


Preface

The recent rapid progress in multiscale computations has been facilitated by mod-
ern computer processing capability and encouraged by the urgent need to accurately
model multiscale processes in many applications. For further progress, a better un-
derstanding of numerical multiscale computations is necessary. This understanding
must be based on both theoretical analysis of the algorithms and on specific features
of the different applications.

We are pleased to present 16 papers in these proceedings of the workshop on Nu-
merical Analysis and Multiscale Computations at the Banff International Research
Station for Mathematical Innovation and Discovery, December 6-11, 2009. The pa-
pers represent the majority of the presentations and discussions that took place at
the workshop. A goal of the workshop was to bring together researchers in numer-
ical analysis and applied mathematics with those focusing on different applications
of computational science. Another goal was to summarize recent achievements and
to explore research directions for the future. We feel that this proceeding lives up to
that spirit with studies of different mathematical and numerical topics, such as fast
multipole methods, homogenization, Monte Carlo techniques, oscillatory solutions
to dynamical systems, stochastic differential equations as well as applications in di-
electric permittivity of crystals, lattice systems, molecular dynamics, option pricing
in finance and wave propagation.
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Håkon Hoel, Erik von Schwerin, Anders Szepessy, and Raúl Tempone
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Analysis of an Averaging Operator for
Atomic-to-Continuum Coupling Methods by the
Arlequin Approach

Serge Prudhomme, Robin Bouclier, Ludovic Chamoin, Hachmi Ben Dhia, and J.
Tinsley Oden

Abstract A new coupling term for blending particle and continuum models with
the Arlequin framework is investigated in this work. The coupling term is based
on an integral operator defined on the overlap region that matches the continuum
and particle solutions in an average sense. The present exposition is essentially the
continuation of a previous work (Bauman et al., On the application of the Arlequin
method to the coupling of particle and continuum models, Computational Mechan-
ics, 42, 511–530, 2008) in which coupling was performed in terms of an H1-type
norm. In that case, it was shown that the solution of the coupled problem was mesh-
dependent or, said in another way, that the solution of the continuous coupled prob-
lem was not the intended solution. This new formulation is now consistent with
the problem of interest and is virtually mesh-independent when considering a par-
ticle model consisting of a distribution of heterogeneous bonds. The mathematical
properties of the formulation are studied for a one-dimensional model of harmonic
springs, with varying stiffness parameters, coupled with a linear elastic bar, whose
modulus is determined by classical homogenization. Numerical examples are pre-
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sented for one-dimensional and two-dimensional model problems that illustrate the
approximation properties of the new coupling term and the effect of mesh size.

1 Introduction

Development of multiscale methods for the simulation of material responses is an
important research area in which one of the objectives is to combine models so as to
capture only the relevant scales in the prediction of complex phenomena. The goal
in this work is to develop a new multiscale method to predict the static response
of materials that can be described by particle models based on harmonic potentials.
Multiscale modeling is commonly classified into information passing modeling, in
which information computed at small scales is used in large-scale models, such as in
the Heterogeneous Multiscale method [20, 21], and concurrent modeling, in which
two or more models are concurrently used to capture the various scales inherent
in a given physical phenomenon, see e.g. [22, 23]. We are interested here in con-
current modeling for the simulation of problems that involve both a particle model
and a continuum model. The major difficulty in this case is to consistently blend
the two models so as to provide accurate approximations of the solution to the full
particle model, viewed as the base model but often intractable for large simulation
domains. Several methods have been proposed over the years, such as the quasi-
continuum method [28, 25, 17, 18, 19], the handshake method [14], or the bridging
scale approach [29], to name a few. An alternative approach based on the Arlequin
framework [8, 9, 11, 12, 13] has recently been proposed in [5, 10, 26]. The Ar-
lequin framework involves an overlap region in which the energies of the two mod-
els are combined by a partition of unity and where the two solutions are matched
by introducing Lagrange multipliers. The bridging domain method of Belytschko
and Xiao [7] is in many ways similar to the Arlequin method and was numerically
investigated in [30]. A related methodology has also been proposed in [24, 2, 3] in
which forces, rather than energies, are blended together. The method proposed in [5]
was further employed to develop an adaptive procedure based on goal-oriented error
estimates (see [4, 6, 27]) to control the position of the overlap region so as to deliver
estimates of quantities of interest within prescribed tolerances.

