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SUMMARY

In this paper, we develop a thermodynamically consistent four-species model of tumor growth on the basis
of the continuum theory of mixtures. Unique to this model is the incorporation of nutrient within the mix-
ture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves
systems of highly nonlinear partial differential equations of surface effects through diffuse-interface mod-
els. A mixed finite element spatial discretization is developed and implemented to provide numerical results
demonstrating the range of solutions this model can produce. A time-stepping algorithm is then presented
for this system, which is shown to be first order accurate and energy gradient stable. The results of an array
of numerical experiments are presented, which demonstrate a wide range of solutions produced by various
choices of model parameters. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational models of tumor growth are gradually becoming an accepted mode of investigating
the behavior and the response of tumors to various environment conditions and possible treatments.
The idea that such a model could predict, even qualitatively, the emergence, growth, or decline of
tumors in living tissue is enormously intriguing. With such a tool, researchers could, for instance,
perform initial studies of treatment paradigms on computational tumors instead of tumors implanted
in animals or identify prominent environmental factors that may be treatment targets. It is possible
that if brought to a high enough level of sophistication, this kind of technology could revolutionize
medicine and bring a new paradigm into the treatment and prevention of a class of the deadliest
maladies affecting humankind. In principle, there is nothing about the classical scientific method
that suggests that this is an impossible goal, and the growing literature on tumor modeling over the
past decade attests that a significant progress has been made in this direction.

Work directed at mathematical modeling of tumor growth can be found in the literature through-
out the last century, but only recently have the models shifted focus from mimicking growth rates
from nutrient diffusion in avascular tumors to monitoring changes in tumor behavior resulting from
more complex phenomena. That is, although tumor growth is now understood to be a multiscale
modeling phenomena, early experiments were only able to capture and interpret events happening
on a single macroscale. Because of the many advances in experimental techniques and methods
developed in the early 1980s through today, such as, polymerase chain reaction [1], many discov-
eries have been made concerning mechanisms now known to be critical to tumor growth, including
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the six hallmarks of cancer [2] such as angiogenesis, cell movement, and cell mutations. In turn, the
number of mathematical models of tumor growth has dramatically increased along with the general
level of complexity. A comprehensive history has been compiled by Araujo and McElwain [3] in
2004, and several surveys of models have also appeared in more recent years, that is, those compiled
in Wodarz and Komarova [4], Bellomo et al. [5, 6], Preziosi [7], Lowengrub et al. [8], and many
others [9-21]. These indicate that the majority of models can be placed into one of three categories:
discrete models, also known as cellular automata models; continuum models, which are the focus
of this paper; and hybrid models utilizing elements of both discrete and continuum models.

The continuum theory of mixtures, which is discussed at length in later parts of this paper,
provides a mathematical framework for incorporating multiple phases within a single model. The
framework for the continuum theory of mixtures was pioneered in the 1960s and 1970s by Truesdell
and Toupin [22] and Bowen [23], and by the mid-1990s, it was regarded as a fairly mature theory
for describing non-biologically growing media. It was not until the late 1990s that applications to
biological growth began to appear in the literature. The first such model was presented by Please
et al. in 1998 [24] exploring, in one dimension, the possible formation of a necrotic core due to
stress within the tumor in the context of two phases: tumor cells, assumed inviscid, and extracel-
lular water. Shortly afterward, this model was extended to three dimensions and included surface
tension [25]. A different approach was used by Breward et al. [26], who assumed the existence of
an inviscid aqueous phase but allowed the viscosity of the tumor cells to vary as a function of their
level of differentiation, higher differentiation corresponding to higher viscosity. This approach was
an attempt to simulate the cell—cell interactions that form between cells. Two other models were
proposed by Preziosi and Farina [27] and Araujo and McElwain [28] in which a solid matrix was
considered to be present among the other two phases, in the spirit of porous media. These models
have been extended to include the host tissue as a third phase [29-31] and to begin considering mul-
tiscale adhesion effects resulting from surface molecules attaching to the extracellular matrix [32]. A
one-dimensional three-phase model investigating vascular tumor growth has also been considered
in this framework by Breward et al. [33], including blood vessels as a third phase. Other models
have studied residual stress and interstitial fluid pressure aspects of the tumor tissue especially in
regard to vascular collapse [34-37]. These models were influenced by many experiments showing
that pressure and stress values were different in tumorous and healthy tissue and that vascular col-
lapse was non-uniformly present throughout the tumor, implying the presence of residual stresses
[38—40]. Recently, there has been a four-phase model proposed by Wise et al., the derivation of
which is discussed at length in the papers [41-45]. This model considers tumor live cells, tumor
dead cells, host cells, and an extracellular fluid, in contrast to the other mixture models under the
influence of a convective velocity. The chosen form of the free energy leads to a diffuse-interface
model of Cahn—Hilliard type. The simulations resulting from these equations have shown impres-
sive qualitative agreement with brain tumor images. This group has also developed a two-phase
diffuse-interface model of tumor growth including a chemotaxis term in the free energy [46].

Each of these models include the effects of some form of nutrient, say oxygen, to drive the tumor
growth. Generally, because of the discrepancy in size, this species is not considered as a component
in the mixture subject to the constraints given by the mixture framework. Rather, it has been dealt
with using an auxiliary reaction-diffusion type equation. In this paper, we present a four-species
model that incorporates the nutrient within the mixture. This has several advantages. Firstly, it pro-
vides a more consistent approach as all of the equations are considered when deriving constraints
from the second law of thermodynamics. Secondly, this model can be categorized as a dissipative
gradient flow, meaning that the total free energy decreases with every time step. This fact leads
to the development of a gradient stable, first-order accurate, linear time-stepping scheme, which
is then coupled with a mixed finite element spatial discretization to solve the system of governing
equations. A general weak mixed variational statement for this class of problems is developed and
used as a basis for a class of mixed finite element models.

