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A posteriori estimates of errors in quantities of interest are developed for the nonlinear system of evolution
equations embodied in the Cahn—Hilliard model of binary phase transition. These involve the analysis of
wellposedness of dual backward-in-time problems and the calculation of residuals. Mixed finite element
approximations are developed and used to deliver numerical solutions of representative problems in one-
and two-dimensional domains. Estimated errors are shown to be quite accurate in these numerical examples.
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. INTRODUCTION

The celebrated Cahn—Hilliard model of binary phase transition has generated significant interest
since its inception over half a century ago [1], providing the canonical example of phase-field or
diffuse-interface models of multiphase phenomena and, thereby, yielding a powerful methodol-
ogy for treating complex interactions between different phases of materials [2—-6]. An extensive
literature exists on mathematical properties of initial-boundary-value problems driven by the
Cahn—Hilliard equation and on various methods proposed for their numerical solution.

The Cahn-Hilliard equation is a fourth-order, nonlinear parabolic partial differential equation
corresponding to a conservative gradient flow. Mathematical analyses of wellposedness of the
Cahn-Hilliard equation were contributed by Elliott and Zheng [7], Elliott [8], Blowey and Elliott
[9], Elliott and Luckhaus [10], Elliott and Garcke [11], and Barrett and Blowey [12]. Many aspects
of the Cahn—Hilliard equation have been explored, for example, its dynamical properties [13] as
well as its limit to certain free-boundary problems [14-16]. For a recent investigation of linear
instability, we refer to Burger et al. [17].

Correspondence to: J. Tinsley Oden, Institute for Computational Engineering and Sciences, The University of Texas at
Austin, 1 University Station, CO200, Austin, TX 78712 (e-mail: oden@ices.utexas.edu)

Contract grant sponsor: DOE Multiscale Mathematics; contract grant number: DE-FG02-05ER25701

Contract grant sponsor: KAUST; contract grant number: US00003

© 2010 Wiley Periodicals, Inc.



ERROR ESTIMATION FOR CAHN-HILLIARD MODELS 161

Semi-discrete (discrete in space, continuous in time) approximations of the Cahn-Hilliard
equation lead to very stiff ordinary differential equations that provide a challenge for most implicit
numerical schemes and are generally intractable by explicit methods. The development of so-
called semi-implicit time-stepping algorithms is an ongoing area of research; see Eyre [18], He,
Liu and Tang [19], and He and Liu [20] (cf. Feng and Prohl [21]), as well as algorithms developed
for related equations in [22,23]. Finite element approximations of the Cahn—Hilliard equation
have been analyzed in a series of papers by Elliott and French [24], Copetti and Elliott [25], Bar-
rett and Blowey [12,26], and Feng and Prohl [27]. The latest of these developments considered
discontinuous Galerkin methods [28-30] and isogeometric methods [31].

The subject of a posteriori error estimates and adaptive methods for finite element approxima-
tions of the Cahn—Hilliard equation has recently been taken up by Feng and Wu [32], and Bartels
and Miiller [33]; see also the applications to the Cahn—Hilliard equation with a double obstacle
free energy in [34, 35], and to the Allen—Cahn equation in [36-38]. One of the main focuses in
[32,36,38] in developing these estimates is the elimination of their exponential dependence on the
interface thickness parameter €. This elimination is possible when the solution exhibits developed
layers without undergoing topological changes but appears unavoidable in the general case. The
estimates developed in [33,37], on the other hand, explicitly monitor and take into account such
topological changes by computing an approximation to the principal eigenvalue of the linearized
operator.

In this work, we develop goal-oriented error estimates for the Cahn—Hilliard equation. These
error estimates are dual-based a posteriori estimates of the error in output functionals of the solu-
tion. The estimates are applicable to general classes of Cahn—Hilliard initial value problems, and
do not rely on developed layers, since the precise influence of the residual on the error is provided
by the dual solution, which is the solution of a backward-in-time, linearized-adjoint problem.

The idea of goal-oriented methods embraces the notion that a numerical simulation is gener-
ally done to study specific features of the solutions, the so-called quantities of interest or target
outputs, which are, therefore, the goals of the analyses. Obviously, it is important to be able to
estimate the discretization error in such quantities of interest, and, once an estimate is in hand,
to adapt the mesh so as to control the error. This is the mission of goal-oriented adaptive finite
element methods. The theory of a posteriori error estimation was confined to global estimates in
various energy and L”-norms until the late 1990s, when the idea of using adjoints (duals) to arrive
at estimates of quantities of interest emerged. Such estimates are presented in the works of Oden
and Prudhomme [39-42], the important works of Becker and Rannacher [43,44] (see also [45]),
Siili and Houston [46,47], and Paraschivoiu et al. [48] (see also [49]).

The application of goal-oriented methods to time-dependent problems poses a significant
complication as it requires a computation of the global backward-in-time dual problem. Various
implementations of such algorithms have been investigated by Bangerth and Rannacher [50],
Fuentes et al. [51], Diez and Calderén [52], Schmich and Vexler [53], Bermejo and Carpio [54],
and Carey et al. [55]. In the present exposition, we describe the extension of time-dependent
goal-oriented methods to the nonlinear Cahn-Hilliard equation.

We note that goal-oriented error estimates for time-dependent problems are similar in their
derivation to the dual-based error estimates developed for parabolic equations by Eriksson and
Johnson in a series of papers in the 1990s [56-59]; see also [60,61]. However, the focus of their
work is on a global norm of the error, and the influence of the dual problem in the estimates is
reduced to a proportionality factor, the so-called stability constant.

Following this introduction, we present the initial-boundary-value-problem on polyhedral
domains in R?, governed by the Cahn—Hilliard equation. We develop a weak mixed variational
formulation of this problem for the pair (u, ), u being a species or phase concentration and ©
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the chemical potential. We then consider semi-discrete and fully-discrete mixed finite element
approximations of the system using equal-order polynomial approximations of (u, i) in space
and globally continuous approximations in time. In Section III, we develop global bounds on the
error components e = u — i, e* = u — 1, (4, i) being any pair satisfying mild compatibility
conditions, in terms of the residual functionals for the system. The development of a posteriori
estimates of error in quantities of interest is taken up in Section I'V. For simplicity, we choose
to define these quantities of interest through continuous linear functionals on the space of trial
functions, but the theory captures cases involving nonlinear, differentiable functionals. We derive
backward-in-time dual (or linearized-adjoint) equations, the well posedness of which is shown in
Section V. The solution pair (p, x) of the dual problem is then used to derive goal-oriented error
estimates in quantities of interest. In Section VI, we develop numerical algorithms for computing
the goal-oriented error estimates and we present results of several numerical experiments on one-
and two-dimensional examples that confirm the predictions of the theory.

Il. PROBLEM STATEMENT

A. The Cahn-Hilliard Model

Let @ ¢ RY d = 1,2,3, be a bounded (polyhedral for d = 2,3) domain. We consider the
following nonlinear initial boundary-value problem for the pair (i, i):

u = Ap
} inQx(0,7T], (1a)
w=1y'u)— e Au
O = 0, =0 ond2 x[0,T], (1b)
u=uy onSx{r=0}, (1c)

where (), = 8,(-) = 9(-)/dt, 8,(-) = n - V(-) is the normal derivative, € the diffusivity,
¥ : R — R the free energy, and uy € H'(S) is an initial condition. Physically interesting cases
concern small diffusivity, i.e., €2 < 1.

The nonlinear free energy function v has the form of a double well. This form provides the
mechanism for phase separation. We shall consider the following C*-continuous double well /:

W+1? u<-—l,
W) = 411@{2 1 uel-11], @
(u — 1)2 u>1.

In particular, we shall employ the following important properties of ¥:

W@ — ' @)U —v)> —Cu—v)?, VuvekR (3a)
[ () — ' ()] < Lylu —vl, Yu,v e R, (3b)
" () — " (V)| < Lyrlu — v, Yu,v e R, (3¢0)

for positive constants Cy, Ly, and Ly, in particular, 6C, = 3L, = Ly» = 6. These prop-
erties correspond to compact perturbations of monotonicity (or a Garding inequality), Lipschitz
continuity of " and Lipschitz continuity of ¥”, respectively.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ERROR ESTIMATION FOR CAHN-HILLIARD MODELS 163

Remark 2.1. Note that we consider a modification of the classical quartic free energy, i w>—1)%
This modification is such that i has quadratic tails, implying that ¥" has linear growth at infinity.
Such assumptions have been employed in, e.g., [62] to derive L*°-bounds for u. Our motivation
is that we can establish well posedness of dual Cahn—Hilliard problems; see Section V.

