure dy, which we assume hereafter to be the case,
there exists a probability density function ρ(y), y∈RN, such that
ρ: RN→ [0,∞) and dμY=ρ(y)dy. Then, for Y∈L1P(Ω), its expected
value is

E Y½ � = ∫
Ω

Y θð ÞdP θð Þ = ∫
RN

yρ yð Þdy; ð14Þ

• for Y∈(LqP(Ω))N, there exists a positive–definite covariance matrix,

Coυ Y½ �∈RN ×N; ð15Þ

Coυ Y½ �ij = E Yi−E Yi½ �ð Þ Yj−E Yj
h i� �h i

; i; j = 1;…;N: ð16Þ

For a real-value function υ:Ω×Rd,υ=υ(θ,x),

Coυ υ½ � x; x′
� �

=
def Coυ υ ⋅; xð Þ;υ ⋅; x′

� �� �
; ð17Þ

• product Hilbert spaces can be introducedwhich connect the random
variables to the functions defined on D×[0, T]. For example, if we
write

V = L2 0; T;H1 Dð Þ⊗L2P Ωð Þ
� �

;

U = L2 0; T;H−1 Dð Þ⊗L2P Ωð Þ
� �

;
ð18Þ
an inner product on V is given by

υ; zð ÞV = ∫
T

0

∫
D

∫
Ω

∇z⋅∇υ dxdtdP θð Þ; ð19Þ

where υ=υ(θ, x, t) and z=z(θ, x, t);
• to guarantee existence and uniqueness for the stochastic solution
u(θ, x, t), the source f(θ, x, t) is square integrablewith respect toP, i.e.,

∫
T

0

∫
D

E f 2
h i

dxdt b∞; ð20Þ

and the diffusion coefficient K(θ, x) is uniformly bounded from
below, i.e.,

∃Kmin N 0 such that

P θ∈Ω : K θ; xð Þ N Kmin;∀x∈
P
D

� �
= 1:

ð21Þ

Now, let define the spaces V(D)={υ∈H1(D)|υ=0 on ΓD} and
V=L2(0, T; V(D)⊗L2P(Ω)). Thus, we may consider the following weak
form of the stochastic initial boundary-value problem:

Find u∈V with ∂tu∈U such that

B u;υð Þ = F υð Þ + ∫
Ω
∫
D

u0υ 0ð ÞdxdP θð Þ; ∀υ∈ V ;
ð22Þ

where now

B u;υð Þ = ∫
Ω
a u θ; x; tð Þ;υ θ; x; tð Þð ÞdP θð Þ;

F υð Þ = ∫
Ω
F υ θ; x; tð Þð ÞdP θð Þ; ð23Þ

with a(⋅, ⋅) and F(⋅) given by Eqs. (3) and (8), respectively.
Analogously, the corresponding adjoint problem is

Find p∈V with ∂tp∈U and p Tð Þ = 0 such that

B υ;pð Þ = Q υð Þ; ∀υ∈V ;

ð24Þ

where now

Q υð Þ = ∫
Ω

Q υ θ; x; tð Þð ÞdP θð Þ = ∫
Ω

∫
T

0

∫
ω⊂D

1
ωj j q υ θ; x; tð Þð ÞdxdtdP θð Þ: ð25Þ

4. Karhunen–Loève expansions

A popular construction in the treatment of linear stochastic partial
differential equations is to reduce the dimensionality in the random
variables through the use of a truncated Karhunen–Loève expansion
(see, e.g. [8–11,14] ). Let m(θ, x) denote a random function with
continuous covariance

Coυ m½ � : P
D ×

P
D→R;

Coυ m½ � x; x′
� �

= E m ⋅; xð Þ−E m½ � xð Þð Þ m ⋅; x′
� �

−E m½ � x′
� �� �h i ð26Þ

and associated variance given by Var[m]=E[(m−E[m])2]. For each
suchm, one can define a compact self-adjoint operator from L2(D) into
C0(D

�
) by

Kυ = ∫
D

Coυ m½ � x; x′
� �

υ x′
� �

dx′: ð27Þ
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The operator K possesses a countable set {(λn, φn)}n=1
∞ of

eigenvalue–eigenfunction pairs (λn, φn) such that

∫
D ×D

Coυ m½ � x; x′
� ���� ���2dxdx′

( )1=2

≥λ1≥λ2≥…≥0;

∫
D

φi xð Þφj xð Þdx = δij;

∑
∞

n=1
λn = ∫

D

Var m½ � xð Þdx:

ð28Þ

The truncated Karhunen–Loève expansion of the random function
m is then

mN θ; xð Þ = E m½ � xð Þ + ∑
N

n=1

ffiffiffiffiffiffi
λn

p
φn xð ÞYn θð Þ; ð29Þ

where {Yn(θ)}i=1
∞ are real random variables that are mutually

uncorrelated, have unit variance, and zero mean. Moreover, for each
λnN0, the corresponding random variable Yn is uniquely determined
by

Yn θð Þ = λ−1 = 2
n ∫

D

m θ; xð Þ−E m½ � xð Þð Þφn xð Þdx: ð30Þ

One can show (Cf. [14]) that the approximation (29) of m
converges to m as N→∞ in the sense that

Lim
N→∞

supE
x∈D

m−mNð Þ2
h i

xð Þ
� 	

= 0: ð31Þ

It is important to recognize that this property also implies that

Lim
N→∞

sup
x∈D

Var m½ �−Var mN½ �ð Þ xð Þ
� 	

= 0: ð32Þ

For practical purposes, the number of terms N of the Karhunen–
Loève expansion (29) should be as low as possible according to a preset
tolerance, and depends on the decay of the eigenvalues λn. A fast decay,
generally related to a higher correlation length, indicates a natural
anisotropic behaviorwith respect to the stochastic directions. This effect
is exploited in the proposed adaptive algorithm presented in Section 6.