This paper is organized as follows. Following this introduction, the general continuum theory of
mixtures is briefly presented in Section 2, after which the assumptions and simplifications leading to
our four-species model are discussed at length in Section 3. The idea and development of a gradient-
stable time-stepping algorithm for the model is then presented in Section 4. This scheme is shown to
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be first order accurate, gradient stable, and mass conserving. In Section 5, numerical examples are
given showing the wide range of results that can be produced with this model along with numerical
evidence of the theoretical results shown in Section 4.

2. THE CONTINUUM THEORY OF MIXTURES

The fundamental idea underlying mixture theory is that a material body 3 can be composed of N
constituent species B, ..., By. These occupy a common portion of space at the same time. Each
spatial position is then allowed to be occupied by N constituents, and each constituent is assigned
a mass density py, regarded as a function of position and time, (x, ¢), which represents the mass of
the arth constituent per unit volume of the mixture.

Each of the N constituents must satisfy its own balance laws, which differ from those of classical
continuum mechanics because of the presence of interaction terms representing the exchange of
mass, momentum, and energy between constituents. In this paper, we focus on the principal mecha-
nisms of mass exchange and conservation of mass among species, ignoring momentum and energy
transfer for simplicity.

For a general mixture occupying an open region €2 in R3 over a time interval (0, T'), the volume
fractions, ¢y, and other independent field variables must satisfy the following mass balance law for
alla, 1 <a < N,allxe Q,andt € (0, 7).

0P Pu
ot

+V‘(Pa(PaVoc):)/a_v‘ja- (1

In (1), py is the mass density per unit volume of constituent of the «th constituent, y, is the mass
supplied to constituent & by other constituents, j, is the mass flux due to changes in the chemical
potential defined in terms of gradients in concentrations and changes in nutrient concentrations, and
vy is the species velocity field. These effects were introduced in the models of Cristini et al. [46],
Frieboes et al. [42], and Wise et al. [44]. For the general theory, see [47].

Equation (1) is closed by the appropriate choices of constitutive equations, which must be con-
sistent with both the second law of thermodynamics for the mixture and the classical balance laws
for the entire mixture. By introducing the Helmholtz free energy per unit mass ¥, for each con-
stituent, or the free energy ¥, per unit volume, the classical Coleman—Noll method makes use of
the constraints from classical balance laws and the second law to supply sufficient conditions on
forms of key constitutive equations in terms of appropriate derivatives of the free energy [46—48].
In this work, we confine our attention to materials for which the Helmholtz free energy is of the
form ¥, = ¥, (¢1,...,¢N,VQ1,...,VonN,my,...,mr). The values m;, 1 <[ < L, here repre-
sent concentrations of chemicals or small polypeptides, which interact with the species ¢, but are
so much smaller in size than the constituents that it is not necessary to consider them directly within
the mixture, for example, oxygen or glucose. We note that it can be argued that resulting consistent
constitutive equations for j, are of the form, | <a < N,

N
Jo=— Z Mg (@, ma)v(ﬂﬂa/pa)» (2)
B=1

where Mg is a positive semi-definite, second-order mobility tensor and g, is interpreted as the
chemical potential, defined as

0¥ 0¥g
[pa =" —V- : 3)
pe d9q A
Other details on this theory are given in [47].
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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3. FOUR-SPECIES MIXTURE

A four-species model is reduced from the general framework with a species representing the tumor
cell concentration and the healthy cell concentration along with two species identified with extra-
cellular water. A departure from the previous derivations in the literature is that the extracellular
water is divided into two species, one which is nutrient rich and the other which is nutrient poor.
In this way, the nutrient is assumed to evolve within the extracellular water but may have different
concentrations throughout. Thus, the mixture is composed of the following four species:

@1 = u := tumor cell volume fraction,

¢ = h := healthy cell volume fraction,

¢3 = n := nutrient-rich extracellular water volume fraction,
@4 = w := nutrient-poor extracellular water volume fraction.

Such a mixture is illustrated in Figure 1.

The mixture is assumed to be saturated; that is, v + & + n + w = 1 everywhere. However, two
additional constraints are imposed: the total concentration of cells remains constant throughout the
domain, that is, ¥ + h = C everywhere; and, because of the first saturation constraint, the total
concentration of extracellular water remains constant, that is, n + w = 1 — C everywhere. The
constants C and 1 — C can be rescaled to be unity so that the values of u and /& as well as n and w
are normalized so as to take on values between 0 and 1.

