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SUMMARY

The idea of adaptive control of modeling error is expanded to include ideas of statistical calibration,
validation, and uncertainty quantification. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Our view of how computer modeling and simulation impact the world of science and engineering
has evolved in recent years to one in which the principal factors affecting predictability of a
simulation and their interaction with one another are more clearly distinguishable than ever before.
Among these factors are (1) the selection of a mathematical model that provides an abstraction
of the physical events of interest; (2) the identification of appropriate parameters that define the
model; (3) the use of physical observations and measurements to calibrate and validate the model;
(4) the development of a computational model through discretization of the mathematical model;
(5) the identification of the specific goals of the simulation, the quantities of interest or target
outputs; and (6) the quantification of the uncertainty in the predictions.

An obvious property of each of these factors is that they all are imprecise and lead to error
and uncertainty in predictions: the heuristic act of selecting a mathematical abstraction of physical
reality can be the most critical source of error, which we call modeling error; the parameters of the
model are rarely known precisely and can generally be determined only in some rough statistical
sense, and the same is true of observations and measurements that are obtained through imperfect
systems and devices and which are generally limited to only a few features of the response of the
system; the corruption of the model due to discretization leads to discretization (or ‘numerical’)
error, and all these errors propagate through the target outputs, which represent quantities with
significant uncertainty.
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Figure 1. The imperfect paths to knowledge.

These various sources of error in the broad landscape of scientific discovery are depicted
symbolically in Figure 1 [1]. There it is indicated that the issue of modeling error (the selection of
the mathematical model that one hopes can best produce reliable quantities of interest) is the goal
of validation processes. The assessment of the effect of discretization error on the quantities of
interest is the province of verification processes, and is a problem of a posteriori error estimation.
Selecting the best characterization of model parameters and observational data is an issue of
statistical calibration, which is an exercise in the statistical inverse theory.

A broad framework for embracing all these components of modeling physical events and of
coping with error and uncertainty is provided by the statistical inverse theory based on Bayesian
(or Bayesian like) statistics. We describe one such framework in this paper. The estimation and
control of modeling error that we have explored in previous papers (e.g. [2—6]) pertains to relative
error, in which results produced by a sequence of surrogate models are compared with that
capable of being delivered by a grand, master, base model, which itself may be in error with
reality. In the present work, we improve this setting by bringing into play statistical features of the
base model based on enriching the likelihood probability density that relates model parameters to
observations.

Following this introductory section, we lay down in Section 2 an abstract mathematical frame-
work for modeling systems with uncertain parameters and calibration measurements. This is
configured into a statistical inverse framework provided by a Bayesian approach. The generalization
of the models to stochastic systems is taken up in Section 3. Model calibration, validation, and
prediction with quantifiable uncertainty are discussed in Section 4. We then take up the statistical
aspects of modeling error in Section 5.

2. PRELIMINARIES

2.1. The abstract mathematical model

We shall first need to lay down a collection of preliminary concepts and notations that provide
suitable abstractions of the idea of a family of mathematical models of a physical event of interest.
We are interested in modeling a physical system to predict its behavior under a particular scenario
of conditions. Based on our experience, available information, and possibly heuristic arguments,
we select a mathematical theory we believe can describe the event for a particular scenario of a
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264 J. T. ODEN AND S. PRUDHOMME

solution domain, boundary conditions, initial conditions, etc. This can be expressed as the abstract
problem of finding a function u in a space % of trial functions, such that:

A(m, S, u(m, S))=0. (1)

Here A(-) represents an abstract operator defined by the theory we propose to depict the event
of interest (e.g. A(-) may represent the equations of compressible fluid or gas dynamics, elas-
todynamics, quantum mechanics, molecular dynamics, etc. depending on the physical event,
along with appropriate boundary and initial conditions), m is a vector of parameters defining
specific models in the class, S is the set of scenario parameters such as the solution domain,
boundary and initial data, and u(m, S) is the solution of the equations describing the model for
particular choices of parameters m and S. Thus, once a theory and its associated mathemat-
ical characterization (A(-)) are selected, and a particular scenario S is selected, we may traverse
over infinitely many models in this class by varying the model parameters m. The parameter
set m is assumed to belong to a model differentiable manifold M, which we discuss fully in
Section 2.2 below.