A different free energy that satisfies the properties (3a)—(3c) is the regularized logarithmic free
energy [12,26]:

-+ 2 (a—wmls
—(1—u — —u)ln
2 2
+1(1+ 4+ (1 +u)l 6 3 148
2w W57 " ’
0 6 1 1 —
U (i) 1= ?(l—uz)—l—E((l—i—u)ln 0 —wn ”) wel—1468,1-3)
6. 6 1
5(1—u2)+5<(1+u)1n%
i —wr A —wn S =2 -3
—(1 - —u)ln - — = >1-—6.
2w W57 "

where 6 and 6, > 0 are positive constants and § > 0 is a small number. Furthermore, the regular-
ized double obstacle free energy (corresponding to a deep quench limit) in [9] also satisfies these
properties.

Remark 2.2. The Cahn-Hilliard equation is a conservative gradient flow equation [63]. It is
conservative as it preserves mass,

/u(t) dx:fuo dx, Vtel0,T]. 4)
Q Q

It is a gradient flow, since one can show that u, = A(8,E(u)), where §,€ (u) is the Giteaux (or
Fréchet) differential (in L(2)) of the total free energy,'

2
Ew) = / (w(u) + % |Vu|2> dx.
Q

An important consequence is that the total energy satisfies

d
CEw) = - / V() dx, 5)
t Q

that is, the energy decreases monotonically as t — 4-00.

B. Weak Formulation

We consider a mixed weak formulation of (1), i.e., a weak formulation involving both u and u
as separate unknowns. To provide a proper functional setting, we first recall the following pre-
liminaries specific for time-dependent problems; for more details, see e.g., [64, Section 5.9 and
Chapter 7] or [65, Chapter 18].

"More precisely, it is shown in [63] that u, = —8, & (u), with 8, & (u) the Géteaux (or Fréchet) differential in the space
‘H', H' being the zero-average subspace of H'(2)’ defined in Section III B.
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We define the following Hilbert space consisting of functions of time ¢ € (0, T') with values
in H'(2) and corresponding norm:

T
Vi POTH @) 1ol i= [ 1001 d

The space V shall be a suitable space for j. As a suitable space for u, we define
Wi={veV:veV :=L*0,T; H(Q))},
for which the norm is defined as
ol == vl + vl

where

T
oIy == /0 Il (D131, A1,
and the H'(S2) dual norm is defined as>

(" w)
I gty == sup ——,
weH!(Q) ”w“Hl(Q)

(-,) denoting a suitable duality pairing. Note that YW C V. For v € W, we have that

v € C([0,T]; L*(R)) by a classical embedding result [65, p. 473]. Then, for v,w € W, the
integration by parts formula holds:

T T
/ (w, (1), v(®) dr = (W(T),v(T)) — (w(0),v(0)) — / (v (1), w(»)) dr, (6)
0 0

where (-,-) denotes the L?(2)-inner product with associated norm denoted simply by | - |.
Furthermore, we can enforce strongly the initial condition for u, and set

Wi i={v € W :v(0) = uy}.

The weak formulation of (1) is now defined as

Find (u, ) € W,, x V' :
(@), v)+ (V(1), Vo) =0 Vv e H(Q), (Ta)
—€* (Vu(®), V) + (=" (®) + u(0),n) =0 Vne H'(Q), (7b)

ae.0<r<T.

%In this article, we abuse the inf and sup notation for fractions by writing, for example, SUPye 1 (Q) Hw%;) instead of
THLQ)

. (w

SUPweH! @\(0) Tl g "
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Itis known that there exists a unique weak solution to (7); see, e.g., [8,9, 11,26] for various proofs.
Moreover, the following a priori estimate holds:

2 2 2 2
111 e g gty + N B + el < C. (8)

where ||ull o1l @) = SUPsepor) 14Dl g1 and the constant C depends on €2, T, and

||’40||H1(§z)~

C. Approximations

We shall consider approximations to the Cahn—Hilliard equation based on discretizing the mixed
weak formulation (7) separately in space and time.

In space, we consider conforming Galerkin discretizations employing so-called Ciarlet—Raviart
(equal-order) mixed finite elements [66,67]. Let P" denote a conformal partition P" of € into
nonoverlapping elements K such that Q = Uy px K . Each element is the image of an invertible,
generally affine map Fx of a master or reference element K. Let P"(K) denote the space of
complete polynomials of degree < r on K, and let Q" (K) denote the space of tensor products
of polynomials of degree < r on K. Then, we introduce the finite-dimensional spaces S" of
conforming finite elements defined by

Shi=S"Phy =" e H'(Q) Vg = Do Fg', b e P(K)ore Q' (K), VK € P"}.

Accordingly, the semi-discrete, time-continuous, space-discrete approximation (u", ")
[0,T] — S" is defined by

@ (t),v) + (Vu" (@), Vv) =0  VveS", (9a)
—> (Vu" (), V) + (¢ " @) + n" @), n) =0 V¥nes", (%9b)

ae.0<tr<T

together with the initial condition

@"(0), w) = (up, w) Yw e S™. (9¢)

We consider full discretizations by applying a time-integration method to (9). Let 0 = ° <

t' < ... <N =T, N > 1, denote a sequence of discrete time steps partitioning [0, T] into
time intervals ("', #"] of length At" := " —"~!, n = 1, ..., N. In this work, we shall focus on

fully conforming approximations (i, i) in the sense that (i1, i) € W x V. This can be achieved
by a continuous Galerkin-in-time method or by a time-marching algorithm if the solution at the
discrete time levels {#"} is appropriately interpolated or reconstructed. We refer to Section VI for
an example of the latter. The reason for considering conforming approximations is that it allows
us to evaluate the residual functionals associated with (7).> We thus consider approximations

G, eWxVCcWxV,

3Extensions to discontinuous Galerkin-in-time of piecewise-continuous-in-time reconstructions are possible provided one
takes into account the jumps of i at each time step.
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where
V=V =D eV e € COC " S"), Vo= 1, N},
W= W = {HeW : b ec’(0,T;S", b, e V),

A remarkable fact is that, in most of the ensuing analysis, it is not necessary that the approxima-
tions be obtained by the above discretization scheme. All that is required is for the approximations
to be conforming. To simplify some of the analysis, we shall, however, assume that approximations
preserve mass exactly:

[ﬁ(t) dx :/uo dx, tel0,T]. (10)
Q Q

On account of (4), this implies that the error in the average of u vanishes:
][(u—ﬁ)(t) =0, (11)

where we introduce the average symbol f ) := fQ(~)dx /1€2|. We note that the mass conserva-
tion assumption (10) is not restrictive. In particular, for the semidiscrete approximation u”, it is
implied by (9a) (with v = 1) and (9¢) (with w = 1). Moreover, it is satisfied by fully discrete
approximations based on Galerkin-in-time discretizations or suitably reconstructed time-stepping
algorithms with the condition § ii(0) = § u,.

lll. ERROR-RESIDUAL EQUIVALENCE

In goal-oriented error analysis, the error in the quantity of interest is related to the residuals
weighted by an appropriate dual solution. The relevant residuals are defined as*

Ri(v) = Ri((@(0), fu(0));v) == —{it, (1), v) — (Vu(), V), (12a)
Ra(n) := Ra((@a(1), 1(1)); ) := —(u(t) — W' (G(2)), n) + €2(Vi(t), V), (12b)
Ric(w) = Ric(@(0); w) := (ug — i(0), w), (12¢)

for v,n € H'(Q), and w € L*(R). These residuals correspond to (7a), (7b), and the initial
condition, respectively. Note that the mass conservation assumption (10) implies that

Ri(1) = %/ a@t) dx =0, (13a)
Q

7%1C(1)=/ (@(0) — uo) dx = 0. (13b)
Q

Before we consider goal-oriented error estimates, let us first show that the error is actually equiv-
alent to the residual. This error—residual equivalence is usually studied in the context of linear
steady problems, see e.g. [42]. The constants involved in the equivalence relation are typically

“4For semilinear functionals, we use the convention that the functional is linear with respect to the arguments after the
semicolon “;”.
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dependent on the parameters of the problem at hand, and in case of time-dependent problems,
dependent on the time-interval length 7.