Returning now to Eqs. (22) and (24) (or, formally, to Eqs. (1) and
(10)), we make the following additional assumptions:

A.1) the random functions w(θ, x, t), K(θ, x), and f(θ, x, t) depend
only on an N-dimensional random vector Y in the spirit of the
KL expansion (29);

A.2) the velocity field w=w(θ, x, t) is solenoidal ∇ ⋅w
A.3) the images Yn:Ω→R are uniformly bounded in R, which means

that their images,

Γn = Yn Ωð Þ; 1≤ n≤N;

are bounded intervals in R;
A.4) the random vector Y has a bounded probability density

ρ : ∏
N

n=1
Γn → ½0; ∞Þ:

Under these assumptions (Cf. [14]), the probability space (Ω, U , P)
can be replaced by (Γ, B(Γ), ρ(y)dy), Γ ≡ ∏

N

n=1
Γn, and the probability

distribution measure for Y is then dμY=ρ(y)dy. The result is that
the solution of the stochastic initial boundary-value problem can
be replaced by a finite number of random variables, u(θ, x, t)=
u(Y1(θ),…, YN(θ), x, t). Moreover, the spaces V and U in Eq. (18) can be
replaced by

V = L2 0; T;V Dð Þ⊗L2ρ Γð Þ
� �

;

U = L2 0; T;H−1 Dð Þ⊗L2ρ Γð Þ
� � ð33Þ

and Eqs. (22) and (24) can likewise be posed in these spaces with

B u;υð Þ = ∫
Γ
a u;υð Þρ yð Þdy;

F υð Þ = ∫
Γ

F υð Þρ yð Þdy;
ð34Þ

etc.
The weak formulations (22) and (24) may be regarded as space-

time formulations, as the test functions υ are time dependent. A
slightly different formulation can be stated in which the test functions
are independent of time and the solution u is a one-parameter family
of solutions, with time t the parameter. Then the forward problem is

For a:e: t∈ 0; T½ �; findu tð Þ = u Y ; x; tð Þ∈V Dð Þ⊗L2ρ Γð Þ
such that u 0ð Þ = u0 and a:e:on 0; T½ �;

∫
Γ ×D

∂tuυ + w·∇uυ + K∇u·∇υ½ �dxρdy

= ∫
Γ ×D

ftυdxρdy + ∫
Γ ×ΓN

gυdsρdy; ∀υ∈V Dð Þ⊗L2ρ Γð Þ;

ð35Þ

and the backward or adjoint problem is

For a:e: t∈ 0; T½ �; findp tð Þ = p Y ; x; tð Þ∈V Dð Þ⊗L2ρ Γð Þ
such that p Tð Þ = 0 anda:e:on 0; T½ �;

∫
Γ ×D

�∂tpυ−w·∇pυ + K∇p·∇υ½ �dxρdy

= ∫
Γ ×ω

ωj j−1q υð Þdxρdy; ∀υ∈V Dð Þ⊗L2ρ Γð Þ:

ð36Þ

5. Discrete approximations of the forward and backward problems

We now consider discrete approximations of the forward and
backward problems (35) and (36) and we explore critical issues
connected with their implementations. We will use finite element
approximation in space and the stochastic collocation method in the
probability domain. The latter is a non-intrusive method which
naturally leads to uncoupled deterministic problems [13,16]. This
advantage is exploited in the proposed approach.

5.1. Finite element and stochastic collocation methods

To define the approximation spaces, we follow the standard FEM
discretization process: the domain D is partitioned into a regular
family of Nh subdomains Ki, with hKi

=diam{K
�

i}. Let h = max
i=1;…;Nh

hKi


 �
.

Each Ki is the image of a master element K̂ under a sequence of affine

maps {Fi}i=1
Nh such that

P
D = ∪

Nh

i=1

P
Ki;Ki∩Kj = t; i≠j. Over K̂ we

introduce polynomial approximations that contain complete poly-
nomials of degree ≤k. The resulting piecewise test functions υk
defined on D

�
are in C0(D) and belong to a subspace Wh(D)⊂H1(D).

We assume that standard interpolation and approximation properties
prevail. For example, for D a convex polygonal domain, k=1 and a
given function φ∈H1(D), we have

min
υ∈Wh Dð Þ

‖φ−υ‖H1 Dð Þ≤ ch‖φ‖H2 Dð Þ; ð37Þ
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where c is independent of h. We also assume that there is a finite
element operator πh:H1(D)→Wh(D) such that

‖φ−πhφ‖H1 Dð Þ ≤ Cπ min
υ∈Wh Dð Þ

‖φ−υ‖H1 Dð Þ ∀φ∈H1 Dð Þ; ð38Þ

where again Cπ stands for a constant independent of h. In general, the
operator πh depends on the domain problem as well as on the random
variables Yn(θ), n=1, …, N (see [13,19] for more details).

The basic idea of the Stochastic Collocation Method (SCM) is to
approximate the multidimensional stochastic space using interpola-
tion functions on a set of points { ỹj}j=1

M , called collocation points
[13,16,20]. Let Pρ(Γ) denote the stochastic discrete space such that
Pρ(Γ)⊂Lρ

2(Γ), which can be constructed on either full or sparse tensor
product approximation spaces. Before considering these different
choices, we may generally define Pρ(Γ)=span{li}i=1

M , where li( ỹj)=
δij, 1≤ i, j≤M, are the Lagrange polynomials defined on the points
{ ỹj}j=1

M . In this way, the global solution of the forward problem (35)
(and of the backward problem (36)) u(Y, x, t)≈uρ,h(Y, x, t) at ∀t∈(0,
T), can be obtained by a linear combination of deterministic solutions
at these point values, i.e.,

uρ;h Y ; x; tð Þ = ∑
M

j=1
uh ỹj; x; t
� �

lj Yð Þ; ð39Þ

where uh( ỹj, x, t)≡πhu( ỹj, x, t)∈Wh(D). This means that the weak
formulations (35) and (36) can be now stated such that the test
functions are independent of the stochastic direction and the solution
u is a two-parameter family of solutions, with time t and the
collocation points as parameters. Then, the forward problem is

For a :e: t∈ 0; T½ � and ỹj;1≤ j≤M;

finduh ỹj; t
� �

= uh ỹj; x; t
� �

∈Wh Dð Þ
such that uh 0ð Þ = u0 and a:e:on 0; T½ �;

Bj uh ỹj; t
� �

;υh

� �
= F j υhð Þ; ∀υh∈Wh Dð Þ;

ð40Þ

where

Bj uh;υhð Þ = ∫
D

½∂tuh ỹj; t
� �

υh + w·∇uh ỹj; t
� �

υh

+ K∇uh ỹj; t
� �

·∇υh�dx;
F j υhð Þ = ∫

D

f ỹj; t
� �

υhdx + ∫
ΓN

gυhds:

ð41Þ

Likewise, the backward or adjoint problem is

For a:e: t∈ 0; T½ � and ỹj;1≤ j≤M; find

ph ỹj; t
� �

= ph ỹj; x; t
� �

∈Wh Dð Þ
such that ph Tð Þ = 0 and a:e:on 0; T½ �;
Bj υh;ph ỹj; t

� �� �
= Q υhð Þ; ∀υ∈Wh Dð Þ;

ð42Þ

where

Bj υh;ph ỹj; t
� �� �

= ∫
D

½−∂tph ỹj; t
� �

υh−w·∇ph ỹj; t
� �

υh

+ K∇ph ỹj; t
� �

·∇υh�dx;
Q υhð Þ = ∫

ω

jω j−1q υhð Þdx:
ð43Þ
Once we have the approximation uρ,h(Y, x, t) in terms of the
random inputs Y, we may obtain relevant statistical information in a
straightforward manner. The mean solution, for example, is

E u½ �≈E uρ;h

h i
= ∑

M

j=1
uh ỹj; t
� �

∫
Γ

lj Yð Þρ yð Þdy

≈∑
M

j=1
uh ỹj; t
� �

wj;

ð44Þ

wherewj are the weights associated with the cubature rule associated
with the collocation points.