Example 1
The differentiation between the model class and the various scenarios is important. As an example,
the model class could correspond to linear elastostatics of isotropic, homogeneous bodies. Then
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The parameter set is taken to be m=(log E/Eg, logv/vg) where Eg and vq are arbitrary constant
moduli. There are many possible scenarios:

S = S| ~a simple tension or torsion test, 3)
S = §» ~a two-dimensional square plate, “4)
S = S3 ~a three-dimensional body. )

Thus, whether a quantity such as a body force f, surface tractions g, etc. are designated as the
parameters of the model (and included in m) or as scenario data S is generally a matter of subjective
choice.

For reasons that will become clear later, it is important at this point to recast (1) into a function
space setting. For each m and S, we presume there exists a topological vector space (TVS) of trial
functions %g and a TVS of test functions ¥’5, and that A(m, S, -) maps %g into the dual ¥ S/ of
+’s. Then (1) can be expressed as the condition

Rm,S,u(m,S);v)=0 VYve’y, (6)
where Z(-; -) is the continuous linear functional,
#(m, S, u(m, S); v)=(A(m, S,u(m, S)); v) (7

and (-; -) denotes the duality pairing on ¥ S’ X ¥'s. We shall refer to Z(-; -) as the residual functional
and to problem (6) as the forward problem. Equality (6) thus states that of all the trial functions
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CONTROL OF MODELING ERROR IN CALIBRATION 265

in %, those for which the residual functional vanishes for all test functions in ¥’g are solutions
of (1) (for fixed m and S).

2.2. Quantities of interest

Central to the goal of predictive simulation is the specification of quantities of interest, ‘Qol’s’, the
target features of a physical event that we identify as critical to making decisions about the outputs
of a model of physical or engineered systems. These are the goals of the simulation. The Qol’s
are not, in general, the solution of some general set of equations, but they may be characterized
as functionals of the solutions of a system of governing equations.

We shall assume that each Qol is a continuous differentiable functional Qg on the space of trial
functions #s with variational (Gateaux) derivative Qg YUs X Us — R:

Q4(u; v)=lim 07 '[Qs(u+0v)— Qs(u)]. ®)
0—0
Here QS/(u; -) is a linear functional on % for a given scenario S.

2.3. The adjoint problem

Corresponding to each quantity of interest O, we can formulate the dual or adjoint problem to (1)
A (m, S, u@m,S);v, p(m, )= Qs(u(m, S);v) Yves, ©))
where %'(;-,-):Us < Us x Vs —> R is the functional:

' (m, S, u; v, p)zelir%O*I[.@(m, S, u+0v; p)—A(m, S, u; p)l. (10)

In (9), p(m, S) is the adjoint or dual solution or generalized Green’s function corresponding to Qg
and problem (6). Problem (9) is linear in p with coefficients possibly dependent on the solution
u(m, S) to (6).

2.4. Statistical inverse analysis: calibration of the model

Up to this point, the mathematical models (6) and corresponding adjoint models (9) have been
treated as deterministic. But this, in general, is unacceptable, as there is generally significant
uncertainty in the values and variables in the parameters m. Moreover, our initial knowledge of
the parameters may be incomplete and may not reflect the actual physical setting of the events we
wish to study. Our knowledge of the system can be increased with a judicious choice of physical
experiments for certain scenarios S that provide sets of observational data d that can be used to
calibrate the model. But the observational data themselves have uncertainties.