Next, the Helmholtz free energy must be specified for the system. In general, the tumor cells
remain segregated from the healthy cells, so that the two species are similar to the species of the
classical Cahn—Hilliard free energy. However, such a stark separation between the two water species
is not anticipated, and thus, neither a surface energy nor a double well potential with respect to the
nutrient rich extracellular water terms is included in the free energy. We assume that the presence
of the nutrient-rich extracellular water increases the amount of energy which is ultimately in the
system, characterized with a term n? in the free energy. In this manner, without interaction, the
dynamics of the nutrient species is simply governed by diffusion. Finally, a term is included in
the energy functional which attains a minimum when there is a full interaction between the tumor
species and the nutrient-rich extracellular water; that is, this term will be minimized when both
u = 1 and n = 1. This term ultimately drives the tumor cells to move toward the oxygen supply,
as expected for such biological systems. From all these considerations, the total free energy of the
system can be written as follows:

— 62 2 1 2
E—/Q(f(u)+?|Vu| + () + Zon )dx. 4)

Nutrient Rich
Nutrient Poor Extracellular Fluid

Extracellular Fluid
Tumor Cells

Healthy Cells

Figure 1. Four-species model: illustration of the four-species mixture. The tumor and healthy cell popula-
tions are assumed to have a thin diffuse interface, whereas the nutrient-rich and nutrient-poor extracellular
water are segregated by a wide smooth interface.
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where f (u) is the classical Cahn—Hilliard free-energy density function, €2 is the diffusivity param-
eter for the surface energy term, y (u,n) is the chemotaxis energy, and § > 0 is a small parameter
governing the relative strength of the interaction among the cell and nutrient species.

As shown in [47], it is known that the forms of the equations for the balance of mass for each
constituent are as follows:

ur = V- (MyViy) + Vu,

hi =V - (MpV 1) + yh,

ng =V (MyVup) + yn,

wy =V-(MyVily) + Y.
Note, that the densities p; are assumed to be equal and constant, that is, p; = p, = --- = C, and
that the velocities are taken to be negligible. The chemical potentials ; are determined through the
form of the free energy by u; = Dy, E, where Dy, denotes the Gateaux derivative with respect to
the variable ¢;. Constraints on the constitutive relations, as were derived in [47], provide guidance

as to how to appropriately close this system of equations. In particular, the following relations must
be satisfied:

&)

Yut v +V-(MyVuy)+V-(MpVu) =0

. ©6)
Yn+Yw + V- (MyVin) + V- (MpViy) =0
Additionally, it must hold that
Y wivi <0, ™
i
For the given form of the free energy, the forms of p; are as follows:
pu = f' () —e*Au+ Dy y (u,n),
i =—f"(C =h)+ € A(C —h) = Dy y (C = h),n), @®

fin = Dy (u,n) + 8 'n,
pw =—Dpy (u,(1—C)—w) =" ((1-C) —w),

and it is easily verified that ) ", u; = 0. In particular, for M,, = M} and M, = M,,, this means
VM, Vuy,)+V-(MyVup)=0and V- (M,Vi,)+ V- (MyViy) =0, which reduces the con-
straints in (6) to merely y,, + v, = 0 and y;, + Y = 0. One should note, if these constraints hold and
M, = M}, and M,, = M,,, that Equations (5)a and (5)b are not independent nor are Equations (5)c
and (5)d as u; + h; = 0 and n; + w, = 0. This is expected as u; + h; = (u + h); = 1; = 0 and
similarly for n; + wy, n; + wy, = (n + w); = 1; = 0. Thus, attention can be restricted to solving
only two equations: the equations for u# and for n. Explicitly written out, these are

up =V (M V (f' () — 2 Au + Dyy (u,n))) + vu
ne=V-(MyV (Dny (u,n) +8'n)) + yn

with constraints (6) and (7).

Given these governing equations (9), one can show that the solution to these equations with
M, = M, = 1 and with the given constraints satisfies the condition that the total energy is always
non-increasing. Consider

(€))

d
—FE =/ (DyE u; + Dy E ny) dx =/ (Uyus + ppng) dx
dr Q Q

— /Q (tu (Apeu + Vu) + fn (Aptn + yn)) dx

(10)
= /Q (=Viru - Vigu = Viin - Vil + fuYu + Hnyn) dx
=~ IVstal2 = IVale + [ Grur+ pa) .
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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Thus, if y,, and y, are chosen such that (7) holds, the energy is non-increasing. Note that this result
would still hold for any semi-positive definite form for M,, and M,,. This is a natural result as the
system is isothermal and thus having a thermodynamically consistent model is equivalent to having
a system in which the energy is non-increasing; see for example [49].

3.1. Constitutive equations

It remains to specify specific forms for y,, and y, as well as y (u,n) and f (u). For the mass
exchange terms, it is anticipated that there will only be growth when there is some level of nutri-
ent available. Further, the form should prevent growth if, because of numerical discretization, the
solution takes on negative values.

Motivated by the linear phenomenological constitutive laws for chemical reactions (see, e.g., [50])
we propose the following:

Yu = P) (ttn — [u),
Yn = —VYu

where P(u) is a positive function defined as

SPou u =0,
Py =1 "
0 elsewhere,
with § a small positive constant and Py = 0. Note that for this choice of y;, we indeed satisfy (7).
As § is expected to be very small, one can notice that the most influential term within these mass
exchange terms is Poun. Indeed,

Yu = Poun + SP()M(D"X(M,H) _/Lu)

(provided u = 0). This implies that the effects of the additional terms should be minimal. Further
investigation of their interpretation and influence is left as future work. Additionally, we comment
that this particular form of P(u) is the simplest form to help prevent compounding numerical
instabilities in the case that the tumor concentration becomes negative because of numerical dis-
cretization. Modifications could also be made to further prevent tumor growth above the physically
allowed value of 1, determined by the assumptions of mixture theory and the form of the free energy.