5.2. Choices of collocation points

The SCM is based on polynomial approximations of the solutions in
the y∈ΓN (random representable) variables and determining those
polynomials by specifying some points in the random space where the
approximate solution is determined. One goal is to locate these points
appropriately so as to achieve the desired accuracy. The points are
chosen to be a set of cubature points so that when integrals are replaced
by a discrete sum, as in Eq. (44), the weights are explicitly known, thus
avoiding explicit evaluations of the Lagrange polynomials [18].

To define the full tensor product interpolation, we first consider
u∈C0(Γ1; W(D)) and N=1. A sequence of one-dimensional Lagrange
interpolation operators U i:C0(Γ1; W(D))→Vmi

(Γ1; W(D)) is given by
(cf. [14])

U i uð Þ yð Þ = ∑
mi

j=1
u y

i
j

� �
lij yð Þ; ð45Þ

where lji(y)∈Pmi−1(Γ1) are the Lagrange polynomials of degreemi−1
and

Vmi
Γ1;W Dð Þ
� �
= υ∈C0 Γ1;W Dð Þ

� �
: υ y; xð Þ = ∑

mi

j=1
υ̃j xð Þlij yð Þ; υ̃j

n omi

j = 1
∈W Dð Þ

( )
:

ð46Þ

The superscript i in Eq. (45) defines the accuracy of the formula,
being exact for polynomials of degree less than mi. For NN1, a vector-
index i=(i1, …, iN)∈N+

N is used to define a full tensor interpolation
formula

U i uð Þ yð Þ = U i1⊗⋅⋅⋅⊗U iNð Þ uð Þ yð Þ

= ∑
m1

j1 =1
⋅⋅⋅ ∑

mN

jN =1
u yi1

; ⋅⋅⋅;yiN

� �
li1j1⊗⋅⋅⋅⊗liNjN

� �
:

ð47Þ

As shown in this formula, different numbers of points may be used
in each direction and the total number of points is given by

M = ∏
N

n=1
mn. As N increases, M quickly becomes very large. To

avoid this “curse of dimensionality”, the Smolyak sparse grid
technique may be used [21–23], which starts from the previous full
tensor product representation and discards some multi-indices to
construct theminimal representation of the functionwhile preserving
the desired accuracy. The Smolyak algorithm builds the interpolation
function Uq,N (where q∈N+ and q−N is the order of interpolation) by
using a combination of one-dimensional functions with index in,
n=1, …, N, with the constraint that the total sum (|i|= i1+…+ iN)
across all dimensions is between q−N+1 and q, i.e.,

Uq;N uð Þ yð Þ = ∑
q−N + 1≤ ij j ≤ q

−1ð Þq− ij j N−1
q− ij j

� 

U i1⊗…⊗U iN
� �

uð Þ yð Þ:

ð48Þ
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As q is increased, more points are sampled. The multivariate index
i may also be defined by the index set

X ðq;NÞ : = i ∈ NN
þ; i ≥ 1 : ∑

N

n=1
ðin−1Þ≤q

( )
: ð49Þ

To compute Uq,N (u) (y) it is only necessary to know the solution
values at the sparse grid

Hq;N = ∪
q−N + 1 ≤ ij j ≤ q

Θi1 × … × ΘiN
� �

;

where Θin{y1
in ,...,ymli

in }⊂Гn denotes the set of points used by the one-
dimensional formula U in. Define now the differential (incremental)
operator

Δi : = U i−U i−1
; ð50Þ

with U0=0. Then

q;N uð Þ yð Þ = ∑
ij j≤q

Δi1⊗…⊗ΔiN
� �

uð Þ yð Þ

= Uq−1;N uð Þ yð Þ + ∑
ij j≤q

Δi1⊗…⊗ΔiN
� �

uð Þ yð Þ:
ð51Þ

Thus, to extend the interpolation from level q−1 to q, we only
need to evaluate the differential formula. By choosing a one-
dimensional formula based on nested points, such as Chebyshev and
Gauss–Lobatto points, the solution has to be evaluated at the grid
points that are unique to level q , defined as ΘΔ

i =Θi\Θi−1, so that the
differential nodes lie in a set ΔHq,N given by

ΔHq;N = ∪
ij j=q

Θi1
Δ × … × ΘiN

Δ

� �
: ð52Þ

The Smolyak formulas (Eq. (48)) are particularly useful whenever
nested points are used since they permit the evaluation of the error
based on the difference of two subsequent formulas [23,24]. For such
situations, it is proved in [21] that the Smolyak formula is actually
interpolatory.

The Smolyak's formulas that are based on polynomial interpola-
tion at the extrema of the Chebyshev polynomials was first used in
[16] in the context of SCM. Nobile et al. have analyzed in [19] the
Smolyak's approximation error for elliptic problems by assuming that
the solution depends analytically on each random variable. Algebraic
convergence rates are obtained in these situations, but the exponent
of the algebraic convergence also depends on the dimension of the
probabilistic space N. To avoid this drawback, anisotropic formulas
may be used [15,25,26]. They are constructed by defining an N-
dimensional weight vector α=(α1,…,αN)∈R+

N such that the aniso-
tropic rule is

Uα
q;N uð Þ yð Þ = ∑

i∈Xα q;Nð Þ
Δi1⊗…⊗ΔiN
� �

uð Þ yð Þ ð53Þ

where the index set is defined by

Xα q;Nð Þ : = i∈NN
þ; i≥1 : ∑

N

n=1
ðin−1Þ αn≤ α� q

( )
ð54Þ

and α=min1≤n≤N αn. The weight factors αn are supposed to treat
each stochastic direction differently, assigning fewer collocation
points in direction n when αn is higher, taking advantage of some
specific solution structure to reduce the total number of collocation
points. In this work, we construct the weight vector α=(α1,…,αN) to
adjust the probabilistic grid so as to control the approximation error of
a quantity of interest.