To address these difficulties, we will call upon Bayesian methods of statistical inverse analysis
(see, e.g. [7, 8] or the variant proposed by Tarantola [9]). Forthwith, for the model manifold M,
we define a probability space (M, % ps, Pyy), with probability measure Pjs, and we assume that
one can define the random parameters m by a prior probability density function (pdf) p,,(m),
d Py =py(m)dm. Likewise, we define a data manifold & on which a probability measure Pp
and a corresponding data pdf pp(d) can be defined as well as a corresponding homogeneous pdf,
up(d) (see [9]). The pdf’s p,, and pp, are obviously independent, so we may define the joint prior
probability density as

plm.,d)=py (m)pp(d). (an

Here, and hereafter, we employ the notation of Tarantola [9].

The information provided by the mathematical theory we use to describe the physical events
(in the case of model calibration, these events are the observations d) is embodied in the likeli-
hood probability, which is characterized by a conditional pdf, 0(d|m) that defines the theoretical
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266 J. T. ODEN AND S. PRUDHOMME

probability density of an observation d given parameters m. Finally, the joint posterior probability
density, o(m,d), is defined as the conjunction of the prior and the likelihood probabilities:

p(m,d)
up(d)

Here k is a normalization constant. The marginal probability density,

o(m,d)=k 0(d|m). (12)

mmm:/amjmd (13)
g

is the solution to the statistical inverse problem. It defines the calibrated pdf for the model parameters
m. Introducing (11) and (12) into (13) gives

om(m)=kpy (m)L(m), (14)
where L(m) is the likelihood function

pp(d)

L =
= i@

0(d|m)dd. 5)

Given the prior pdf’s, the homogeneous pdf’s, and the likelihood conditional pdf, we can generate
the posterior pdf in (14) using standard sampling methods. See [7-10].

3. STOCHASTIC SYSTEMS

We now consider generalizations of the forward and adjoint problems to stochastic systems.
As noted in Section 2.4, the model parameters m define points in a sample set, also denoted M,
in a probability space

Pu=M,7 m, Pu), (16)

where 7 jy is a g-algebra on M and Py is a probability measure on % j;. A random vector d(m)
is a function from M into R". We equip the space #y with an L?(M)—inner product (-, )3 S0
that if a(m) and p(m) are two random vectors,

(a(m), B(m))pr = /M a(m)- Bm)d Py . a7

Hereafter, we assume that dPj, is defined by a probability density o, so that dPy =

om(a(m), B(m)) dadp.
Returning now to (6), we introduce the TVS’s of random vector fields for a fixed scenario S,

%=.@MX%S, @=9MXV5. (18)

Let A denote a map from Z to % which depends on parameters m characterized by the pdf s (m).
We can now introduce the stochastic forward problem

R(opm@m), S, u(oy(m), S);v)=0 Yve, (19)

where Z(-) is the residual,
#(om(m), S, u(op(m), S); v)Z/M(A(O'M(m), S, u(op(m), S);v)dPy. (20)

The Qol is defined by
0: 27— R, Qu(om(m),S)=gs(m). (2D
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CONTROL OF MODELING ERROR IN CALIBRATION 267

Let v and w be arbitrary random fields in Z and %, respectively. We define:
R (o (m), S, u(cp(m), S); v, w)
= (}m}) 0" [(Z(or(m), S, u(op(m), S)+0v; w)— A(cp(m), S, u(cpy(m), S); w)l, (22)

Q' (u(op(m), S); v)
= }Eﬂ% 0" [Qu(oy(m), $)+0v) — Q(u(op (m). S))]. (23)

The stochastic adjoint problem is then to find p(cs(m)) such that:
R (Gm(m), S, u(oy(m), S); v, p(ay(m)=Q'(u(cy(m), S);v) VYve. (24)

Here we have introduced a somewhat heavier but more descriptive notation. The parameters
m are now replaced with the posterior pdf o), determined by the calibration defined in (14).
The solution u(op(m), S) for a given scenario S is a random field, as is the adjoint solution
p(opy(m)). The scenario S is arbitrary for the moment and assumed to be deterministic, but
extensions to random scenarios are straightforward. The output values of the Qol’s, Q(-) are
random fields. As noted earlier, the posterior pdf’s oj/(m) in (14) are evaluated by standard
sampling methods such as the Markov Chain Monte Carlo (MCMC) or Hasting methods (see
e.g. [7,10]), which have been implemented in open-source codes [10]. The general framework
represented in (19) can now be applied to the key steps in the calibration and validation of the
model.