Well-posedness of the Arlequin problems for the continuous and finite element
formulations was investigated in detail in [5] in the case of a one-dimensional model
of harmonic springs, with periodically varying stiffness coefficients, coupled with
a linear elastic bar. Couplings of the displacement fields obtained from the particle
and continuum models were defined based on an L2-norm or an H1-norm. It was
then proved that the continuous formulation and corresponding discretization of the
continuous formulation, by the finite element method for instance, yield well-posed
problems only in the H1-norm case. However, it was recognized at that time that
the solution of the coupled problem was mesh-dependent in the sense that the finite
element approximation of the continuum model would lock on the particle solu-
tion on the overlap region when elements for the Lagrange multiplier were chosen
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Fig. 1 Solutions of the coupled problem based on the Arlequin framework as proposed in [5] using
either a coarse (left) or fine (right) finite element discretization of the continuum model. “Coarse”
and “fine” here are defined with respect to the equilibrium length between particles. The coupling
term is based on an H1-type norm. One observes that the continuum solution on the overlap region
locks onto the particle solution in the case of the fine mesh for the Lagrange multiplier and FE
solution and thus fails to reflect the large-scale behavior of the displacement field.

equal to or smaller than the distance between particles. This issue could be circum-
scribed by selecting the mesh size for the Lagrange multiplier to be at least larger
than the size or a multiple of the size of the representative cell defined to calibrate
the parameter(s) of the continuum model, in which case the method would produce
satisfactory results. If elements were set too small for the Lagrange multiplier, the
continuum solution would fail to reproduce the large-scale behavior of the displace-
ment fields and would pollute the whole solution of the coupled problem. These
effects are illustrated in Fig. 1. We propose here a new formulation of the coupling
term based on an integral operator that matches the continuum and particle solu-
tions in an average sense. The advantage of this new formulation is that it yields a
mesh-independent displacement field. We show in this paper that this new Arlequin
formulation yields a well-posed coupled problem and illustrate its efficiency via
simple one-dimensional and two-dimensional problems.

The paper is organized as follows: in Sect. 2, we present the particle model and
the continuum model and show how the latter is derived from the former by simple
homogenization. We introduce the averaging operator and describe the new coupling
formulation based on the Arlequin framework in Sect. 3. We show that the coupled
problem is well-posed in Sect. 4 and describe the corresponding finite element for-
mulation in Sect. 5. One-dimensional and two-dimensional numerical experiments
are presented in Sect. 6 and are followed by conclusions in Sect. 7.
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2 Particle and Continuum Model Problems

2.1 Particle Model

We consider here a system of n+1 particles assembled in a one-dimensional chain
and connected by n covalent bonds modeled in terms of harmonic springs with stiff-
ness ki > 0 and equilibrium length li, i= 1, . . . ,n. The initial positions of the particles
are given by xi and the system undergoes displacements yi when subjected to force f
applied at xn (see Fig. 2). We also suppose that the particle on the left end is fixed,
i.e. y0 = 0. The potential energy of such a system is given by

Ed(y) =
1
2

n

∑
i=1

ki (yi− yi−1)
2− f yn. (1)

Introducing the vector space W0 = {z∈Rn+1 : z0 = 0} of vectors z= [z0,z1, . . . ,zn]
T ,

the equilibrium state y ∈W0 of such a system is obtained as a minimizer of the
potential energy, i.e.

y = argmin
z∈W0

Ed(z). (2)

In other words, the solution w of above minimization problem is a stationary point
of Ed(z) and satisfies

lim
θ→0

1
θ
(Ed(y+θz)−Ed(y)) = 0, ∀z ∈W0.

It follows that Problem (2) can be recast in variational form as

Find y ∈W0 such that B(y,z) = F(z), ∀z ∈W0, (3)

where the bilinear form B(·, ·) and linear form F(·) are defined as:




B(y,z) =
n

∑
i=1

ki (yi− yi−1)(zi− zi−1) ,

F(z) = f zn.

(4)

In this paper, we are interested in materials in which the stiffness ki may vary
from one bond to the other. Nevertheless we suppose that the distribution of the
bonds are such that the large scales of the material response could be accurately
described by a continuum model over representative volume elements (RVE). For
instance, in the case of periodic distributions of the bond stiffness ki, the represen-
tative volume element is simply chosen of the same length as one period of the
distribution. More complex distributions, for example random, could also be con-
sidered (see for example [15]) but the size of the RVE would be unknown a priori.
For simplicity in the presentation, we will not present here cases where the energy
potentials involve next-nearest neighbors. This has been partially treated in [16].
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Fig. 2 System of n+1 particles connected with n harmonic springs.
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Fig. 3 Elastic bar of length L with modulus of elasticity E and subjected to traction T .