5.3. Some implementation issues

The solutions of Eqs. (40) and (42) by using the Galerkin method
may lose coercivity when the advection phenomenon dominates the
transport. Such numerical difficulties are due to the presence of
considerable information contained in small scales and whose effects
are not represented on the large scales, giving rise to the spurious
modes which may pollute the entire solution. To rectify these
difficulties, different methodologies have been developed in the
literature, which, in some sense, end up on adding a regularization
term to the Galerkin form (Cf. [27]). For the forward problem, the
formulation becomes:

For a:e: t∈ 0; T½ � and ỹj;1≤ j≤M; find

uh ỹj; t
� �

= uh ỹj; x; t
� �

∈Wh Dð Þ

such that uh 0ð Þ = u0 and a:e:on 0; T½ �;

Bj uh ỹj; t
� �

;υh

� �
+ Rj uh ỹj; t

� �
;υh

� �
= F j υð Þ; ∀υ∈Wh Dð Þ:

ð55Þ

The model term Rj(uh(y ̃j; t), υh) depends on the weighting
function υh, the trial function uh(y ̃j; t) and may depend on the input
data. It usually depends on the characteristic spatial mesh size h and
may also depend on one or more user-specified parameters τ.
Different models yield different methods. Regarding stabilized finite
element methods, the SUPG method [28] in the present stochastic
collocation approach leads to a regularization which is given by

Rjðuh ỹj; t
� �

;υhÞ = ∑
Nh

i=1
Auh ỹj; t

� �
−f ; τw ỹj

� �
⋅∇υh

� �
Ki

; ð56Þ

where (·,·)Ki
denotes the L2 -inner product defined in Ki⊂D. For one-

dimensional steady-state advection dominated advection–diffusion
problems with no source term and constant input data, the SUPG
solution with continuous piecewise linear elements on a uniform
partition of the domain is nodally exact if

τ =
h

2 w ỹj

� ���� ��� ξ Pe ỹj

� �� �
; with ξ Pe ỹj

� �� �
= coth Pe ỹj

� �� �
− 1

Pe ỹj

� � ;
ð57Þ

where the local Peclet number at each collocation point is given by
Pe(y ̃j)=0.5 h |w(ỹj) | /K(ỹj). For simplicity we use the SUPG method
in this work to stabilize the Galerkin formulation for the forward
problem (40), as given by Eqs. (55) and (56).

The backward problem (42) has similar structure to the primal
problem, with negative velocity field and needs to be solved backward
in time. By introducing a transformation of variables ζ=T− t, the
backward problem(42) can be recast as the following forward problem:

For a:e:ζ∈ 0; T½ � and ỹj;1≤ j≤M; find

ph ỹj; ζ
� �

= ph ỹj; x; ζ
� �

∈Wh Dð Þ
such that ph 0ð Þ = 0 and a:e:on 0; T½ �

∫
D

∂ζph ỹj; ζ
� �

υh−w·∇ph ỹj; ζ
� �

υh + K∇ph ỹj; ζ
� �

·∇υh

h i
dx

= Q υhð Þ; ∀υ∈Wh Dð Þ:

ð58Þ
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The weak form Eq. (58) also lacks coercivity when Pe(y ̃j)N1, so
that the following regularization term must be added to improve
stability:

Rd
j ph ỹj; t

� �
;υh

� �
= ∑

Nh

i=1
ð∂ζph ỹj; ζ

� �

−w·∇ph ỹj; ζ
� �

υh−∇·K∇ph ỹj; ζ
� �

−q;−τ w ỹj

� �
·∇υhÞKi

:

ð59Þ

Now, let the timedomain (0,T) bedivided into subintervals In=(tn−1,
tn), n=1,…,NT, where NT is the total number of subintervals. The time
step is Δt=tn−tn−1. Let {Na}a=1

Np denote the basis functions ofWh(D) so

that uh ỹj; t
� �

= ∑
Np

a=1
u j
aNa and ∂tuh ỹj; t

� �
= ∑

Np

a=1
u j
a ∂tNa. We define

u j
h : = u j

1;…;u j
Np

n ot
as the vector of unknowns and u̇h

j as the time

derivative of uh
j. These definitions allow to recast the system of ordinary

Eq. (55) in the following matrix form

Mu̇ j
h + Ku j

h = F; ð60Þ

with M=[Mab],K=[Kab] and F={Fa}, where

Mab = Na + τw ỹj

� �
·∇Na;Nb

� �
; ð61Þ

Kab = Na;w ỹj

� �
·∇Nb

� �
+ ∇Na;K ỹj

� �
∇Nb

� �
+ τw ỹj

� �
·∇Na;w ỹj

� �
·∇Nb

� �
+ ∑

Nh

i=1
τw ỹj

� �
·∇Na;−K ỹj

� �
ΔNb

� �
Ki

;

ð62Þ

Fa = Na + τw ỹj

� �
·∇Na; f

� �
+ Na; gð ÞΓN : ð63Þ

Wemay solve Eq. (60) by using the generalized trapezoidal family
of methods yielding the following two-level scheme:

ðM + γΔtKÞu j;n+1
h = ðM−ð1−γÞΔtKÞu j;n

h + ΔtFn+γ
; ð64Þ

where γ∈ [0,1] is a parameter that defines the integration-in-time
method. There are some well known methods derived from Eq. (64):
Explicit Euler (γ=0), Crank–Nicolson (γ=1/2) and Implicit Euler
(γ=1). The Crank–Nicolson method is used with Δt small enough so
that the error due to discretization in time may be disregarded. The
same approach is used for the time discretization of the weak dual
problem (Eqs. (58) and (59)).

6. Goal-oriented error estimation

Wewant to assess the accuracy of a quantity of interest associated
with the approximate stochastic solution u(θ,x,T)≈uρ,h(Y,x,T),
which may be evaluated as

Q uð Þ = ∫
Γ

∫
T

0

∫
ω⊂D

1
ωj j q u θ; x; Tð Þð Þdxdtρ yð Þdy

≈∫
Γ

∫
T

0

∫
ω⊂D

1
ωj j q uρ;h Y; x; tð Þ

� �
dxdtρ yð Þdy

= ∑
M

j=1
∫
T

0

∫
ω⊂D

1
ωj j q uh ỹj; x; t

� �� �
dxdt ∫

Γ

lj yð Þρ yð Þdy

= ∑
M

j=1
∫
T

0

∫
ω⊂D

1
ωj j ∑

M

j=1
q uh ỹj; x; t

� �� �
dxdt

( )
wj

= ∑
M

j=1
Q uj

h

� �
wj
―

;

ð65Þ
in which we approximate the integral on the probabilistic space by
using the same cubature rule as used to define the Lagrange
interpolation points, so that wj

―
are the weights corresponding to

the collocation points y ̃j. This quantity is the expected value of the
quantity of interest. Obviously, as we are interested in the solution
of a stochastic problem, we are indeed interested in the probability
distribution of the solution, and not just its mean. Actually, we
want to evaluate such probability distribution as accurately as
possible.