The first step toward obtaining error—residual equivalence is to define the equations for the
error:

(ef,v) + (Ve',Vv) = Ri(v) v e H(RQ), (14a)

—€2(Ve', Vi) + (e*, ) — (W' () —¢'(@),m) = Ra(n)  n e H(RQ), (14b)

ae.0<tr<T.

where we used the shorthand notation
e":=u—u and e":=u—[L.
A. Residual Upper Bound

An upper bound on the H'(£2)'-norm of R, and R, can be derived by bounding the left-hand side
of (14a) and (14b), respectively. It shall be convenient to separate a bound on a H'(£2)’-norm into
two distinct parts.

Let R € H'(Q), then

. 3 2 By
Rl = sup 0 < qp PEY gy RO=f0)

veH! (Q) ||U||Hl(sz) N veH!(Q) ||U||H'(sz) veH!(Q) ”U”Hl(Q)

15)

Note that for v € H'(S2), we have the decomposition v = ¥ + f v, where  := v — fvisa
member of

H'(Q) := {v e H(Q) :][v = 0},

which is the subspace of functions in H'(2) with zero average and corresponding norm
vl g1 = IVv]l. Owing to orthogonality between v and f v, we have

2

2 o2
”v”Hl(Q): ||U||H|(Q)+ va
This result implies

R v R(f v REv .
ap D g G0y B o,
et W@ vemi@ Jjoi g + Ifol? v 1£ 1

where, in the second step, we noted that the sup is attained for © = 0. Similarly, we have
R — fv) R(D) R(D)
sup —m = —F— < — .
vert@ IWlai@  senve IWlm@ — sente 10la1e

Substituting these two results into (15), we obtain the bound

IRl @y = € (IR + 1R i1ay ) - (16)
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Next, recall that there is a constant Cp > 0 such that the Poincaré—Friedrichs inequality holds:

vl < Collvllg g, Yve H(Q). a7
Using this, it also follows that
. R(v) R(v)
RIg1q = sup ———— < (1 +Cp) sup ————
veH1(Q) ”v”ﬁl(m veHL(Q) ”U||H1(Q)
Rw—fv
=(1+Cp) sup ke -fv) (18)

veH(Q) ||U||H1(sz)

In particular, if 7@(1) = 0, then (16) and (18) show that ||7A2||H1(Q)/ and ||7A2||,:,1(Q) are equivalent.

We thus have this equivalence for the first equation residual R, on account of mass conservation,
see (13a), and, accordingly, need only consider functions in H'($2) when bounding || R, || Q)
We summarize the upper bound in the following proposition.

Proposition 3.1 (residual upper bound).  Let (u, ) € W,, x V denote the solution of (7) and
(@, 1) € W x V denote any approximation satisfying mass conservation (10). Then the following
upper bound holds:

N 2 T A2 A2
Ricll + (”Rl ”F]l(Q)’ + ”RZ”Hl(Q)’) dr
0

T
<C (ne" O + / (€ W gy + e 151y + 1”11 q)) dr) . (19)
0
where C depends on Q2 but not on T or €.

Proof. The proof follows by bounding the three residuals separately and adding the results.
(I) Estimate for Rc. Note that the norm of R is equal to the norm of ¢*(0):

R —1(0),
1Rl = sup o200 oy, 20)

welL2(Q) lwll
(IT) Bound on R ;. Consider v € H! (£2). The first error equation (14a) yields

Ri(v) = (e, v) + (Ve V) < | e

|1 @ IVVIL+ Ve VoI,

S0
IR, @y = llef gy + 11IVE" .
(IIT) Bound on R,. First consider n = 1 in the second-error equation (14b):

Ra(1) = (", 1) — (' () — ¥'(@), 1) < [le"[[ 121> + Ly le" || 121"
= Cle"ll + 1IVe'D,
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where we used Lipschitz continuity (3b) in the first step and the Poincaré—Friedrichs inequality
(17) in the second step since e* € H'(Q2); see (11). Next consider n € H'(Q):
Ra(n) = (e, ) — (') — ¥/ (@), m) — € (Ve", V).

Before we bound the terms on the right-hand side, note that we can subtract the average of e*.
Thus,

Ra(n) = (" — fe',n) — (' () — ¥/ (@), n) — €2 (Ve, Vi)
< ColIVe* [Inll + Ly Coll Ve lllinll + € Ve [Vl
< C(IVe' || + [IVe“ IDIIVnll.

So, combining these results in the upper bound (16) (with R = 7%2) yields
1Rl 1@y < CUle" 11 + V")

B. Residual Lower Bound

Next, we would like to establish the reverse inequality. Note that this is essentially an upper bound
of the error in terms of the residual, which is the key element in residual-based a posteriori error
estimation, also referred to as an abstract a posteriori error estimate. The derivation of such an
estimate for nonlinear problems is nontrivial. In fact, such an estimate has been established only
in terms of weaker norms by Feng and Wu [32], see also [33]. Furthermore, to derive their result,
Feng and Wu assume that a particular spectrum estimate holds, which is known to hold if the
solution has developed layers. In this case, one is able to show the bound with a constant depend-
ing only polynomially on ¢! instead of exponentially. In the general case, when the spectrum
estimate does not hold, a bound with a constant depending exponentially on € ! is obtained.

Let us present the bound in the general case. The strategy is to select suitable testfunctions in
the error equations (14) resulting in norms of the error on the left-hand side. The testfunctions
and the measure of the error will involve the inverse Laplacian A~! : H' — H 1(Q), where
H':={r € H'(Q) : (r,1) = 0}. The inverse Laplacian is defined such that

(V(A™'P), V) = —(r,n) Vne H(Q), r e H'.

Note that for r = v € H'(Q) and n = A~'v, we have [[VA~'v|* = —(v,A"v) <
lvll Cp||V A~ v]|. Thus, the following a priori estimate holds:

1A 10y = IVA~ 0] < Collvll < Cllvll g, Vo€ A'(Q). @)

Proposition 3.2 (abstract a posteriori error estimate).  Under the assumptions of Proposition 3.1,
the following bound holds:

T
1 u 2 u 1
sup [VA™'e" ()| +62/ (IVe“I* + lle" 131 gy ) dt
0

te[0,T]

T
2 A2 _ A2 A2
<Cell* (”RIC” +e€ 2/ (IR i@y + ”R2||H1(Q)’) df) , (22)
0
where C depends on Q2 but not on T or €.
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Proof. We follow the ideas in [32]. We split the proof in two parts considering separately e*
and e*.

(I) Bound on e“. Choose v = —A~'¢" in (14a) and note that (e}, —A~'e") = L[ VA" 1%

1d —1 uy? u 5 -1 u 5 -1 u
g hvA 7+ (e e) = Ri(=AT1e") < [Rill gy IVA™ ||

< IRl 1y 117",
where we used (21) in the last step as e* € H' (2) (recall (11)). Next choose n = —e" in (14b):
—(e". ") + (') — ¥ (@), ") + €[ Ve"|* = —Ra(e").
Using the perturbed monotonicity of ¥, see (3a), we obtain
—(e",e") + €2 Ve"|* < Cille" |’ + IRl g1 gy I Ve"Il.

Adding the two results cancels the mixed (e”, ¢*)-term and results in

1d

-1 u 2 u u > 5 u
Fahva |7+ Ve P < Cille"II” + CUR oy + 1Rl g1 @) VeI

Note that this estimate shows control of ||VA‘le"||2 and of ||Ve*||? but not directly of ||e"|*.
Invoking the Poincaré—Friedrichs inequality on [*||* would not help as the control of || Ve*||? is
very small (¢?). Instead, we note from the definition of the inverse Laplacian:

le“]|> = —(VA™'e", Ve') < [VA™ e ||| Ve,

so that

1d
2dt
Applying a Young inequality yields

1 oun? u —1 _u A A u
IVA~'e“|” + Ve |I> < CUVAT e[| + Rill 1y + IRl g1 @) I VeI

d — u 2 u — — u 2 5 2 5 2
allVA eI+ Ve |? < Ce*(IVAT e I” + Rl qy + IR2ll i1 ay)-

and after use of a Gronwall inequality, results in

T
sup [VA~'e" (1)) + € / IVe"||* dr
0

tel0,T]
T
T /€ 1 u 2 ) 5 12 5 12
<ce (VAT )] + ¢ <||R1||,_}1(Qy+||R2||,f,1(9),) ar). @3
0

We then note from (21) and (20) that ||[VA~e*(0)|| < Cp||7A21C||.
(II) Bound on e*. To bound e* in the H'(2)'-norm, we use the strategy of bounding two
distincts part as in (16). First consider n = 1 in (14b):

(e, 1) = (W) — ¢'(@), 1) + Ra(1) < Lyl |1Q1'2 + [Ra(1)]
< CUIVe" | + 1Rl g1 g)-
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Next consider n € H'(Q):
(", m) = (') = /@), m) + € (Ve"', Vi) + Ra ()