Regarding the terms in the free energy, the homogeneous free energy function f (u) is chosen to
be a double well with a quartic polynomial form,

f ) =Tu?(1—u)?. (11)

This term provides the mechanism for phase separation favoring the states ¥ = 0 and u = 1. The
form of y should be chosen such that for values of u € [0, 1] and n € [0, 1], the preferred energy
state, that is, the lowest energy value, is when both u = 1 and n = 1. Although there are many forms
that can satisfy these conditions, for simplicity, the form chosen here is the linear product

X (u,n) = —youn, (12)

with y¢ a positive constant. The sum of f (u) and y (u,n) can now be viewed as the homogeneous
free energy. The plot of this summation on the domain u € [0, 1] and n € [0, 1] is shown in Figure 2.
One can see that the lowest energy state is indeed where ¥ = 1 and n = 1.

4. DISCRETIZATIONS

4.1. Weak form

Before writing out the weak form, we specify the boundary conditions to be of the homogeneous
Neumann form. Additionally, for ease of implementation, it is chosen here to split the fourth-order

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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u

Figure 2. Graph of homogeneous free energy: f (u) + y (u,n). (I' = xo = 0.25).

differential equation into two second-order differential equations:

uy =V (M, V) + vu for (x,¢) € 2 x(0,T]
oy = f' (1) —€>Au+ Dy y (u,n) for (x,1) € 2 x (0,T]

ny =V (M, Vu,) + yn for (x,1) € 2 x (0,7 (13)
Un = Dpy u,n)+8n for (x,¢) € 2 x(0,T]
Vu-n=Vn-n=Vyu, - n=Vu, -n=0 for(x,7) €dQ x(0,T]
u(x,0)=ug, n(x,0)=ngp forx € Q.

Proceeding formally by multiplying by a test function and integrating by parts, the following
weak form of (13) is obtained:
Find (u, iy, n, ty) € U such that

(ug,v) + (nr,z) + B (U, s 1y ) 5 (U, o, 2, hz)) =0 vV (v, Uy, 2, Uz) EV, (14)

where (-, -) is the appropriate duality pairing between u; and v and for n; and z and
B ((u, pus 1y pon) 5 (v, s 2, ) :[9 (=yu) vdx + /Q My V puy, Vo dx
[ = 10 = Dur ) s
—[ €2VuVi, dx —I—/ (—yn) z dx
Q Q

+/QMnV/,LnVZ dx +/Q (/L,, —Dpx(u,n)— S_In) Hzdx.
(15)
The well-posedness of the above weak formulation (15) is not considered here but will be studied
elsewhere [51].
4.2. Discrete-time, continuous-space schemes

In this section, a semi-implicit time-discretization scheme is proposed on the basis of the concept
that the free energy may be decomposed into the difference of two convex energies, that is,

E (u,n)=E; (u,n)— E, (u,n), (16)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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where both E. and E, are convex. That is, the energy can be seen as being composed of an expand-
ing part and a contracting part. The fundamental idea is to treat the contracting, more stable, part
implicitly and the expanding part explicitly. Schemes based on this fundamental idea form an attrac-
tive class of robust schemes for time integration for gradient flow systems, such as Cahn—-Hilliard
type problems. This general concept is not new, as it was discussed by Eyre in [52], and has been
utilized in many other papers such as [53, 54], but it must be reconsidered and reformulated for each
new form of the energy functional. Although such a splitting always exists, it is by no means unique
and the different forms may provide alternate benefits. For example, in this analysis, the splitting is
performed in such a way that the resulting system of equations is linear. In particular, the functions
are taken as follows:

2 2
E. (u,n) =/Q (fC (u) + < |Vu|2+xc (u,n) + Z—S)dx

2
(17
_ ar , € ) o« , n?
_/Q(Tu +?|Vu| —Xoun+§n +2—8)dx
—E, (u,n)=/ (fe () + ye (u,n) )dx
¢ (18)

1
= / (F (u4 —2ud + —uz) — gn2 ) dx,
Q 2 2

where « is a constant chosen larger than )(3 /(3I) to guarantee that for all yo and I" the convexity
will not be violated. In the later numerical examples, o = )((2) /(3I')40.1. These « terms cancel with
each other in the sum E, — E, and so are not actually being added to the free energy; rather, they
provide a convenient way to ensure convexity. It should also be noted that the splitting of f (1) will
only maintain the proper convexity for values of u in approximately [—0.55, 1.14]. This is generally
satisfied so long as y is not too much larger than I". A few examples are discussed later.

Lemma 4.1
Fundamental splitting inequality: Consider a domain Q and suppose (¢, V), (7,0) : Q% — R
are such that V¢ -n = V¢ -n = Vr-n = Vo -n = 0 on 9Q2. Consider the splitting of the energy £
in (4) as E = E. — E, as defined in (17) and (18) respectively. Then,
E (¢9’>”) —-E (7[’0-) < (D¢EC (¢’ W) _D¢E€ (7[,0’),¢ _ﬂ)L2
+ (DyEc (¢, ¥) = Dy Ee (7,0) .Y —0) 1

where D. denotes the variational derivative.