On the other hand, as we are approaching the stochastic problem
by sampling it at specific collocation points, it seems reasonable to
assess the accuracy of the quantity of interest for each of those points
and then to recover the desired moments and associated distribu-
tion. Thus, for each sampling point y ̃j, 1≤ j≤M, there will be
pointwise values uj=u(y ̃j, x, t). We introduce the following quantity
of interest:

Q u j
� �

≡Q u; ỹj; x; t
� �

=
1
ωj j∫

T

0

∫
ω
q u ỹj; x; tÞ

� �
dxdt:

�
ð66Þ

This means that we have M estimates of the quantity of interest
Q(u j),1≤ j≤M, denoted by Q(uh

j), which are associated with the
correspondingdeterministic problems. The following relations establish
an a posteriori error estimate for the quantity of interest.

Theorem 1. Let (u j,p j) be the solutions of the forward and adjoint
problems

Bj u ỹj; t
� �

;υ
� �

= F j υð Þ; ∀υ∈W;

Bj υ;p ỹj; t
� �� �

= Q υhð Þ; ∀υ∈W;
ð67Þ

and let the discrete approximations of these equations be given by

Bj uh ỹj; t
� �

;υh

� �
= F j υhð Þ; ∀υh∈Wh;

Bj υh;ph ỹj; t
� �� �

= Q υhð Þ; ∀υh∈Wh
;

ð68Þ

where Q defines the quantity of interest. Then

Q u j
� �

−Q u j
h

� �
= Bj e j

h; ε
j
h

� �
= Rj u j

h;p
j

� �
ð69Þ

where

e j
h = u j−u j

h and ε j
h = p j−p j

h ð70Þ

and Rj(⋅ , ⋅) is the residual functional,

Rj υ; zð Þ = F j zð Þ−Bj υ; zð Þ: ð71Þ

Proof. A straightforward calculation reveals that

Q u j
� �

−Q u j
h

� �
= Bj u j

; p j
� �

−Bj u j
h;p

j
h

� �
= Bj u j

;p j
� �

−Bj u j
h; p

j
h−p j + p j

� �
= Bj u j

; p j
� �

−Bj u j
h;p

j
� �

+ Bj u j
h;p

j−p j
h

� �
= Bj u j−u j

h; p
j−p j

h

� �
;

ð72Þ
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which is the first equality in Eq. (69). Here we have used the Galerkin
orthogonality of the errors: Bj(u j−uh

j ,ph
j)=0, etc. The remaining

equality follows from the calculations

Bj e j
h; ε

j
h

� �
= Bj u j−u j

h; p
j−p j

h

� �
= Bj u j−u j

h;p
j

� �
= Bj u j

; p j
� �

−Bj u j
h;p

j
� �

= F j p j
� �

−Bj u j
h;p

j
� �

= Rj uj
h; p

j
� �

:

ð73Þ

□
This theorem in various forms is fairly well known and versions of

it can be found in, for example, [2–6,29].
Since Q( ⋅) is linear, Q(uj−uh

j )=Q(ej). According to [29], as the
error ej can be bounded above by the residual, an estimate of Q(ej) can
be given as

Q ej
� ���� ���≈ ηj = ∑

Nh

i=1
η j
Ki
;with η j

Ki
= e j

h;Ki
ε j
h;Ki

; ð74Þ

where eh,Ki

j
and εh,Ki

j
are the elementwise contributions to the global

norm of the residuals associated with the primal and dual solutions at
each collocation point, respectively, as defined in [30]. We now use
the same interpolation rule (Eq. (39)) to interpolate ηj in the
probabilistic space Γ, so that we derive an estimate to the expected
value of the error with respect to the quantity of interest, which is
computed by

μη = ∫
Γ

∑
M

j=1
η jlj yð Þ

 !
ρ yð Þdy

= ∑
M

j=1
η j ∫

Γ

lj yð Þρ yð Þdy = ∑
M

j=1
η jwj:

ð75Þ

Similarly, we define an estimate of the variance of the error with
respect to the quantity of interest as

ση = ∑
M

j=1
ηj
� �2

wj− ∑
M

j=1
ηjwj

 !2

; ð76Þ

and [ση]q;N indicates that the estimate ση is obtained by using the
probabilistic dimension equal to N and associated interpolation level
q.

Eq. (75)may also bewritten as μη = ∑
Nh

i=1
ηKi , whereηKi = ∑

M

j=1
ηj
Ki
wj

represents the elementwise contribution to μη. The quantities ηKi
, which

are actually estimates of thefirstmoments of the errorwith respect to the
quantity of interest at each element Ki, can be used to derive refinement
indicators, as shown in the following section.

6.1. Adaptation strategy

The estimates (75) and (76) are now used to guide an adaptive
algorithm which adjusts the sparse probabilistic grid as well as the
finite element grid so as to control the error with respect to the
quantity of interest. We use the available approximations to define
the dimension of the probability space, the anisotropic sparse
collocation grid and the spatial mesh. Regarding the stochastic
approximation, we want to select the dimension N and the
interpolation level q to meet preset tolerances. Moreover, we want
to treat each stochastic direction differently by a posteriori selection
of the weight vector α∈R+
N . The main steps of the algorithm are as

follows:

(1) choose N and an initial finite element mesh; determine the
relative importance of each random dimension and evaluate
the N -dimensional weight vector α=(α1,…,αN);

(2) construct an anisotropic sparse grid by using q≥2;
(3) evaluate ηKi

and refine the elements Ki that exhibit error greater
than a prescribed tolerance (tol1) (tol1 may be taken as a
fraction β of ηmax = max

1≤j≤Nh

ηKj

��� ���n o
); repeat until ηmaxb tol1;

(4) using the anisotropic grid (step (2)) and the new adapted
spatial mesh (step (3)), increase q until

ση

h i
q;N

− ση

h i
q−1;N

����
����= ση

h i
q−1;N

b tol2; ð77Þ

(5) set αN+1=αN and N=N+1;
(6) repeat (2)–(5) until

ση

h i
q;N

− ση

h i
q;N−1

����
����= ση

h i
q;N−1

b tol2: ð78Þ

Step (1) is a postprocessing procedure aimed at identifying the
relative importance of each random dimension. This knowledge is
used to define the N-dimensional weight vector α=(α1,…,αN)∈R+