< Ly lle“llinll + € IVe [l Vnll + ||7A?'2||15'1](S2)/”V77”

< (Ly GRIIVE" Il + €1V | + [ Rall s @y ) V7

< (Ve ll + IRl @) IVl
Thus, substituting these two results in (16) (with R = e'), we obtain

eIl gy < CUE", DI+ Il g1qy) < CUIVe" | + ||7A?’2||H|(SZ)/)-

or

T T
2 2 2 2 5 02
¢ / e 1210 d < Ce / (IVe" 1> + 1 Ra 11 qy) dr-
0 0

This shows that the error in u is controlled by the error in u#. Thus, upon substituting the bound
on €2 fOT Ve || dt from (23), we finally have

T
2 2 5 12 -
62/ ”eﬂ||Hl(Q)/ dt = CeT/E <||RIC” +€ 2/
0 0

T

A 2 N 2
(IR 10y + 1Rz 1 gy ) dt ) -

IV. GOAL-ORIENTED ERROR ANALYSIS

Given an arbitrary pair (i, 1) € W x V approximating the solution (u, i) of (7), we shall be
particularly interested in the error in certain quantities of interest. We assume that quantities of
interest can be expressed as functionals Q : WWx )V — R of the solution. For the sake of simplicity,
we consider linear functionals of the form

T
Qu, p) = Q) + Qu, ) = (q,u(T)) +/ (g1, u) + (q2, 1)) dt, (24)
0

where g € H'(Q), g, € L*(0,T; H'(Q)"), and ¢, € L*(0,T; H'(R)).> The first part, Q, repre-
sents a quantity of interest totally defined on u at the final time 7', and the other part, O, represents
a space-time quantity of interest in u and . Because of linearity, we can write the error in Q as

Q(ua H’) - Q(ﬁ’ la) = Q(eu’eﬂ).

Remark 4.3. The ensuing analysis can be extended to continuously differentiable nonlinear
functionals Q in the usual manner by linearization [41,44]. In particular, this extension is possible
if the linearization yields a functional of the above form (24).

3The specified regularity on 7, g1, and g5 is such that we can establish well posedness of the dual Cahn—Hilliard problems;
see Section V.
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A. The Mean-Value-Linearized Backward-in-Time Dual

We first consider an exact error representation formula employing a mean-value-linearized dual
problem. To write the dual problem in a concise form, we introduce an aggregated form of the
weak formulation in (7). Let us define the following bilinear form A, which collects all linear
time-independent components, and the semilinear form A/, which represents the nonlinear term:

T
A, ), (v, 1)) 2=/ ((Vie, Vo) — € (Vu, Vi) + (1, m)) dt, (25a)
0

T
Ny = / (W' (), ) dr. (25b)
0

The weak formulation (7) can then be written as

Find (u, ) € W,, x V' :

T
f (up,v) At + A((u, w), (v, m) — N(u;n) =0 Y(u,n) eV xV. (26)
0

Note that the error equations (14a—14b) can be written concisely as

T
/ (e, v)dr + A((e", e"), (v,m) — N(usn) + NGz m)
0

T
zf (Ri(v) + Ra(n)) dt Y(u,m) eV xV. (27)
0

Following the generic goal-oriented error estimation framework in, for instance, [44,47], we
can obtain an exact representation formula for the error in Q by introducing the backward-in-time
linearized-adjoint problem corresponding to our problem. The linearization has to be performed
at a value in between u and . For this, let us introduce the so-called mean-value linearization of
N (or secant form):

i
N3(u,ti;v,n) = / N'(su+ (1 —s)i;v,n)ds,
0

where A (w; v, ) is the Gateaux (or Fréchet) derivative of A/ at w in the direction v, i.e.,

N(w + sv;n) — N(w; n)

N

N (w;v,n) = lintl)

The main reason for introducing the mean-value-linearization is that, if the direction is chosen as
the error, v = €, it is equal to the following difference:

No(u,aze",n) = N3(u,a;u — i, n) = N(u;n) — N(@i;n). (28)
To account for the “initial” condition for the backward-in-time problem, we denote
Wi={veW : vT)=4q)
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We then define the following dual problem in terms of dual variables (p, x):

Find (p, x) e WI x V:

T
—f(mwm+Mmmnm»—NWJmm=Qmm, (29)
0

Yw,n) eVxV.

Note that the left-hand side corresponds to the mean-value linearized adjoint of the left-hand side
of (26). We will analyze the well posedness and stability of this dual problem in Section V, see
Corollary 5.1, where we show that there exists a unique dual solution which, moreover, satisfies

||p||ioO(0’T;Hl(Q)) + ez(npl”%}/ + ||X ||%}) S Ca

where C depends on , Te~2 and Q.
It can be verified that the dual problem is a weak form of the following backward-in-time
problem:

P+ EAX -V ) x=q1 ]
in Q2 x [0,7), (30a)
X—Ap=q
op=0,x=0 on o2 x [0, T], (30b)
p=q on Q x {t =T}, (30c)

where the mean-value linearization of ¥/’ is defined analogously as

1
W, ) = / 0su+ (1 — ) i) ds.
0

For the free energy function v given in (2), we can explicitly write ¥'(u, %) in terms of u
and u, although, because of its piecewise definition, this is an elaborate expression. For exam-
ple, for u,u > 1 or u,i < 1, we have ¥'5(u,uu) = 2, and for u, i € [—1,1], we have
VY'S(u,ii) = u* + 4> + uii — 1. In particular, it should be noticed that if # and u are in the
spinodal regime (where " < 0), i.e., il,u € (—%\/g, %\/5), then also ¥'S(u,it) < 0. The fact
that ¥'S(u, 1) can be negative is exactly what makes the stability analysis of (29) nontrivial (see
Section V). In any case, since ¥/’ is Lipschitz continuous with L, = 2, see (3b), 1/'® is at least
bounded:

W' (u, i) <2 Yu,i € R. (31)

B. Error Representation

The dual problem (29) has been defined such that it provides an exact residual-based representation
of the error in Q.
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Theorem 4.A (error representation).  Let (u, 1) € W,, X V denote the solution to (7) and
(1, 1) € W x V denote any approximation. Let (p, x) € W? x V denote the solution of the
mean-value-linearized dual problem (29). Then the following error representation holds:

T
Qu, p) — Qit, 1) = / (Ri(p) + Ra(x)) df + Ruc(p(0)). (32)
0

Proof. We proceed by following the general scheme of invoking the dual problem, integra-
tion by parts, a linearization formula and, finally, the primal problem in the form of the error
equation. Hence, noting that " € YW C V and e* € V), we obtain from the dual (29) that

Qu, i) — Q(it, 1) = O(e", ") + Q(e")

T
= —/ (pr,e") dt + A((e", "), (p, x)) = NS, i e", x) + (g, e"(T)).
0

Integrating by parts in time, see (6), and using p(T) = q,

T
Qu, ) — Q, 1) =/ (e, p)dr + A((e",e"), (p, x)) = N3, i;¢", x) + (p(0), " (0)).
0

Next, we invoke the mean-value linearization property (28), and ¢“(0) = uy — 4(0),

T
2/ er, p) dr + A((e", e"), (p, x)) = N'(us x) + N5 x) + (p(0), ug — 4(0)).
0

The proof then follows by subtituting the error equation (27) with (v,n) = (p, x) (since
p € Wi C Vand x € V) and by definition of the initial condition residual (12¢). [ ]

Theorem 4.A holds for arbitrary approximations (i, 1) € W x V, in particular for the
semi-discrete approximation (u", ") described in Section II C. However, for Galerkin-based
approximations, such as (u", "), we have a stronger result, since residuals vanish for discrete
test functions. Moreover, we can invoke Proposition 3.1 to obtain an abstract a priori bound. We
summarize this in the following.

Corollary4.2.  Under the assumptions of Theorem 4.A, with the exception that (ii, 1) = (u", u")
denotes the semi-discrete solution to (9), the following error representation holds:

T
Qu, p) — Q" ") = / (R, 1"); p = ") + Ra (", 1"); x — ")) de
0
+ Ric@"(0); p(0) — w"). (33)
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for any v € L*(0,T;S"), n" € L*(0,T;S"), and w" € S". Moreover, the following a priori
estimate holds:
T
2
0

1/2
1Q(u, ) — Quu, )| < € <||e“(0>||2 +/ (ler 10y + e W1 @) + eI ) dt)

T
x( inf /||V(p—vh)||2dt
0

vher2(0,T;sh)
T 1/2
. hi2 . ;
+ inf / Ix —n" 1 df + inf [[p(0) —w"| ,
nheL20,r:s" Jo whesh

where C is the constant in Proposition 3.1.