4. THE PREDICTION PYRAMID: MODEL CALIBRATION,
VALIDATION, AND PREDICTION

The contemporary concept of a predictive computational model of a physical event presumes that
observational data is acquired that enables the calibration of the model for simple, possibly labora-
tory, scenarios of the theory, and other experimental observations in more complex settings which
are part of the process of validation of the model. These three processes, calibration, validation,
and prediction, make up levels of the prediction pyramid, illustrated in Figure 2 (cf. [11]).

At the peak of the pyramid is the most sophisticated and complete model scenario (denoted S,
in the figure) where we hope to predict the ultimate Qol, denoted @, with a model that survives
our validation process. At a lower level of the pyramid, we consider simplified validation scenarios
and we target validation observables d,, (or, equivalently, validation Qol’s). These validation levels
may involve submodels of the general model solved with validation scenarios S,. At the lowest
level of the pyramid we consider simple (possibly component based) scenarios for the purpose of

Figure 2. The prediction pyramid.
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Figure 3. The flow of a calibration, validation, and prediction processes. Prior pdf’s of model parameters
and pdf of observational data are used to calibrate the model for a given calibration scenario S.. Inverse
analysis yields the posterior pdf ajs(m). This is the prior for the more elaborate validation process which
involves a new scenario S, and validation data with prior p(d, ). Inverse analysis yields the posterior gy (m).
The stochastic forward problems are solved using calibrated and validated data and the corresponding
prediction Qol’s are compared. If they meet a preset tolerance, the model is not invalidated and the
calibrated model is used to make the predictions. Otherwise the model is declared invalid.

model calibration, and we perform experiments that provide observables represented by the data
d. €2, which can be regarded as Qol’s for the calibration process. There may be many steps of
increasing complexity represented by layers in the validation levels of the pyramid, but we shall
consider a single validation process here for simplicity.

The calibration, validation, and prediction processes are illustrated in Figure 3 (cf. [11, 12]) and
involve the following steps:
Calibration: For a selected theoretical framework, defined by the calibration scenario S., we

(1) provide the prior pdf p,,(m),

(2) determine the pdf pp(d.) (and up(d.)) from the given experimental observables,

(3) introduce the likelihood pdf O(d.|m) for the calibration scenario based on the theory
(A(" %y '))3

(4) solve the inverse problem for the posterior pdf ¢ as in (14), i.e.
om(m)=kpy (m)Lc(m),

where L (m) is the likelihood function (15) computed using the likelihood pdf 0(d.|m) for
the calibration problem, using sampling methods such as those described in [7, 8, 10].

The calibrated model for the prediction problem can now be written,
R(oym), Sy, u(oy(m),S,); v)=0 Yved. 25)

Validation: A validation scenario S, is now selected together with validation observations d,,
which are hoped to reflect the ability of the model to deliver acceptable predictions of the
prediction Qol, Q,. The data manifold for the validation experiments is denoted &, and the
pdf for the validation data is denoted py,(d,), with homogeneous pdf uy (d,). Then

(1) the posterior pdf of the calibration process is used as the prior pdf for the validation
process,
(2) we introduce the likelihood pdf for the validation process, 0(d,|m),
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CONTROL OF MODELING ERROR IN CALIBRATION 269

(3) we solve the inverse problem for the posterior pdf oy (m) for the validation process, i.e.
oy(m)=kopy(m)L,(m),
where k is a normalization constant and L, (m) is the validation likelihood function

pV(dv)
D, wuy(dy)

Ly(m)= 0(dy|m)dd,. (26)

(4) the model for the prediction problem produced by the validation process (which as yet
may be an invalid model) may be written