N

in order to construct the anisotropic grid by using Eq. (54). We link
the weights αn with the change in the estimate of the error with
respect to the quantity of interest: the directions in which the largest
change in the error occurs when the number of points (level of
interpolation) is increased will require more interpolation points (or
collocation points).We verified that themedian absolute value (MAD)
is quite appropriate to measure the statistical dispersion of the error.
Thus, for a givenN, we first evaluate the estimates η j of Q(e j), j=1,…,
M, through Eq. (74). Based on the posteriori error estimator proposed
in [15], this is done for in=(1,…, 1, in, 1,…, 1), in=2, for each
stochastic direction n,1≤n≤N. The MAD is determined for each in:
we evaluate the median of the data set, denoted by η̂j; the residuals
are evaluated as |r j|n=|η j−η̂ j|n , and the respective median absolute
deviation is determined by MADn=median{|r j|n}j=1

M . The adaptive
strategy introduces more points for higher MADn so as to equilibrate
the MADn among all of the stochastic directions. Thus we adopt
αn = max

1≤ j≤N
(MADn)/MADn, which is used to build the anisotropic

Smolyak grid with the index set defined by Eq. (54). In step (2), the
interpolation level q will be increased until consistent values of the
estimates of the first and second moments of Q(e) are obtained. We
anticipate that μη is very stable for all cases so that we focus on the
estimate of the second moment (ση), resulting in condition (77) —

step (4).
When the dimension of the probabilistic domain is increased,

there is no information about the relative importance of the new
added direction on the accuracy of the quantity of interest. One
possible way to get this information is to repeat the postprocessing
step (step (1)) by including the new stochastic dimension. However,
this procedure would produce a large increase in the cost of the
adaptive algorithm. On the other hand, based on the Karhunen–Loève
expansion of the random inputs, it is natural to assume that the new
added direction N+1 is at most as important as the direction N.
This assumption implies that the weight vector α∈N+

N+1 should have
αN+1=αN, which is established in step (5).

The quantities η Ki
= ∑

M

j=1
η j

Ki
wj are used to derive the refine-

ments in step (3). We emphasize that ηKi
is an estimate of the error

with respect to the quantity of interest in each finite element Ki,
resulting from the approximation in the physical and probabilistic



Fig. 1. Exact covariance function versus x and x′; 0≤x≤2,0≤x′≤2 for Lc=0.25 and 1.0.
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spaces and assuming that the error in time is disregarded. As specified
in [30], an element Ki is a candidate for refinement if

ηKi

��� ���
max
1≤j≤Nh

ηKj

��� ���n o≥ β;

where β is a user-prescribed parameter ranging from zero to one. This
ratio, like μη, does not change verymuchwith a changeof the collocation
points, so that the refined spatial grid is actually determined only once.

Motivated by the property (32), step (5) of the adaptive strategy
adjusts the number of terms in the Karhunen–Loève expansion so as
to meet a preset tolerance in the variance of the estimated error with
respect to the quantity of interest.

Remark: The proposed adaptation strategy is very flexible in the sense
that its steps might be performed independently, according to the
information one has about the problem. For example, if N is known a
priori, steps (1)–(4) may be performed to adapt the mesh size, the
stochastic grid and associated interpolation level to meet the preset
tolerances in errors in quantities of interest.

7. Numerical experiments

In the following numerical experiments we consider the one-
dimensional transport problem given by

∂u Y; x; tð Þ
∂t − ∂

∂xK Y; xð Þ ∂u Y; x; tð Þ
∂x + w Y ; tð Þ∂u Y; x; tð Þ

∂x
= 0; Y; x; tð Þ∈ΓN × 0;2ð Þ × ð0; T�;

with homogeneous Dirichlet boundary conditions and the initial
condition given by

u x;0ð Þ = 1; if x∈ 0:2;0:7½ �;
0; otherwise:

�

We assume that the quantity of interest is

Q u; x0ð Þ = ∫
Γ

∫
T

0

∫
D

u Y ;x; tð Þk� x−x0ð Þdxdtρ yð Þdy;

with x0=1.2 and T=0.6. The mollifier kɛ is chosen as

k� xð Þ = C exp
�
2

xj j2−�2

" #
; if xj jb �;

0; if xj j≥�:

8>><
>>:

We set C=2.2523/� and �=h/8 as indicated in [2].
In the following numerical experiments, the initial spatial

discretization is obtained by dividing the computational domain
into 40 uniform finite elements. The Crank–Nicolson method is used
in time with Δt=3.0×10−4, which allow us to disregard the error
due to discretization in time.

7.1. Case 1: a random diffusivity parameter

We first consider the case in which the uncertainty arises from a
random diffusivity parameter, which is modeled by a stationary
process with covariance function

Cov x; x′
� �

= Cov x−x′
� �

= σ2exp −
x−x′
��� ���2

L2c

8><
>:

9>=
>;; ð79Þ
where x; x′∈D ̅=[0,2],σ2 is the variance of the random variable and Lc
is the correlation length. This process can be approximated by

K y; xð Þ = E K½ � + σ
ffiffiffiffiffiffi
λ0

p
φ0 xð ÞY0

+ ∑
N̂

n=1
σ

ffiffiffiffiffiffi
λn

p
φn xð ÞY2n−1 + φ̂n xð ÞY2n
� � ð80Þ

where λ0 = 1
4

ffiffiffi
π

p
Lc;φ0 xð Þ = 1 and, for n=1,…,

λn =
1
2

ffiffiffi
π

p
Lcexp − nπLcð Þ2

16

( )
;

φn xð Þ = cos
1
2
nπx

� 

; φ̂n xð Þ = sin

1
2
nπx

� 

:

ð81Þ

The uncorrelated random variables Yn,n=0,…,2N ̂, have zero mean
and unit variance. Here we assume that they are independent and
uniformly distributed in [−1,1]. We also use E[K]=5×10−2,w=1
and σ=0.001. This last value guarantees that K(Y,x) is strictly
positive for all N. The covariance function (79), divided by σ2, is
depicted in Fig. 1 for Lc=0.25 and 1.0. The associated eigenvalue
decays are shown in Fig. 2, which indicate that smaller correlation
lengths require more contribution in Eq. (80) from terms associated
with smaller eigenvalues.

The first experiment is conducted by using Lc=1.0. We start the
adaptive algorithm by setting N ̂=2, which corresponds to use N=5.