Remark 4.3. Note that the a priori estimate is a product of two error contributions (primal and
dual) signifying the higher-order convergence in quantities of interest that can be expected for
Galerkin-based approximations [68].

Proof (of Corollary 4.2). The error representation formula simply follows from Theo-
rem 4.A applied to ", uh, together with the observation that the residuals R, R, and Ric
vanish for discrete test functions owing to (9a), (9b), and (9c¢), respectively. To prove the a priori
estimate, we first apply Cauchy—Schwartz inequalities to (33):

172

T 1/2 T
1Qu, p) — Q" uM)| < </ IR (", 1) ) 1 gy dt> (/ Iv(p — v dt)
0 0

T , 12 T , 1/
+ </ IR (", 1) )1y df) </ Ix = 0"l dl)
0 0

+ 1 Ric@" (0); )1 p(0) — w]I.

2

Notice that to bound R, we could use R ((", u"); 1) = 0 as u”" satisfies mass conservation (10).
The a priori estimate then follows by applying a discrete Holder inequality to the right-hand side,
invoking Proposition 3.1, and taking the inf with respect to the discrete test functions. ]

C. Computable Error Estimate

To obtain a computable estimate of the error, we shall employ approximations to the dual problem.
In particular, notice that the mean-value-linearized dual problem (29) depends on the unknown
solution u. A straightforward approximation involves replacing u in (29) by the approxima-
tion # € W, which essentially corresponds to replacing the mean-value linearization by the
linearization at . We thus have the dual problem:

Find (p, x) e WI x V:

T
_/ (Pz,U> dt+A((U’ U),(P,X)) _Nl(ﬁ;v’ X) = Q(U’ 7])’ (34)
0

Yu,n) e VxV.
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The well posedness and stability of this dual problem is analogous to the mean-value-linearized
dual problem and it will also be established in Section V, see Corollary 5.1.
Dual problem (34) is a weak form of the following backward-in-time problem:

—pHEA =YW x =q)
A in 2 x [0,T), (35a)
X —Ap=q>
o,p=0d,x=0 on a2 x [0, T], (35b)
p=gq onQ2 x {t="T}, (35¢0)

where for ¥ given in (2) we have

v = {3

IR

¢ [-1,1],

e[-1,1]. (36)
Instead of an exact residual-based representation of the error in Q, we now pick up a remainder

term.

Theorem 4.B (error representation with remainder).  Let (u, u) € W,, x V denote the solution

to (7) and (ii, 1) € W x V denote any approximation. Let (p, x) € W7 x V denote the solution
of the linearized dual problem (34). Then the following error representation holds:

T
Qu, p) — Qi 1) = / (R1(p) + Ra(x)) dt + Ric(p(0)) +r, (37
0

with higher-order remainder
T 1
ri= / / / (1 — )Y (su+ (1 —s)a) ds (¢*)* x dx dr. (38)
o Je Jo

Foriie W C L>(0,T; H'()), r can be bounded as follows:

2
|r| =< 3||€M||L4(OYT;L4(Q))”X ”LZ(O,T;LZ(Q))'

Remark 4.4. To see that the bound on the remainder r makes sense, first note that x € V C
L*(0,T; L*(Q)) and u,ii € L*®(0,T; H'(Q)) (see (8)). Then, e € L*(0,T;L*(Q)) (in RY,
d =1,...,4) by a Sobolov inequality.

Proof (of Theorem 4.B). To obtain the error representation formula, we proceed similarly
as in the proof of Theorem 4.A: invoking the dual problem, integration by parts, a Taylor series
formula and, finally, the primal problem in the form of the error equation. Thus, using dual (34)
and subsequently integrating by parts in time (6), using p(T) = g, we obtain

Qu, 1) — Q(@r, ) = Oe, ") + Q(e")
T
= —f (pr,€") dt + A((e", e"), (p, x)) — N'(it; €“, x) + (g, €"(T))
0

T
=/ er, p)dr + A((e",e"), (p, x)) = N'(@s€", x) + (p(0), " (0)) (39)
0
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Recall the following Taylor series formula with exact remainder,
N(us; x) = N x) + N (@ e, x) + 1,

where
I
= / (1 =N (su+ (1 —s)ii;e", e, x) ds,
0

and the second derivative is defined recursively as

N+ sw;v,n) — N'@@; v, 1)

N

N (@@ v,w,n) = lil’I(I)

Using the definition of A/ in (25b), we can establish that 7 is equal to the remainder r in (38).
Substituting the Taylor series formula in (39), we obtain

T
= / (e, p)dr + A((e",e"), (p. X)) — N'(u; x) + NG x) +r + (p(0), " (0))
0

The error representation then follows by subtituting the error equation (27) and by definition of the
initial condition residual (12c). To prove the bound on the remainder r, we use that [ (1)] < 6

for all u € R, yielding
T
Ir| < 3/ /(e”)2|x| dx dr.
0 Q

The bound then follows from a generalized Holder inequality. ]

In practice, to obtain a computable estimate, one discretizes the dual problem yielding dual
approximations (p, ) € W x V. A coarse estimate of the error in Q can then be computed by
neglecting the error in the dual solution (e?,e*) = (p — p, x — X) as well as the linearization
error captured by r:

T
Qu, ) — Q(u, 1) ~ Est(it, [i; p, X) = / (Ri(P) + Ra(X)) di + Ric(p(0)). (40)
0

Of course, this estimate can only be accurate if the neglected terms are sufficiently small. For
example, if (p, x) is computed with a higher-order method (or with a finer mesh) than for (i, 1),
and the exact solutions (u, i) and (p, x) are sufficiently smooth, then the neglected terms are of
higher-order. A true upper bound on the error in Q would involve controlling the error (e”, e¥) as
well as the remainder r.

V. ANALYSIS OF DUAL CAHN-HILLIARD PROBLEMS

Duals of nonlinear problems have mostly been analyzed in the context of error estimation for
weaker norms (Aubin-Nitsche trick) or quantities of interest. Examples of time-independent non-
linear problems include quasi-linear elliptic problems [69] and free-boundary problems [70,71].
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Examples of time-dependent nonlinear problems include nonlinear conservation laws [72] and
nonlinear parabolic problems [58,73].

In this section, we shall analyze the following dual Cahn—Hilliard problem, written as a forward
problem after the change of variable t — T — :

Find (p, x) e W; x V:
(p(0),v) = (6(1) x (1), v) — (VX (1), VV) = (q:1(1),v) Vv e H(Q), (41a)
(x@.n) + (Vp@®),Vn) = (q20),n)  Vne H(Q), | (41b)

ae.0<tr<T,

where ¢ € L>(0, T; L*(£2)) is a given coefficient satisfying for some C,; > 0,
—Cy <¢(t,x) <Cy, ae. (t,x)e[0,T]x Q.
The difficulty is that ¢ can be smaller than 0. The main result of this section is the following.

Theorem 5.A (dual well posedness).  The dual Cahn—Hilliard problem (41) has a unique weak
solution (p, x) € W; x V. Moreover, the solution satisfies the a priori estimate

(L + T/ sup [p@l51q +€ (1o 3 + 1x13)
tel0,T]

2 ()= .
= Ce"" (19151 g, + € Nl + llg213)- (42)

Before we go into the proof of this theorem, we first observe that since the dual (41) is closely
related to the dual problems introduced in the previous section, we immediately have the following.

Corollary 5.1.  The mean-value-linearized dual problem (29) and the linearized dual problem
(34) have unique solutions (p, x) € Wi x V which, moreover, satisfy the estimate (42).

Proof. By a change of variable t — T — ¢, problems (29) and (34) change into the form of
(41) with ¢ = ¥'°(u, 1) and ¢ = " (i1), respectively. Furthermore, in both cases |[¢| < 2, see
(31) and (36). The result then follows from Theorem 5.A. [

To establish the existence of a solution to (41), we use the Faedo—Galerkin technique; see, e.g.,
[64,65,74,75]. That is, we consider a sequence of approximations (p”, x™),m =0, 1,2,..., for
which we show a priori bounds, implying a weakly convergent subsequence, the limit of which
satisfies the weak formulation (41).