A(oy(m), Sy, u(oy(m), S,); v)=0 VYved. 27

The mathematical model chosen for the prediction (1) can never be validated; it can, at best, be
not-invalidated for the specific validation experiments we performed. The determination of a crite-
rion for accepting a model as ‘not-invalidated’ is a subjective decision that requires the acceptance
of a metric to compare prediction Qol’s produced by the calibration and the validation processes,
and a tolerance that we establish as an acceptable measure of the predictability of the model. Thus,
our validation process involves comparing Q ,(u(opy(m), Sp)) and Q ,(u(oy(m), S))). Let D denote
a metric on the space of random functions containing Q,(u(cy(m), Sp)) and Q ,(u(oy(m), S,))
and let y,,; denote a preset tolerance. We will declare the model not-invalid if

D(Q p(u(om(m), Sp)), Qpu(oy(m), $p)))<yl- (28)

There are many metrics that could be used in (28). One reasonable possibility is suggested in
Figure 4. Let us use the more concise notation,

Qcm)=Qp(u(om(m), Sp)
. (29)
Qv(m)=Q,(u(oy(m),Sp,)
We can always compute the cumulative pdfs [11]
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Figure 4. Illustration of the metric D defined in (31).
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Fc(m)Z/m Gc(m"ydm'
o : (30)
Fv(m)=f Gy (m")dm'’

where 6¢ and 6y are the pdf’s corresponding to Q¢ (m) and Qv (m), respectively. Then a compar-
ison of Q¢ and Qy is afforded by

D(Qc, Qv)= sup |Fc'()—Fy' (). (€29)
y€l0.1]

Uncertainty Quantification. With a (subjective) choice of a tolerance y,,, one can check (28)
(using (31)) to determine if the criterion for not-invalidity is satisfied. If (28) holds, the model has
passed the tests laid down in the validation process, and based on these tests, it has not been found
to be invalid. It is commonplace to call this model ‘validated’, but of course, no model can ever
be ‘validated’, it can only be declared not invalid for a specific set of validation tests.

Let us suppose that the model has passed the validation criterion (28) for a chosen metric D
and tolerance y,,. How can the uncertainty in the predicted quantity of interest O, be quantified?
Denote

qp(m)=Q p(u(op(m), Sp). (32)

Then the following statistical properties of g,(m) can be calculated: its means and centered
moments,

Elgp]l= /M qp(m) oy (m)dm, (33)

wlqp] = Elgp —Elg,))* = / [qp(m)—Elg, op(m)ydm, k=2,3,... (34)
M
and particularly the variance, for k=2, i.e.

Varlg = [q,1=Elgp —Elg,]1*. (35)
These numbers, (33)—(35), quantify the uncertainty in the quantity of interest.

5. ESTIMATION OF MODELING ERROR

The notion of modeling error introduced in [2, 4, 6] is that of determining the relative error between
Qol’s evaluated using a possibly incorrect surrogate model compared to those delivered by a more
general and complete base model. The base model is thus used as a datum with respect to which
all other models are compared. Let %‘S‘p and ¥~ §p be two topological vector spaces and let #*,

defined on %?p XY ‘*bip for a given set of parameters m* and scenario S,, denote a semilinear
functional describing the forward base problem:

R*(m*, Sy, u*;v)=0 VUE”V"gp. (36)

For simplicity, we assume that the base problem is deterministic with parameters m* € M* fixed,
so that u*=u*(m*, S,), but our results are easily extended to cases in which the base forward
problem is endowed with, for example, a lognormal distribution of model parameters.

The following proposition is proved in [2].