19)

Proof
Let Ec (¢, %) = [ ec (¢,0xp,0yp, V) dx. As ec (o), where a0 = (¢, dx¢p, 9,60, 9), is convex in

all of its arguments, the following statement holds:

ec (B) —ec () = Vgec () - (B —a) (20)
for any a and B € R*. Setting & = (¢, 8x¢,8y¢,1ﬂ) and B = (7'[, axn,ayn,o) and integrating
(20), it follows that

Eeroo)— Ec @) = [ ec®) dx— [ ot ax
Q Q

Z/QVaec () (B —a) dx

(21
= [ {0oec @ (= )+ 30, p6c @) @9 = 0,9)
+9,p€c () (E)y\ﬁ - 8y¢) + dyec (@) (0 — W)} dx.
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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Integration by parts leads to inequality

Ec (7T,O')—Ec (¢’1/f) = (D¢EC (¢,w)»77—¢)L2

(22)
+ (DWEC (¢’ w)’a _w)L2 .
A similar analysis on E,, but reversing the roles of & and B, results in
Ee(¢,1ﬂ)—Ee(7T,O)Z(D¢Ee(7f,(7),¢—f[)LZ (23)

+ (DwEe (”,U)sw _U)LZ .
Adding (22) and (23) yields

E(r,0)—E(¢.¥) = Ec(7,0) — Ec (m,0) — (Ec (¢, V) — Ee (¢, V)

= (DgEc (,9), 7 — ) >
+ (DyEc (9, ¥),0 —¥),»
+ (DyEe (m,0).¢ —7) ;5 (24)
+ (DyEe (7,0),% —0) ;>

= (DgEc (¢, %) — DyE, (7,0), 7w —¢) 2
+ (DyEc (9. ¥) = Dy Ee (w,0),0 =) 5.

O

In the spirit of the preceding lemma, the following semi-implicit scheme is proposed where s
denotes the time step size:

uk-i-l _uk =sV- (Muv/lu) + % (P (uk-i-l) 4+ P (uk)) (/:Ln _ﬂu)’

k+1_ k ~ $ k+1 k ~ ~ @5)
= sV (M Vi) = 5 (P () + P () (= ).
where [i,, and [i, are defined as
iy = fuc — Pue = Dy E¢ (uk—H’nk—H) -D,E, (uk, nk) s
(26)
n = fne — Pne = DpEe¢ (“k+1ank+l) - D,E, (uk, nk> .
Written in weak form, this is equivalent to
1
(uk+1 —uk, w) + s (M, Vi, Vw)—s (5 (P (uk+1) + P (uk)) (ftn — flw) ,w | =0,
(fows Hw) — (Dch uk+1 nk+l) - DyE, (Uk, ”k) s Mw ) =0,
(27)

Theorem 4.2

Discrete gradient stability: If the mobility functions M,, and M, are non-negative for all values of
u and n, and the quantities u, n, (4, and , are each continuous and differentiable, the time-stepping
scheme as defined by (25) and (26) has the following properties:

1. The scheme is unconditionally gradient stable.
2. It is first order accurate.
3. It is mass conserving in the sense of [, (u**! +n**1) dx = [, (u* + n*) dx.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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12 A. HAWKINS-DAARUD, K. G. V. D. ZEE AND J. T. ODEN

Proof

1. Using the fact that M,,, M, and P (u) are non-negative for all u and n, it follows from
Lemma 4.1 that

E(uk—i-l’nk-i-l)_E(uk’nk) < (Dch (uk+1’nk+1) — D,E, (uk’nk> k1 _uk)L2

4 (DnEc (uk-i-l’nk—i—l) — D,E, (uk,nk) k1 _nk)L2

— (ﬂu,v (M Vi) + % (P (uk+1) +P (uk)) (fin —ﬂu))

+ s(ﬂn, V-(M, Viin) — % (P (k1) + P (")) (G - /zu))

= —5 (Vtu, My Vi) — 5 (Y fin, MV i)
—5 (% (P (uk+1) + P (uk)) (fon — ) 5 fln — llu)

<0.
(28)
Thus,

E (uk+1,nk+1> <E (uk,nk>, (29)

implying that the scheme is unconditionally energy gradient stable. That is, the energy will
decrease at every time step independent of the step size.
2. Under sufficient smoothness, the following standard Taylor series expansions apply:

s du (tg41/2)

U (tg+1) =u (tk+1/2) + DT +0 (SZ)
=u (lk+1/2)
+ % (MyA gy (tkg172) + P (v (tk1/2)) (in (tk1172) = b (1 4172))) + O (57)
(30)
du (1
u (te) = u (tkv1/2) — %M +0(s?)
t
=u (lk+1/2)
s
—3 (MyuApi (tks172) + P (u (tk1/2)) (n (tkt172) = 1u (tk1172))) + O (57) .
(31
Taking the difference of these two equations gives
u (1) —u (t) = (My A pg (tk4172) 32)
+P (U (fk+1/2)) (Mn (lk+1/2) — Mu (fk+1/2))) +0 (SZ) .
Further,
d t
Muc (tk—i-l) = Hu,c (tk+1/2) + %—Mu’c gtk—H/z) + 0 (S2) s
(33)
d t
e 1) = e (1) — s S Uenirz) g (2),
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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Taking the difference, these last two equations gives

. s dpty (Te+1/2
Pu = fue (Te+1) — Rue (k) = Hu ([k+1/2) + E#
A similar result holds for ji,. So, rearranging terms and inserting these estimates for
P (tes1/2) and [y (f41/2) into (32),

u(terr) —u(lx) =s (MuA/lu +P (u (tk+1/2)) (ftn — llu)) +0 (32) . (35)

Finally, it can be shown in a similar manner that

+ 0 (s?). (34)

3P @) + P () = P (i (11172)) + 0 (7). (6)

Inserting this into (35) completes the proof.
3. Adding (27)a and (27)c and testing against the test functions w = 1 and z = 1 gives

/Q (uk+1 +nk+1) - (uk + nk) dx = 0. 37)

4.3. Fully discrete finite element approximations

The construction of fully discrete conforming finite element approximations of the system (15) is
now discussed. Such a formulation involves a discretization of the spatial variations of (i, iy, 1, ily)
keeping, for the moment, the time variations continuous in time.