2.2 Continuum Model

If one is interested in large-scale features of the response (in the sense that the scale
of those features would be much larger than the representative length-scale of the
particle system, e.g. maxi(li)), a possible approximation of the particle model can be
obtained by employing a linearly elastic continuum model. In this case, the system
of springs is replaced by an elastic bar with modulus E and of length L; see Fig. 3.
Moreover, the bar is subjected to traction T = f/A at the right end, A being the
cross-sectional area of the bar, and is kept fixed at x = 0. Displacement in the bar is
denoted by the field u. The total energy of the system is then given by

Ec =

ˆ L

0

A
2

σ(u)ε(u) dx−AT (L)u(L), (5)

where σ(u) and ε denote the stress and strain in the bar. Here the material is sup-
posed to obey Hooke’s law, σ = Eε , with E constant. Using ε = u′, we have

Ec =

ˆ L

0

AE
2
(
u′
)2 dx−AT (L)u(L). (6)

As with the spring model, the equilibrium state for the continuum model is found
by minimizing the energy (6). This minimization yields the following problem:

Find u ∈V such that:
ˆ L

0
Eu′v′dx = T (L)v(L) ∀v ∈V, (7)

where V is the space of trial and test functions, i.e. V = {v ∈ H1(0,L) : v(0) = 0}.
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Fig. 4 Homogenization of spring model on a representative cell.

2.3 Calibration of Continuum Model

Starting with the original particle model, it is possible to determine a compatible
continuum model by properly calibrating the elastic modulus. Following classical
homogenization approaches, the main idea here is to introduce a representative vol-
ume element, that, if subjected to a given loading, should provide the same global
response at equilibrium, i.e. the same global displacement, when using either the
particle or continuum model.

To illustrate the concept, we consider here the simple case of a representative cell
consisting of a pair of springs with properties (k1, l1) and (k2, l2), as shown in Fig. 4.
We assume that the system is held fixed on the left-hand side and is subjected to the
force F to the right, such that the displacement in the first and second springs are u1
and u2, respectively. Suppose now that we can replace the system of two springs by
a unique spring with properties (K,L) such that L = l1 + l2. If subjected to the same
loading conditions, we would observe the global displacement U = u1 + u2. From
constitutive laws, we also have the relations:

F = KU = k1u1 = k2u2, (8)

so that
F
K

=U = u1 +u2 =
F
k1

+
F
k2
, (9)
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which implies that:

1
K

=
1
k1

+
1
k2
, i.e. K =

k1k2

k1 + k2
. (10)

Finally, replacing the spring model by linear elasticity, we would obtain the follow-
ing Young’s modulus:

EA = KL =
k1k2

k1 + k2
(l1 + l2), (11)

where A is the cross-sectional area of the equivalent bar. For simplicity, we take A
equal to unity.

Remark 1. The above relation can naturally be extended to the case of one RVE
made of N springs. In this case, we would have:

EA =

[ N

∑
j=1

1/k j

]−1 N

∑
i=1

li. (12)

It is then straightforward to show that:

EA =
N

∑
i=1

[ N

∑
j=1

ki/k j

]−1

kili ≥ min
1≤i≤N

(kili)
[ N

∑
i=1

1/ki

][ N

∑
j=1

1/k j

]−1

= min
1≤i≤N

(kili).

(13)
In the same manner, we have:

EA =
N

∑
i=1

[ N

∑
j=1

ki/k j

]−1

kili ≤ max
1≤i≤N

(kili)
[ N

∑
i=1

1/ki

][ N

∑
j=1

1/k j

]−1

= max
1≤i≤N

(kili).

(14)
In other words, with A = 1, one gets:

min
1≤i≤N

(kili)≤ E ≤ max
1≤i≤N

(kili), (15)

i.e. the value of E is necessarily larger than the minimal value of kili and smaller
than the maximal value of kili.

Remark 2. Starting from the relation U = u1 +u2, we can write:

U
L

L =
u1

l1
l1 +

u2

l2
l2. (16)

We recognize in above equation the strains ε̄ =U/L, ε1 = u1/l1, ε2 = u2/l2, which
are constant in each spring. Therefore, we can derive the following relationship:

ˆ
RVE

ε̄dx =
ˆ

RVE
εdx, (17)
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Fig. 5 Arlequin model that replaces the particle model with a combined particle and spring model.

where ε = ε1 in the first spring and ε = ε2 in the second spring. This relation shows
that the averaged strain over the representative volume element is the same whether
it is computed from the particle model or the continuum model. This relationship
will motivate our new formulation of the coupling method based on an averaging
operator.