Proposition 1
Let the functional %™ in (36) and the functional Q, of the prediction scenario be thrice Gateaux
differentiable (in the sense of (8)) and let ug be an arbitrary element of %’gp. Then

Qp*) = Qp(uo)=R*(m*, Sp, uo; p*)+Am*, u* —uo), (37
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CONTROL OF MODELING ERROR IN CALIBRATION 271

where p*=p*(m*)e v z,, is the solution of the adjoint problem
R (m*, u*; v,p*):Q},(u*; V) Vve%’gp (38)

and A(-,-) is the remainder:
1
Am™*, u* —uo)=/ Fm*, sug+(1—s)u*,s)ds (39)
0

and the integrand % (m™*, -, -) is a function of quadratic and cubic terms in the error eg =u™* —uy.
d the integrand . (m*, -, ) is a function of quadratic and cubic t th *

Hereafter, we neglect the remainder A(-, -) in the equality (37) and approximate the error in the
Qol as

Eqor=0p*)— Qp(uo) X A*(m*, Sp, uo; p*). (40)

Obviously, the approximation (40) is legitimate only if uq is close to u* in some sense. In general,
the validity of the a posteriori modeling error estimate (40) must be checked with each choice of
R*(m*, S, ; ), either numerically for different choices of u( or analytically when possible.

Beyond this point, our ideas are in a very preliminary stage and much additional work remains
to be done. We do know that, in principle, the generation of sequences of surrogate models to
systematically reduce the relative modeling error &qo1 can be accomplished via goal-oriented
adaptive modeling, and is discussed at length in earlier papers (e.g. [3, 13]). The target quantity of
interest evaluated using the base model is denoted as Q ,(u*), while that of these calibration and
validation models are Q. (m)=Q ,(nu(oy(m), Spy)) and Q, (m)=Q ,(ntu(sy(m), S,)), = being
a map from %sp (in fact %gp since m is random) into J?l"s‘p. The operator = is, at this point,
ill-defined and many possibilities exist. For example, one can compute the expected value E[m],
then u(E[m], Sp) is deterministic and can be prolongated to a function ug 6%’;[,. Remarkably, the
error in the quantity of interest between calibrated parameters and validation parameters is

Op.(m)— va(m) = Qpc(m)_ Qp(u*)+ Qp(”*)_ va(m)
=[Q,u™) = Qp(nu(oy(m), ) —[Q,W*)— Q ,(nu(ap (m), Sp))]
~ Q*(m*’ Spv TEM(GV(m)v Sp)9 P*)_%*(m*’ Sp9 nM(UM(m), Sp)s p*) (41)

The right-hand side defines a (presumed) computable random field that provides a measure of the
validity of the model when appropriately quantified.

Feedback Control. The essentially open problem of controlling the model, via the likelihood
probability and the parameter priors, to improve a model that is initially judged to be invalid, can
be viewed as a feedback control problem with complex sampling. In the special case where the
surrogate and base models have same parameters, one can update the base model such that

i =kr awm) [ ppde) sip)do) 0" elm)dd,
N : (42)
o (m)=ky o’y (m) /J py(dy) 1y dy) 0°(dylm)dd,
denote the posterior parameter pdf’s determined using the likelihood pdf 6* for the calibration and

validation processes, respectively, based on a grand base model, for which the forward problem is
of the form,

R (G, (m), S, u* (o, (m), S,); v)=0 Vved* (43)

In fact, in (42), the set m could also include additional entries to reflect the possible increase in
the number of parameters required in the base model. The new Qol is then

Q5 (m)=Q,(u* (a3, (m), Sp)) (44)
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and the adjoint problem is,
R @y (m), Sy, u* (a3, (m), Sp); v, p)= Q0 (v) YvelZ™. 45

Likewise, we can formulate forward and adjoint problems based on the validation pdf o7, (m) and
the Qol Q;U (m)=Q,(u*(c},(m), Sp)). Thus

D(Q3,.. 05,)=D(Qp (m)+Z:(m), O, (m)+ Ay (m)), (46)

where #(m) is given by (43) and Z;(m) is the corresponding function associated with the
validation pdf. The problem is thus reduced to choosing a sequence of parameters m so that

D(Q%,. %)< iol- @7)

If this is not satisfied, the forward model must again be enriched.
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