Let 7" denote a member of a family of partitions of domain € into meshes of non-overlapping

convex finite elements Qj such that Q = Q’f? Qr and Qx N Q i =@, k # j.Each Q
is the image of a master element Q under an invertible (generally affine) map Fj. Define the

finite-dimensional subspaces of H' (2) and H{ () by
Shi= {vh e H' (Q):v|g, = Do F,L 1<k <N (h).de ]PK(E)} : (38)

and Sé‘ =8"n H} (), respectively. Here, PX (Q) is either the space of polynomials of degree
< K defined on the closure of 2 or the space of tensor products of polynomials of degree K on

the closure of €. With these notations and conventions in place, the semi-discrete approximation
u" = (uh,uﬁ,nh,uﬁ) 20, T] — Sh x Sh x Sh x S" is defined as follows:

(ur (), 9") + (0} (1), £") + B"(0);w") =0 vw!:= (" 0", (" ") € 8" x S" x 8" x ",
(39)
fora.e. t € (0, T). The initial conditions for u” and n” are set by u” (0) = Z” u¢, and n*(0) = 7" n,
where Z" : H'(Q) — S" is a suitable interpolation or projection.
Denote by {¢; (x)}lN=1 a set of basis functions of S" generated on a partition 77 by the finite

element approximations: Sh = span {¢; }. Then, each of the component approximations is of the
form

N N
W () =D w0 e (0, (%) =) i () ¢ (%)
i=1 i=1
v v (40)
") =D e (0, (X)) =Y (1) i (%)
i=1 i=1
Here, u; (t), pyi (t), n; (t), and u,; (t) are continuous functions in time. Upon introducing these
into (39), we obtain a system of nonlinear ODE in the unknown discrete variables, u; (), ty.i (¢),
n; (t), and w,; (t). The fully discrete system is thus created by the combination of the semi-implicit
time-stepping algorithm (25) with the mixed finite element approximation (39).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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14 A. HAWKINS-DAARUD, K. G. V. D. ZEE AND J. T. ODEN

5. NUMERICAL EXAMPLES

We begin with an example to illustrate the mass conservation property of the time-stepping algo-
rithm. For this example, we consider D= 1, M = 200, Pp = 0.1, yo = 0.05, 8§ = 0.01, ¢ = 0.005,
and I' = 0.045. The initial condition for the tumor is set as a small ellipse, and the nutrient is set to
the value 1, where Q = [—1, 1]. In Figure 3, the initial conditions of the tumor and the nutrient are
shown on the left and in the right the concentrations at a later time. Figure 4 shows the graph of the
total mass in the system over time, fQ n 4 ¢ dx, and the energy in the system. Together, Figures 3
and 4 illustrate the dynamics of the nutrient in the system converting into tumor in such a way as to

0.998
0.998

—0.998

0.485
I:oAaa
—0.484
—0.998 —0.483
—0.997 —0.482
0.997 —0.482
0.997 —0.481
[ oser 048
0.997

—0.48

0.997 -0.479

-0.997 }-0.479
Figure 3. Snapshots of simulation with pure Neumann boundary conditions and non-steady state nutrient
equation. Top row: tumor concentration at an earlier time (left) and a later time (right). Bottom row: nutri-
ent concentration at same time points. Note that the scale on the nutrient is drastically different at these

two points.
4.50E+00 2508402
4.00E400
3.50E+00 2.00E+02
E 3.00E400 - z
ﬁ- 2.50E400 & 1508402
c
é e §1.oos+oz
S 1.50E+00 k
1.00E+00 - < o0es01
5.00E-01
0008400 o T 0.00E+00 -
1 1001 2001 3001 4001 5001 6001 7001 8001 900110001 1 1001 2001 3001 4001 5001 6001 7001 8001 9001
Time Step Time Step

Figure 4. Right: plot of mass in system, [q, u + n dx, at each time step. Left: plot of total energy in system
as given by (4). It is easily seen that the mass remains constant and the system energy is non-increasing.
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Figure 5. L? error in solution at # = 1: plot of L2 error against a reference solution obtained with
s = 0.000078125. A line with the expected slope of 1 is shown above the points.

conserve the total mass and that the energy of the system is non-increasing throughout this process.
Experimentally computed convergence rates are depicted in Figure 5.

In the preceding example and sections, an analysis is described for a parabolic system of equa-
tions involving two unknowns with homogeneous Neumann boundary conditions. However, in the
spirit of tumor growth modeling, for the numerical examples, two small modifications are made to
this system regarding the nutrient-rich extracellular water. Namely, the nutrient concentration will
be taken as quasi-steady, that is, 7, = 0 and Dirichlet boundary conditions will be imposed. These
are reflective of the facts that the diffusion of nutrient within the domain happens on a much faster
time scale than that of the tumor growth and movement and that the nutrient concentration will be at
normal levels far from the tumor because of a continuous external supply. One should note that the
assumed quasi-steady behavior of the nutrient-rich extracellular water corresponds to the limiting
behavior of the fully unsteady system. Additionally, the mobilities are taken as follows: M, = Mu?
and M, = 8D, where M and D are positive constants. The strong form of the system is thus written
as follows.