A. Faedo-Galerkin Approximations

Let {w;}{2,, denote the H'(2)-orthogonal and L?(£2)-orthonormal basis given by the eigenfunc-
tions of the Laplace operator: —Aw, = A, wy in 2, with boundary conditions d,w;, = 0 on
0% (ordered as 0 = Xy < A; < ---). Consider the following semi-discrete approximation with
respect to S := span{wy, ..., w,} C H'(Q):

m

pr@) =) rwe, X" @) =) dr ) w,

k=0 k=0
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such that forae. 0 <t < T:

@, p" (1), v) = ($(1) X" (1), v) — (VX" (1), Vv) = (¢:(1),v) Vv € ", (43a)
X" @.m + (Vp"(®),Vn) = (q2(),n) Yy € S”, (43b)
(p"(0)—q,5)=0 VE e S (43¢)

This reduces to the following initial value problem for the coefficients (c™,d™)
(e g d)):

d
3~ D@ - End” =qip Vk=0,....m, (44a)
di' + e} = i Vk=0,....m, (44b)
qO)=q Vk=0,...,m. (44c)

where gy« 1= (g1, W), g2 := (g2, Wi), Gx := (g, wy), and

Dyn)d" =Y (¢ (0w, we) d.

j=1

Eliminating d™ from (44a) using (44b), we obtain

d
ECZ" + M Cre(D™ = qui + Cr() ok vk, (44a")

where Ci(£)(?) := €A (-)x + Dy (t)(-). Egs. (44a’) and (44c) now form a system of linear ordi-
nary differential equations for ¢, which has a unique absolute continuous solution owing to
standard existence theory. Accordingly, since d” is defined via (44b), there is a unique pair
(p™, x™ e C([0,T]; S™) x L*(0,T;S™) with 3, p™ € L?(0, T; S™) which satisfies (43).

B. A Priori Estimates

Before presenting the a priori estimates for the dual (43), let us briefly discuss the main idea
behind obtaining these. Contrary to the nonlinear Cahn—Hilliard equation, there is no Lyapunov
energy functional for its dual (43). However, analogous to the Cahn—Hilliard equation, one can
still obtain a fundamental energy estimate for (43) by substituting v = —x™ and n = 9,p™ in
(43a) and (43b), respectively, and adding both equations. In that case, noting that the (9, p™, x™)
terms cancel, we get

1d
——IVp"IP + IV = —f olx™* dx < Cyllx™II%, (45)
2 dt Q

where for the sake of the argument, we have left out the g; and g,-terms.® Since we only have
minor (¢2) control of ||V " ||* on the left-hand side, the key element now is to bound || x”||* on the

®Note that in the case of 0 < ¢ < Cy, the right-hand side of (45) vanishes, and, after integrating with respect to time,
we would obtain a stability estimate implying no growth. However, in general, ¢ can be negative which reflects the
exponential growth behavior of the Cahn—Hilliard equation in the spinodal regime.
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right-hand side in terms of both ||V x| and ||V p™||. Such a Poincaré-type inequality is readily
obtained by substituting n = x™ in (43b) (omitting ¢,):

2

C €
Ix™I1> = =(Vp", Vx™) < IVp" VX"l < =2 IVP" I* + — I VX" II>.
2€? 2C
€ ¢

Inserting this result in (45) and invoking a Gronwall inequality results in the desired a priori bound.
Of course, if g; and g, are present, these have to be taken care of appropriately. We summarize
the general result in the following.

Lemma 5.2.  There is a constant C, depending on 2, but independent of m, T, and €, such that

||Pm(0)||H1(Q) < g1l a1

T
m m 2 = -
sup [|[Vp" @) + € / IVX"Idr < Ce”' (Wil + €Il + el )-
t€[0,T] 0

Proof. We split the proof in 4 steps.
(I) Fundamental estimates. Take v = —x™ and n = 9, p™ in (43a) and (43b), respectively, add
both equations and use Cauchy—Schwarz inequalities:

1d 2 5
—__vp™ +62 vy
S VPl IV x™l

= C¢||Xm||2 + ”ql”H](Q)/”Xm”Hl(Q) + ||CI2||H1(Q)||31Pm||H1(Q)/ . (46a)

As explained above, we shall bound || x™||*

(43b):

using the estimate obtained by setting n = x™ in

" I2 < 1V p" IV X" I+ gl ™ I

or, after applying a Young inequality, we get

™17 < 20V p" 1V X" Il + llga |l - (46b)

Note that the g,-term in (46a) forces us to estimate d, p™ before we can continue.
(IT) Estimate of 9, p™ in terms of x”. Consider v = v" + v' € H'(Q) with v" € §™ and
(vt,wy) =0 forall k = 0,...,m. Owing to our choice of {w;}, this implies (Vvt, Vwy) = 0

2 2 12 2 .
as well. Thus, [[v"[l}1 o) = IVIlI}1 g — V71 = Vi1 g - Next, noting that (3, p™,v) =

(0, p™, v™), we obtain from (43a):
@ p",v) = (g1, ") + (@ X", v") + €X(V", V™)
< llgill 1@y 10" @) + Collx™ V" | + €1V X" I V" |
< Ulgillgr i@y + Collx™ I + €IV X" DIVl 1 -

So

18, 2" 1@y < lllgiy + Collx™ Il + €IV X"l - (47)
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(IIT) Bound on initial condition. At this moment, we pick up along the way the bound on p™ (0).
Indeed, decomposing g € H'(R2) into g™ € S™ and g+ as in step (I), it easily follows from (43c)
that:

1P" Ol = 1G1la1 ) - (48)

(IV) Bound on gradients. Substituting (47) into the fundamental estimate (46a), we obtain
1d m 2 2 m 2 m 2 m m
EEHVP 17+ € NIVX™I" < Collx™ I + llgill g @y Al ™ T+ 1V X™ 1D
+ g2l 1y Uil g1 @y + CollX™ 1l + €11V x™ 1)
3 1 , € )
< _C - m VvV m
_<2 ¢+2)le I +4|I x"

1 1
-2 2 2 2
+ (14261310, + <§c¢ +5+2e ) 14211 -

where we employed various Young inequalities in the last step, in particular to obtain < ||V x" 2
on the right-hand side. Next, we substitute the estimate for || x”||%, see (46b),

1d 2, 2 2 3 1 5, € 2
—— |V p" vimlP < (2C,+ = ) QIvVp VK™ V™
S VP EIVXTIE < 5Co + 5 ) @IVP VX" 4l + 21V

1 1
-2 2 2 2

2
€
<2e7GC, + DVP" I+ IV
+ C(E_ZHCII ”5-11(52)/ + ||512||§11(Q))’

where we picked up another % |V x™||* in the last step. So, we finally arrive at

d m m — m —
SIVP P+ IV = C(IVP I + €11l ) + I2151q))

Invoking a Gronwall inequality and the bound (48) on the initial condition proves the Lemma. m

Lemma 5.2 took care of the gradients. To have full control in H'(£2), we next consider a bound
on the averages.

Lemma 5.3.  There is a constant C, depending on 2, but independent of m, T, and €, such that

2 2
(f x" () dx) = (/ (1) dx) ae. t €[0,T],
Q Q

2
m _ T 2, _
sup (f(l? =) dX) < C— e (119151 + € gl + lgally)-
rel0.7] \Jo €
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Proof. The average of x” follows easily from (43b) by taking n = 1. In particular, we then
obtain a bound on || x™ || by a Poincaré-Friedrichs inequality:

T T 2
62/ ||x'"||2dtsc8/ ((f X" (1) dx) +||va||2> dr
0 0 Q

2 — —
< Ce" (119151, + € Nl + lgal3), (49)

where we used Lemma 5.2 in the last step. Next, consider (43a) with v = 1 and integrate with
respect to 7:

t t
/(pm(t)—pm(O)) dx =/ (611,1)dt+/ /(ﬁ)(m dx dr
Q
/||q1||H.(Q),dz+c¢/ /Ix"’ldxdt
1/2
<r(/ ||q1||H1(m,dt) +c¢|sz|r(/ Tk dt)

The proof then follows by noting that fQ p"(0)dx = fQ q dx and inserting the just derived bound
on [ x" || in (49). n

Notice that Lemma (5.3) shows that the average of x™ follows perfectly the average
of g,, whereas the average of p™ generally diverges from its initial average as fast as
O(Te 2exp(Te™2)).

A bound on the time-derivative d, p can furthermore be established, now that we have obtained
abound on || x™|.