Fig. 2. Eigenvalues λn decay, n=1,2,…, for Lc=0.25 and 1.0. Fig. 3. Elementwise error ηKi
for the initial mesh and 2≤q≤4.
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Table 1 presents the results obtained by evaluating the first step of the
algorithm, that is, the identification of the relative importance among
the random directions for the initial (coarse) spatial discretization.
Table 1 also presents the weight vector and Table 2 shows the
associated anisotropic grids for increasing q (2≤q≤6). In this table,
the number of grids is the total number of tensor product grids that
are used to construct the final grid (see [23] for more details). The
proposed strategy is able to capture the solution anisotropy in the
probabilistic space. We should point out that this feature is
independent of the initial spatial grid. We may also notice that the
odd terms in Eq. (80) have stronger effect on the accuracy of the
quantity of interest than the even ones. The estimate of the variance of
the error with respect to the quantity of interest becomes invariant
after q=4 (condition (77)). If Smolyak isotropic grids are used for
solving the stochastic primal and dual problems, skipping the step 1 of
the algorithm, the convergence would be reached for q=3. However,
the use of anisotropic grids greatly reduces the number of determin-
istic solvers, which leads to huge computational savings when the
problem has an anisotropic behavior with respect to the stochastic
Table 1
Case 1, Lc=1.0: identification of the relative importance among the random directions
for N=5.

N=5 h=0.05 α

n in η j MADn αn

1 (2,1,1,1,1) j=1 2.20022E−3 8.07E−6 1.00
j=2 2.20840E−3
j=3 2.21647E−3

2 (1,2,1,1,1) j=1 2.21342E−3 5.01E−6 1.60
j=2 2.20840E−3
j=3 2.20838E−3

3 (1,1,2,1,1) j=1 2.20601E−3 2.40E−6 3.36
j=2 2.20840E−3
j=3 2.21083E−3

4 (1,1,1,2,1) j=1 2.20345E−3 4.96E−6 1.63
j=2 2.20840E−3
j=3 2.20841E−3

5 (1,1,1,1,2) j=1 2.21175E−3 3.34E−6 2.42
j=2 2.20840E−3
j=3 2.20501E−3

Table 2
Case1, Step 1: anisotropic grids for 2≤q≤6.

q 2 3 4 5 6

Number of partial grids 5 9 17 34 55
Number of points 9 23 53 143 323
directions. In the present case, the isotropic grid would require more
than ten times the number of resolutions of deterministic problems
than the proposed methodology.

It is also interesting to note that the elementwise contribution ηKi

to η, does not change with q, as shown in Fig. 3. This behavior is due to
Fig. 4. Error ηKi
for all intermediate meshes.
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the fact that ηKi
are estimates of the first moments of the error with

respect to the quantity of interest at each element Ki. Like μη, they do
not change very much with a change of the collocation points. Thus,
we use the anisotropic grid with q=2 to reach convergence of ηKi

, that
is whenmax

1≤i≤Nh

|ηKi
|≤tol1. Here we use tol1=10−5. Fig. 4 shows the error

in space for all four intermediate meshes. The partition obtained after
four refinements, with 56 elements, is shown in Fig. 5. As expected,
the refinement was performed around x=1.2.

Using now the final spatial mesh, we increase N̂ so that N=7 and
construct the stochastic grid by using the lower level q for which the
estimate of the variance of the error with respect to the quantity of
interest becomes invariant. This amounts to using q=4. To build the
stochastic grid it is also necessary to define the weight vector α,
althoughwe have no information about the relative importance of the
two new stochastic directions on the representation of the quantity of
interest. However, we assume that they are at most as important as
the last two stochastic directions associated with N̂=2. Thus, we set
α6=α4 and α7=α5 so that the new multidimensional weight vector
is α=(1,1.6,3.36,1.63,2.42,1.63,2.42). The addition of two terms of
the KLE actually improves the accuracy of the quantity of interest, but
the convergence is achieved by increasing N̂=2 once more. We also
verify that

sup
x∈D

Var uN=7½ �−Var uN=9½ �j j xð Þb10−10
;

where uN=7 and uN=9 are the primal solutions obtained with a KLE of
Kwith 7 and 9 terms, respectively. Fig. 6 shows themean and variance
Fig. 5. Final mesh.

Fig. 6. Mean and variance of the primal solution at t=0.6.
of the primal solution at t=0.6. The variance exhibits multi-peak
behavior, with the highest peak at the center of the mean and two
smaller peaks next to the front and end of the mean profile. Similar
multi-peak structure has been reported in [31,32]. The sample
histogram of the primal solution at x=1.2 (sampling at the
collocation points) is shown in Fig. 7. The low amount of sampling
points may not be enough to capture the frequency density profile
precisely, yielding the observed non-unimodality.
Fig. 7. Histogram of the primal solution at x=1.2 and t=0.6.



Table 3
Step 5: estimate of the variance of the error Q(e).

N Numb. coll.pts. (q=4) ɛN+2 ση

3 47 – 3.51515371E−13
5 105 6.03e−07 4.49553011E−13
7 199 2.01e−07 5.37868146E−13
9 337 1.19e−07 8.95593573E−13
11 527 5.75e−08 1.43048523E−12
13 777 2.50e−08 1.78641999E−12
15 1095 1.47e−08 1.11002172E−12
17 1489 9.22e−09 1.11074365E−12
19 1967 5.12e−09 1.11074338E−12
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The second experiment is conducted by using Lc=0.25, which
yields a much slower decay of the eigenvalues of the KLE as
compared to the previous experiment (see Fig. 2) , so that we expect
to have higher stochastic domain dimension than that obtained in
the previous experiment. We now start the adaptive algorithm by
setting N ̂=1, which corresponds to use only N=3. The first step of
Fig. 8. Variance of the primal solution at t=0.6 as N increases.
the algorithm yields α=(1,1.2,2.5). As expected, the weight vector
indicates a more isotropic behavior than that of the previous case.
Step (3) of the algorithm, with q=2, yields a refined spatial mesh
similar to that obtained in the previous experiment. With the refined
spatial mesh, the convergence of the estimate of the variance of the
error of the quantity of interest is reached for q=4. Next, N ̂=1 is
incrementally increased. The number of points of the associated
grids obtained with α=(1,1.2,2.5,…, 1.2,2.5) and q=4 are indicat-
ed in Table 3, which still are much fewer than the number of points
required by an isotropic grid. For example, the isotropic approxi-
mation with N=5 would require 801 collocation points, almost
8 times higher than the proposed anisotropic approximation. The
estimate of the variance of the error with respect to the quantity of
interest is also shown in Table 3 as well as the error

�N+2 = sup
x∈D

Var uN½ �−Var uN+2
� ��� �� xð Þ

regarding the convergence of the primal solution at t=0.6 with
respect to the dimension of the probability space. Fig. 8 shows the
variance of the primal solution at t=0.6 as N increases. The mean and
variance of the primal solution at t=0.6 obtained with N=19 is
shown in Fig. 9. The corresponding sample histogram of the primal
Fig. 9. Mean and variance of the primal solution at t=0.6.



Fig. 10. Histogram of the primal solution at x=1.2 and t=0.6.

Table 4
Case 2: identification of the relative importance among the random directions forN=3.