Find v and n such that

i :V-(MuZV(f’(u)—ezAu—)(gn))+yu for (x,1) € Q2 x (0,T]

0=v.(315v(5—1n—;(0u))+y,, for 1) €QxO0.T] (4
Vu-n=0, n=1 for (x,1) € Q2 x (0, 7]
u(x,0) =up for x € Q.

Because of the added Dirichlet source of nutrients, one can no longer expect dissipation of the
free energy as it is no longer an isolated system. However, it is not unreasonable to expect that a
gradient-stable scheme, developed for an isolated system, will perform well in the Dirichlet case as
well. Naturally, the Dirichlet boundary conditions are also expected to alter the mass conservation
property.

As a first example, a two-dimensional simulation is considered on the domain = [0, 25 .6]2 with
a tumor growing in a moderately oxygenated region, D =1, with a low proliferation rate Py = 0.1.
As the initial condition, the tumor is taken to occupy the ellipsoidal domain

{(x, y):(x—12.8)% /2.1 + (y — 12.8)> /1.9 < 1} .

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:3-24
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16 A. HAWKINS-DAARUD, K. G. V. D. ZEE AND J. T. ODEN

Figure 6. Adaptive meshing: illustration of the mesh adaptivity for the simulation shown in Figure 7. The
patch-recovery method is used for the adaptive algorithm [55,56].

1.01
0.905
—0.803
—0.701
—0.598
- 0.498
—0.393
—0.291
0,189

0.0863

-0.016

Figure 7. Example simulation: snapshots are shown at t = 20,40,60, and 80 of a simulation with
I' =0.045, ¢ =0.005, yo = 0.05,§ = 0.01, Pp = 0.1, M =200, and D = 1.
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Key to all examples are the parameters used in the free energy; these are taken to be as follows: § = 0.01,
I' = 0.045, € = 0.005, and yo = 0.05. Rectangular mesh with C° bilinear shape functions are used.

Because of the need to resolve the interface while retaining the ability to perform computations in a
timely manner, the patch-recovery algorithm is used for adaptive mesh refinement [55, 56]. This method
utilizes patches of elements to estimate, via a L2 projection, the value of the derivative of the solution at
the nodal points ¢ *. This patch-recovery provides a more accurate approximation to the derivative at the
nodes than the finite element solution’s derivative o. Thus, it can be used in calculating the error indicators
e = 0™ — o to be used in mesh refinement. It is seen that this algorithm performs well at adapting appropri-
ately around the interface as seen in Figure 6. The coarsest level of resolution on the mesh has 7 = 25.6/64
and the finest level has &7 = 25.6/2048. It should also be noted that there is at most one hanging node per
element side.

35000 T T T T T T T

30000 —

25000

20000

Energy Value

15000

10000

5000

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000
Time Step

Figure 8. Simulation energy profile: shown here is the evolution of the energy value for the simulation
shown in Figure 7 corresponding to (4) as a function of time step.

Figure 9. Evidence for spatial accuracy: on the top row, the solution at # = 20 is shown for the same set of
parameters and initial conditions as in Figure 7, but with one mesh at a finer resolution than the other. The
corresponding final meshes are shown below the solutions.
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Figure 7 shows the evolution of the tumor concentration at times ¢ = 20, 40, 60, and 80 having been
calculated with a time step size s = 0.01. The tumor starts growing increasingly more ellipsoidal at first
and eventually begins forming buds growing toward the higher levels of nutrient. The energy value (4) as a
function of time step is also shown in Figure 8.

Also considered in this section is the order of accuracy of the time-stepping algorithm. The simulation was
run for many different time step values, s = 0.01, 0.005, 0.0025, 0.00125, 0.000625, and 0.0003125. The
solution at # = 1 was then compared with a reference solution computed with s = 0.000078125 to compute
the L2 error. As the scheme was shown to have a local truncation error of O (52), the global error is expected
to be proportional to the time step size s. The indicated convergence order of the points shown is about 1, as
expected (see Figure 5). Spatial accuracy is also considered by solving the same problem with s = 0.01, but
on a finer mesh. While the mesh adaptivity is still used, the coarsest level on the finer mesh is &7 = 128/25.6.
The solution at t = 20 is shown in Figure 9 along with the final mesh. Although the qualitative similarity
between these two solutions is not a proof of accuracy, they do provide support for the hypothesis.
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Figure 10. Effects of parameter yq: illustrated here are the effects of different values of yo when I" = 0.045

and € = 0.005 are held constant. In the first row, yo = 0.005; in the second row, yo = 0.05; and in the third
row, xo = 0.5. In the first column, § = 0.1; and in the second column, § = 0.01.
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5.1. Parameter study

As can be seen in the derivation of this model, it is ultimately the form of the free energy that drives the
dynamics of the model. When looking at the chosen form, one can deduce that there are three terms of
interest all in competition: the quartic, double-well term rendering the solution to prefer values of u = 0
and u = 1; the surface tension term involving gradients of u penalizing the length of the interface; and the
chemotaxis term involving the interaction between the two species u and n, which drives the tumor concen-
tration toward the regions of higher nutrient levels. Throughout this section, the time step used is s = 0.01
and the tumor is taken to occupy the ellipsoidal domain {(x, y):(x— 12.8)2 /214 (y—12.8)/1.9 < 1} as
the initial condition.