Corollary 5.4. There is a constant C, depending on 2, but independent of m, T, and €, such
that

m 2 = -
E10,p" I3 < Ce" (13110, + € il + g2 l3)-

Proof. Going back to (47), we can estimate the right-hand side with available bounds:

T T
/0 19: " 131 @y drscfo (g1l gy + X" 12 + €IV X" [17) de

—2 T/E? (=112 -2 2 2
<Ce el (||q||H1(9)+6 g1 113 + llg2ll3,),

where we substituted the bound (49) on || x™||. ]

C. Proof of Theorem 5.A

To finish the proof of existence, we resort to the classical weak compactness argument: The above-
derived a priori estimates imply the existence of a subsequence {(p™, x")};2, that converges
weakly to a pair (p, x) € W x V, i.e,

p" — p  weaklyin L0, T; H'(Q)) C W
o, p" — 9,p weaklyin )’ asl — oo.
x™M = x weakly in V
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It can be shown, by passing to the limit in (43) in the usual manner, that the pair (p, x) satisfies
the weak formulation (41). This completes the proof of existence. Since the a priori estimates are
independent of m,, they hold for (p, x) as well. The total estimate (42) is obtained by combining
the estimates in Lemmas 5.2 and 5.3, (49), and Corollary 5.4.

To establish uniqueness, let (py, x;) and (p,, x2) denote two solutions to (41). Their difference
d?,d*) := (p1 — p2, X1 — X2) satisfies (41) with g = ¢q; = ¢, = 0. Taking v = d”(¢) and
n = €2d*(t) in (41a) and (41b), respectively, and adding both equations gives

1d
Ealld”ll2 + € ld P = (@ d*,d") < Cylld[[[1d” |,
or, after applying a Young inequality,
d P 2 211 %112 =214 9P 12
alld O + €7 lld*|I” = Coe"[ld" "

Since d”(0) = 0, the application of a Gronwall inequality yields [|d?(¢)||* = O for a.e. t € [0, T]
and subsequently fOT ld*||* dt = 0. This completes the proof of Theorem 5.A.

VI. NUMERICAL RESULTS

In the following numerical experiments, we investigate the convergence of the dual-based error
estimate, Est(, {1; p, X) in (40), under uniform refinements in space and time. We compare this
with the convergence of the true error. A useful measure of the performance of the estimate is the
effectivity, which is defined as the ratio of the error estimate to the true error:

Est(i, fi; p, X)
Ou, ) — 9, )’

Effectivity =

Ideally, the effectivity equals one. Let us first describe how fully discrete approximations (i, i)
and (p, x) are computed.

A. Fully-Discrete Semi-Implicit Schemes

We obtain fully discrete approximations (i, 1) by applying a semi-implicit time-stepping algo-
rithm to (9) following ideas in [18,23]. The semi-implicit scheme employs a splitting of the free
energy into a convex and concave part,

V) = () —b.(u),

where V. and v, are both convex functions also referred to as the contractive and expansive part,
respectively. For the free energy function ¢ in (2), this (nonunique) splitting can be chosen as

Vo) = o, Po(u) = Ye(u) — ¥,
for any o > 1. We shall use « = 1.5 in the sequel.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



184 VAN DER ZEE ET AL.

We consider lowest-order in space approximations based on §*! := §*!(P") (i.e., linear finite
elements). For constant time steps the fully discrete scheme is defined recursively by

Flnd (un+l,un+l) c Sh,l X Sh,l .
ut —u" ntl h,l
(T,v> (VL V) =0 Vue S, (50a)
—> (Vu" V) + (=" + ™) + wt ) =0 vy e ™, (50b)
forn =0,..., N — 1, where the initial condition u° € §"! is defined by
@’ w) = (g, w) Yw e S™. (50¢)

Subsequently, the approximation (i, 1) is defined for all 7 € [0, T'] using linear interpolation:

f— " tn+l_t
u

() = oy u"

At Al te [ . (51)
A(t)_t—t” n+1+t"+ -t
== H Ar P

An important stability result for the scheme above, mimicking (5) on the discrete level, is the
following.

Proposition 6.1 (gradient-stability).  The fully discrete scheme (50) is gradient- (or energy-)
stable, in that it satisfies

EW™™ —Ew™) < —At/ [V dx Vn=0,...,N—1.
Q

Proof. The proof follows as in Section 2.1 of [23]. [

Remark 6.2. Since ¥ (u#) in (2) has quadratic growth as u — o0 it is possible to select a
quadratic ¥, unlike for a pure quartic free energy (requiring, in principle, a quartic v, for a valid
splitting). The advantage of a quadratic . is that the corresponding semi-implicit scheme (50)
requires the solution of a linear system at each time step.

To discretize the dual problem (34), we consider higher-order in space approximations based on
§h2 .= §"2(P") (i.e., quadratic finite elements)’ in conjunction with a semi-implicit time-stepping
scheme:

Find (p", x") € §"* x §"*:
n+l _ n
—(F=Fv) =€ vx v
=Wl )" =yl @) = (), v) Y e ' (52a)

(Vp", V) + (x".m) = (2", n)  ¥ne S, (52b)

"It is well known [45] that using the same approximation in space for the dual problem renders the dual-based error
estimate useless owing to Galerkin orthogonality, cf. Corollary 4.2.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



ERROR ESTIMATION FOR CAHN-HILLIARD MODELS 185

FIG. 1. 1-D propagating front test case. The primal solutions u (left) and w (right).

forn =N —-1,N —2,...,1,0. Note that the scheme marches backward in time, starting from
the “initial” condition p" € $"? defined by

PN, w) = (G, w) Yw e $"?, (52¢)

Similar to (51), we obtain an approximation (p, x) for all ¢ € [0, T'] using linear interpolation.

B. 1-D Propagating Front

In the first test-case, we consider the Cahn—Hilliard equation in 1-D. Inspired by [36], we impose
as a solution the following (manufactured) propagating front:

. x —0.5t—-0.25
u(x,t) = tanh (—) .

V2e

For each time ¢, u(x,t) actually satisfies the time-independent Cahn—Hilliard equation on R
(i (x, 1) is a so-called transition solution with y'(&z) — €2 At = 0). For the time-dependent case,
this means that we have a source term f on the right-hand side of (1a);:

f(x’t) = ﬁt(-xat)»

and a nonhomogeneous Neumann boundary condition, both of which can easily be included in the
error analyses in the paper. We take ¢ = 1/16 = 0.0625, 2 = (0, 1) and the final time 7 = 0.8.
The solution corresponding to these parameters is depicted in Fig. 1.

As the quantity of interest, we take ¢, = ¢, = 0 and g as a C'-continuous, piecewise quadratic
polynomial with width, maximum and center of 0.25, 1.0 and 0.625, respectively. The exact value
of the quantity of interest is

Qu, u) = (q,u(0.8)) = —0.028829294 . . ..

Figure 2 displays a fine solution of the dual solution corresponding to Q. Note that the dual
solution exhibits exponential decay. We believe that the reason for this is that the dual problem
has been obtained by linearizing at an approximation with developed layers.

The convergence of the error Q(u,u) — Q(u, i) and the dual-based error estimate
Est(u, (i; p, x) with respect to uniform refinements in space and time is depicted in Table 1.
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FIG. 2. 1-D propagating front test case. Computed dual solutions p (left) and x (right), which are solved
backward in time from ¢t = T to t = 0.

T=08

We have also displayed the effectivity. From these results, it can be seen that the time discretiza-
tion dominates the error. Note that the effectivity converges to one under space—time refinement,
demonstrating the consistency and accuracy of the error estimate.

To investigate the accuracy of the error estimate with respect to €, we perform the same numer-
ical experiment for € twice as large and twice as small; see Table II. From these results it is visible
that for smaller € (sharper fronts), one requires a finer discretization to have similar accuracy of
the error estimate. The precise relation, however, is not completely clear from the results.

C. 1-D Spinodal Decomposition
In the next numerical experiment, we consider spinodal decomposition in 1-D on the domain
© = (0, 1). We impose an initial condition u, within the spinodal regime:

up(x) = %(1 — 2x).

TABLEI. 1-D propagating front test case.

Qu, ) — A, 1) Est(i, it; p, X) Effectivity
#Elems N =32 64 128 32 64 128 32 64 128
8 —0.04558 —0.02575 —0.01310 —0.03388 —0.02521 —-0.01560 0.743 0979 1.191
16 —0.05104 —-0.02617 —0.01315 —0.04242 —-0.02574 —0.01330 0.831 0984 1.011
32 —0.05348 —0.02755 —0.01373 —0.04431 -0.02715 —-0.01387 0.829 0.986 1.010
64 —0.05414 —-0.02794 —0.01391 —-0.04479 —-0.02751 —0.01403 0.827 0.985 1.009
128 —0.05431 —-0.02804 —0.01396 —0.04491 —-0.02760 —0.01407 0.827 0.984 1.008

Convergence of the error, estimate, and effectivity with respect to spatial and temporal refinement.