N=3 h=0.05 α

n in η j MADn αn

1 (2,1,1) j=1 2.10273E−3 1.05E−4 1
j=2 2.20840E−3
j=3 2.31329E−3

2 (1,2,1) j=1 2.15632E−3 5.18E−5 2
j=2 2.20840E−3
j=3 2.26025E−3

3 (1,1,2) j=1 2.20108E−3 7.31E−6 14
j=2 2.20840E−3
j=3 2.21571E−3

Table 5
Case 2: identification of the relative importance among the random directions for N=5
and in=2.

N=5 h=0.05 α

n in η j MADn αn

1 (2,1,1,1,1) j=1 2.10273E−3 1.05E−4 1
j=2 2.20840E−3
j=3 2.31329E−3

2 (1,2,1,1,1) j=1 2.15632E−3 5.18E−5 2
j=2 2.20840E−3
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solution at x=1.2, sampling at 1967 collocation points, is shown in
Fig. 10. The frequency density has a symmetric bell shape profile of a
normal distribution.
j=3 2.26025E−3
3 (1,1,2,1,1) j=1 2.20108E−3 7.31E−6 14

j=2 2.20840E−3
j=3 2.21571E−3

4 (1,1,1,2,1) j=1 2.20733E−3 1.07E−6 98
j=2 2.20840E−3
j=3 2.20948E−3

5 (1,1,1,1,2) j=1 2.20231E−3 6.09E−6 17
j=2 2.20840E−3
j=3 2.21449E−3

Fig. 11. (a) Exact covariance function versus t and t′; 0≤ t≤1,0≤ t′≤1; (b) decay of
eigenvalues λn for the index n=1,2, ....
7.2. Case 2: a random velocity field

We consider now the case in which the uncertainty arises from the
random velocity field. The diffusivity parameter is constant and equal
Table 6
Case 2: identification of the relative importance among the random directions for N=5
and in=3.

N=5 h=0.05 α

n in η j MADn αn

1 (3,1,1,1,1) j=1 2.10273E−3 3.95E−5 1
j=2 2.16882E−3
j=3 2.20840E−3
j=4 2.24787E−3
j=5 2.31329E−3

2 (1,3,1,1,1) j=1 2.15632E−3 1.95E−5 2
j=2 2.18889E−3
j=3 2.20840E−3
j=4 2.22788E−3
j=5 2.26025E−3

3 (1,1,3,1,1) j=1 2.20108E−3 2.74E−6 14
j=2 2.20566E−3
j=3 2.20840E−3
j=4 2.21114E−3
j=5 2.21571E−3

4 (1,1,1,3,1) j=1 2.20733E−3 4.02E−7 98
j=2 2.20800E−3
j=3 2.20840E−3
j=4 2.20881E−3
j=5 2.20948E−3

5 (1,1,1,1,3) j=1 2.20231E−3 2.28E−6 17
j=2 2.20612E−3
j=3 2.20840E−3
j=4 2.21068E−3
j=5 2.21449E−3



Table 7
Case 2: anisotropic grids for 2≤q≤7.

q 2 3 4 5 6 7

Number of grids 4 6 9 12 16 20
Number of points 7 15 29 57 113 225
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to 5×10−2. The divergence free random velocity field is modeled by a
Wiener process with covariance function

Cov t; t′
� �

= σ2min t; t′
n o

; ð82Þ

where t, t′∈ [0,1]. This process can be approximated by

w Y ; tð Þ = w + σ ∑
N

n=1

ffiffiffiffiffiffi
λn

p
φn tð ÞYn ð83Þ

where

λn =
4

π2 2n−1ð Þ2 ; φn tð Þ =
ffiffiffi
2

p
sin

tffiffiffiffiffiffi
λn

p
 !

; n = 1;…:; ð84Þ

and Yn∈N(0,1),n=1,…,N. Here we use w̄̄̄=1 and σ=0.01. Fig. 11
shows the covariance function, divided by σ2, and the decay of the
Fig. 12. Error ηKi
for all intermediate meshes.
eigenvalues as n increases. The fast decay of the eigenvalues indicates
that a good approximation for w(Y, t) can be achieved with just a few
terms of the KL expansion.

The postprocessing procedure used to identify the relative
importance among the random directions is verified by using N=3
and N=5. For the last case, the stochastic grids in=(1,1, in,1,1) are
constructed using either in=2 or in=3. Tables 4–6 present the
estimate of the error with respect to the quantity of interest
ηj,1≤ j≤3,5, for each stochastic grid. They also show the MADn for
each case, as well as the resulting weight vector. Also in this case, we
verified that either a higher N or higher level stochastic grid yield the
same weight vector α, indicating that the proposed adaptive strategy
is very robust to the initial choices for N, q and in.

The weight vector α is used to construct the anisotropic sparse grid
by using Eq. (53). Table 7 indicates the number of partial grids used in
the tensorproduct and thenumberof points of thefinal grid for 2≤q≤7.
For the anisotropic grid with q=2we evaluate the estimate of the error
in spacewith respect to the quantity of interest and perform the step (3)
of the algorithm. Fig. 12 shows that estimate in space for all intermediate
meshes. The convergence of the estimate of the variance of the error
with respect to the quantity of interest is reached for q=6 and higher.

Using now the final spatial mesh and q=6, we increase N until the
estimate of the variance of the error with respect to the quantity of
interest becomes invariant, which happens for N=4. The mean and
variance of the primal solution at t=0.6 obtained at the end of the
algorithm are shown in Fig. 13. The variance exhibits a two symmetric
Fig. 13. Mean and variance of the primal solution at t=0.6.



Fig. 14. Histogram of the primal solution at x=1.2 and t=0.6.
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peak behavior around the center of the mean solution, where the
variance is very small. Similar behavior is reported in [33]. The
corresponding sample histogram of the primal solution at x=1.2 is
shown if Fig. 14 , which also has a normal distribution profile.

8. Conclusions

In this work we have described a general theory for goal-oriented
error estimation for stochastic advection–diffusion models. The
random parameters are approximated by Karhunen–Loève expan-
sions and the non-intrusive stochastic collocation method is used for
the numerical treatment of the resulting stochastic equations. This
allows us to compute the error with respect to the selected quantity of
interest by a series of deterministic primal and dual problems. The
error estimates are used to guide an adaptive algorithm to adapt the
physical mesh, the dimension of the random space and the collocation
points. The dimension of the random space is chosen as small as
possible to meet the prescribed accuracy with respect to the quantity
of interest. The use of anisotropic tensor product grids in probabilistic
space rather than isotropic sparse grids yields substantial savings for
problems possessing natural anisotropy with respect to stochastic
directions. Themethodology has been successfully applied to a class of
model problems in one space dimension.
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