Figure 10 demonstrates the effect of holding € = 0.005 and I" = 0.045 constant and letting yo vary over
different values, specifically yo = 0.005,0.05,0.5. As the parameter § is varying the degree of dependence

(a)...
(b).l-
(c)-‘.‘
(d)

Figure 11. Effects of parameter combinations: in all simulations € = 0.005 and I" = 0.045. Snapshots in

the first column are at # = 3, in the second are at t = 6, and in the third are at 7 = 9. (a) M = 50, D= 1.1,

Po = 0.85, yo = 0.067. (b) M = 86.6, D = 0.2, Py = 0.5, yo = 0.067. (c) M =175, D = 1.1, Py = 0.14,
x0=0.135.(d) M =290, D = 1.1, Py = 0.5, 0 = 0.067.
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the nutrient species has on the parameter yq, we also show the simulation outcomes for § = 0.1 and 0.01.
The images seen in Figure 10 are all at 1 = 12.

One can see that when the ratio of yo to I" is small, the tumor remains circular and values of u remain
very close to 0 and 1. However, when yo and I" are of approximately equal magnitude, while the tumor
still takes on values of about 0 and 1, it is now starting to go into a stronger ellipse. Finally, when yg is
much larger than I" and €, one can see that u no longer takes on values close to 0 and 1. Rather, the tumor
immediately breaks apart and begins moving quickly toward the regions with higher nutrients. Further, it is
only when yo has this very strong affect that the value of § seems to make a difference in the simulation
outcome.

~0z13
nnnnn

skl
sl
N )

Figure 12. Effects of parameter combinations on nutrient: snapshots of nutrient profiles corresponding to

tumor profiles in Figure 11. Snapshots in the first column are at t = 3, in the second are at t = 6, and in

the third are at 7 = 9. (a) M = 50, D = 1.1, Py = 0.85, 0 = 0.067. (b)M =86.6, D =02, Py =0.5,

xo = 0.067. (¢) M =175, D = 1.1, Py = 0.14, xo = 0.135. (d) M =290, D = 1.1, Py = 0.5,
xo = 0.067.
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Also studied here are the effects of different values of Py, M s ﬁ, and yo. Figure 5, 11 and 12 illustrates
different behaviors seen for the tumor and nutrient concentrations, respectively. In this figure, the rows cor-
respond to different parameter values and the columns correspond to snapshots att = 3,7 = 6, and t = 9.
In the first row, the proliferation parameter and the nutrient diffusion parameter are relatively large; this
combination, along with a low mobility, acts as a stabilizing force keeping the tumor compact. In the second
row, the nutrient diffusion coefficient is small, resulting in lower levels of nutrient within the tumor region.
This causes the tumor to form narrow protrusions moving toward the higher levels of oxygen. In the third
row, the dominating parameter is yo. Thus, even though there is a relatively large amount of oxygen within
the tumor (13 = 1.1), all the tumor cells move quickly toward the regions with higher nutrient levels. In the
fourth row, despite the fact D = 1.1 and thus there is a relatively high concentration of nutrient in the tumor,
the mobility is also large, effectively allowing the tumor cells to move more quickly toward to nutrient. The
evolution of the energy value is also shown for each of these simulations in Figure 13. It is observed that in

Energy Value for M=50, D=1.1, P=0.85, chi=0.067 Energy Value for M=86.6, D=0.2, P=0.5, chi=0.067
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Figure 13. Energy profiles for parameter study: each plot shows the evolution of the energy value as a
function of time step for the different simulations shown in Figure 11. The energy appears to always be
non-increasing except for a few locations where simulation restarts occurred, causing a numerical artifact.

Figure 14. Three-dimensional simulation. Left: three-dimensional computational domain. A cutplane of the
three-dimensional mesh intersecting the tumor is shown in the center at # = 1.6, and the same cutplane with
the u = 0.5 isosurface plotted on top of it is shown on the right.
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each simulation, the energy is non-increasing except for a few locations where the simulation was restarted.
Thus, these apparent blips can be attributed to numerical artifacts.

Cristini et al. performed a linear stability analysis on a similar set of equations in [46] predicting similar
results. Although these equations did not interpret the nutrient as a component of the mixture within the
framework of mixture theory, it is expected that the same type of analysis on this current set of equations
would result in very similar conclusions. The results seen in Figure 11 support this hypothesis.

5.2. Three-dimensional example

The choice to use the finite element method was made so that computations could be performed on more
realistic biological domains, such as the prostate. Although this capability is not utilized throughout the rest
of this document, the fact is illustrated in this section. As the three-dimensional case is even more computa-
tionally demanding, the same adaptivity regime is used as in the two-dimensional examples. A computational
domain resembling a prostate is considered and is shown on the left in Figure 14. A tumor is seeded, not
quite centered, within the prostate and is allowed to grow under moderate oxygenation conditions. The time

step size is taken as s = 0.01. The parameters are taken as follows: M = 10, Po = 0.1, D = 1, yo = 0.4,
8 = 0.01, ¢ = 0.01, and I = 0.25. The center and right images in Figure 14 shows a cutplane of the
three-dimensional domain with an illustration of the mesh at t = 1.6.

6. CONCLUSIONS

In this paper, a four-species model is developed consisting of a tumor cell species, a healthy cell species,
and two extracellular water species, one nutrient rich and one nutrient poor. This is the first tumor growth
model based on the continuum theory of mixtures to include the oxygen species within the mixture and to
present simulations for non-regular three-dimensional geometries. The model is shown to be thermodynam-
ically consistent, and a time-stepping algorithm is paired with a mixed finite element spatial discretization to
provide numerical examples illustrating the range of solutions that these equations can produce for various
parameter values. A three-dimensional example is shown to demonstrate the capability of the finite element
discretization for performing on general three-dimensional meshes.
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