TABLE II. 1-D propagating front test case.

e=1/8 e=1/16 e=1/32

#Elems N =32 64 128 32 64 128 32 64 128
8 0.909 1029 1157 0743 0979  1.191 0420 0912  1.632
16 0922 0991  1.033 0831 0984 1011 0406 1.046 1262
32 0.925 0984  1.004 0829 098 1010 0331 0940  1.104
64 0.925 0982 0997 0827 098 1009 0307 0902  1.041
128 0926 0981 0995 0827 0984 1008 0301 0892  1.024

Convergence of the effectivity with respect to spatial and temporal refinement for various €.
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with large time steps.
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1-D spinodal decomposition test case. Approximations to the solution u (left) and u (right) solved

Furthermore, we take € = 1/16 = 0.0625 and T = 0.2. For this initial condition, we expect the
solution to asymptotically evolve toward a steady-state transition solution.

In the numerical experiments, the time discretization again dominates the accuracy of approx-
imations. In particular, if the time-step size is too large, then the approximation evolves quickly
to the final transition solution. Such an approximation is visible in Fig. 3 which has been obtained
with 64 time steps. However, if the time-step size is small enough, it is actually visible that the
solution passes through a meta-stable state; see Fig. 4 obtained with 256 time steps. This qual-
itatively different behavior can also be observed in Fig. 5, which shows the total free energy

evolution ¢t — E£(it(r)) corresponding to these two simulations. Note that at time 7 = 0.2 the
approximations are in different (meta-) stable states.

We consider the same quantity of interest as for the propagating front test case,i.e.,q; = ¢, =0
and g is a C'-continuous, piecewise quadratic polynomial. Since we do not have an exact solu-
tion, we compute a reference value for Q using 512 spatial elements, and extrapolate the values
obtained with 4,096 and 8,192 time steps (anticipating O (Ar) convergence), yielding

Ou, ) = (§,u(0.2)) ~ 0.08826.

Wit
it \\\\\

\\\\\ \
R B \“‘“\‘\
R SR
R RS

FIG. 4.
using sufficiently small time steps.

1-D spinodal decomposition test case. Approximations to the solution u (left) and u (right) solved
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T T T

-=-Cloarse

—Fine

0 0.2 0.4 0.6 t

FIG.5. 1-D spinodal decomposition test case. Total free energy evolution corresponding to a coarse approx-
imation (- - -) with large time steps (see Fig. 3) and a fine approximation (—) with small time steps (see
Fig. 4). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

A computed dual solution, corresponding to the small time-step approximation in Fig. 4, is
shown in Fig. 6. Note that half-way into the simulation time, it grows exponentially fast (although
it does not blow up in finite time). This is expected, since (going backward in time) we encounter
the situation that the forward approximation is in the spinodal (unstable) regime. Note that this is
in accordance with the estimate derived in Theorem 5.A. In Table III we show the convergence of
the error estimate with respect to temporal refinement for a sufficiently fine uniform mesh (128
elements). For large time steps, the quantity of interest is completely incorrect having the wrong
sign. This is reflected in the accuracy of the estimate. However, if the evolution is qualitatively
captured (at least 256 time steps), the estimate is accurate. Note that the effectivity converges
again to one indicating the asymptotic exactness of the estimate.

D. Merging Bubbles

In the last numerical experiment, we consider a two-dimensional test case similar to the first
numerical experiment in [32]. It involves the merging of a small bubble of size 0.25 with a large
bubble of size 0.3 in the domain 2 = (0, 1) x (0, 1). The initial condition is given by

uo(x,y) = tanh(((x — 0.3)> + y* — 0.25%)/¢) tanh(((x + 0.3)> + y* — 0.3%) /e),

FIG. 6. 1-D spinodal decomposition test case. Computed dual solutions p (left) and x (right) correspond-
ing to the forward approximation (i, (i) visible in Fig. 4. Note that the dual problem is solved backward in
time fromt =T tot = 0.
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TABLE III.  1-D spinodal decomposition test case.

N Q. fv) Qu. 1) — Q@ ) Est(@, it; p ) Effectivity
16 —0.08540 0.17366 —0.03654 —-0.210
32 —0.11169 0.19995 —0.02857 —0.143
64 —0.11829 0.20656 0.02218 0.107
128 —0.00008 0.08834 0.22182 2.511
256 0.06385 0.02441 0.03368 1.380
512 0.07792 0.01034 0.01178 1.139
1,024 0.08340 0.00487 0.00517 1.062
2,048 0.08587 0.00240 0.00247 1.029

Convergence of the quantity of interest, error, estimate, and effectivity with respect to temporal refinement (using 128
spatial elements).

see Fig. 7. The total simulation time is 7 = 2.0, and we set ¢ = 0.08. In Fig. 8, several snapshots
are visible of the approximation obtained on a uniform triangular mesh with 4,096 elements and
64 time steps.

We are interested in the x-coordinate of the center of volume of the merged bubble at the final
time:

1

x.(T) := V/ %(1 —u(T,x,y))x dx dy,
Q

where the total volume V (constant during the simulation) is given as

Vv ::/ l(l—u(T,)c,y)) dx dy:/ l(1—u0()c,y)) dx dy.

To calculate x.(7T"), we thus consider the following quantity of interest:

1
Qu, pn) = —/ 3 u(T,x,y)x dx dy,
Q

1
H ﬁ |
-1

FIG. 7. Merging bubbles test case. The initial condition for u. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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FIG. 8. Merging bubbles test case. From top to bottom: computed solution # (left) and [ (right) at
time 0.125, 0.25, 0.5, 1.0, and 2.0 (final time). [Color figure can be viewed in the online issue, which

VAN DER ZEE ET AL.
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012
-1

is available at wileyonlinelibrary.com.]

which corresponds to Q in (24) with g = ¢, = 0 and g(x,y) = —%x. To have a reference
value for this quantity of interest, we solve the forward problem on a uniform mesh with 262,144
elements and extrapolate (anticipating O (At) convergence) the values obtained using 8,192 and

16,384 time steps, resulting in:
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FIG. 9. Merging bubbles test case. From top to bottom: computed dual solutions p (left) and x (right) at
time 1.9375, 1.875, 1.5, 1.0, and 0.0 (initial forward time). Note that the dual solution is solved backward
in time. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Qu, n) ~ —0.02407.

Several snapshots of a computed dual solution, corresponding to the forward approximation in
Fig. 8, are visible in Fig. 9. Note that p (starting off from §) initially exhibits decay, with growth
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TABLE IV. Merging bubbles test case.

Qu, 1) — O, fo) Est(d, fi; p, ) Effectivity
#Elems N =64 256 1,024 64 256 1,024 64 256 1,024
64 —0.01183 —0.02205 —0.02306 —0.26392 —1.78933 —7.76063 22.311 81.162 336.469
256 0.00946 0.01751 0.01982 0.02108 0.12233 0.38726 2.229 6.985 19.537

1,024 0.00199 0.00104 0.00073 0.00322 0.00362 0.00315 1.620 3.484 4.308
4,096 0.00165 0.00049 0.00012 0.00173  0.00077 0.00021 1.045 1.572 1.774
16,384 0.00162  0.00048 0.00011 0.00144 0.00055 0.00013 0.886 1.146 1.159

Convergence of the error, estimate, and effectivity with respect to spatial and temporal refinement.

toward the end. The dual approximation x (starting off from 0) grows throughout the simulation.
This growth is localized at the interface of the merging bubbles. Table IV shows the convergence
of the error estimate with respect to space—time refinement. Extremely coarse meshes fail to
resolve the interfaces, which is reflected in the accuracy of the estimates. However, for qualita-
tively resolved interfaces, the estimate is accurate, even for large time steps, and asymptotically
exact.

Vil. CONCLUDING REMARKS

We have provided an analysis of a posteriori estimates of errors for a class of quantities of interest
for initial-boundary-value problems governed by the Cahn—Hilliard equations. This entailed a
study of the backward-in-time adjoint problem, for which we established existence and unique-
ness results and results on well posedness. We explored mixed finite element approximations of
this system and derived estimates of error bounds in the form of computable approximations of
residual functionals. The results of several numerical experiments on one- and two-dimensional
examples indicate good performance and accuracy of the error estimates provided the dynamics
and layers are qualitatively resolved. Effectivity indices approach unity as the mesh size and time
step are appropriately reduced.

The authors thank Regina Almeida for useful discussions on numerical algorithms for the
Cahn-Hilliard equation.
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