3 Coupling Method with Averaging Operator

We recall that our objective is to develop a coupling method to blend the particle
model with the continuum model in Ω = (0,L). We assume that the continuum
model is selected in region Ωc =(0,xb) while the particle model is chosen in domain
Ωd = (xa,L) such that Ω =Ωc

⋃
Ωd and Ωo =Ωc

⋂
Ωd = (xa,xb), |Ωo| 6= 0. We will

refer to Ωo as the overlap region. We denote by |Ωc|, |Ωd |, and |Ωo|, the length of
domains Ωc, Ωd , and Ωo, respectively. In doing so, the particle model is reduced
from n+1 to m+1 particles, supposedly with m� n.

Remark 3. We assume in this work that there are mo+1 particles lying in the overlap
region and that there is one particle located at xa and one at xb as shown in Fig. 5. The
restrictive assumption that is made here is that the overlap region exactly coincides
with a given set of complete springs. In other words, the domain Ωo is not allowed to
only cover part of a spring. However, the domain Ωo can be made of one or several
RVE’s.

3.1 Energy of the Coupled System

The Arlequin method is an energy-based method in which the energy contributions
from two models are blended together via the partition of unity:

αc(x)+αd(x) = 1, ∀x ∈Ω ,
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with

αc(x) =

{
1, ∀x ∈Ωc \Ωo,

0, ∀x ∈Ωd \Ωo,
αd(x) =

{
0, ∀x ∈Ωc \Ωo,

1, ∀x ∈Ωd \Ωo.

Weight coefficients with respect to each bond are also introduced as:

αi =
1
li

ˆ xi

xi−1

αd(x) dx = 1− 1
li

ˆ xi

xi−1

αc(x) dx, i = 1, . . . ,m. (18)

In the overlap region Ωo, the coefficient αc (and thus αd) can be chosen in different
ways. Some intuitive and apparently attractive candidates are for example, the con-
stant, linear, or cubic functions, as shown in Fig. 6. For example, the cubic function
can be explicitly written as:

αc(x) =
[

xb− x
xb− xa

]2[
1+2

(x − xa)

(xb− xa)

]
, ∀x ∈Ωo. (19)

The total energy of the molecular system can now be replaced by:

Ê (u,w) = Êc(u)+ Êd(w),

where

Êc(u) =
1
2

ˆ
Ωc

αc(x)E
(
u′
)2 dx,

Êd(w) =
1
2

m

∑
i=1

αiki (wi−wi−1)
2− f wm,

(20)

with f , once again, being the external force applied at L, i.e. to the particle indexed
by m.
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3.2 Averaging Coupling Operator

The objective being to properly couple the two models, the displacements u and w
need to be matched with respect to some appropriate measure. In order to be able
to compare u and w on Ωo, the displacement vector w needs first to be converted
into a function in H1(Ωo). A possible approach is to introduce an interpolation
operator Πo : Rmo+1→ H1(Ωo), which associates with each displacement vector w
(restricted to the particles in Ωo) the piecewise linear interpolant Πow on Ωo. Other
interpolation schemes are imaginable, but for the sake of simplicity, we shall only
consider the linear interpolant in the present work. We also introduce the restriction
operator Ro : H1(Ωc)→ H1(Ωo) that restricts continuum displacements u to Ωo.

In our previous work [5], we realized that, when using the finite element method
for the discretization of the continuum model, matching the displacements Rou and
Πow or/and the associated strains (Rou)′ and (Πow)′ at every point on the overlap
region yielded erroneous results as soon as the mesh size was chosen smaller than
the size of the representative volume element. In that case, the solution of the con-
tinuum model would indeed lock itself to the solution of the particle model. Our
objective in this work is to define a formulation that is independent of the finite
element mesh size.

In view of homogenization, the continuum model is derived by matching strain
averages computed from the two models. An obvious choice is then to match the
average of (Rou)′ with the average of (Πow)′ over a representative volume element,
and in order to constrain rigid body motions, to match the average of the displace-
ments Rou and Πow over the overlap Ωo. Definition of these averages is straight-
forward except at the boundaries of Ωo. We thus propose to define the averaging
operators as follows, where the size of the RVE is denoted by ξ (see Fig. 7). Let
v ∈ H1(Ωo), then

v∗(x)=





1
ξ

ˆ xa+ξ

xa

v′dy =
v(xa +ξ )− v(xa)

ξ
, ∀x ∈ [xa,xa +ξ/2],

1
ξ

ˆ x+ξ/2

x−ξ/2
v′dy =

v(x+ξ/2)− v(x−ξ/2)
ξ

, ∀x ∈ (xa +ξ/2,xb−ξ/2),

1
ξ

ˆ xb

xb−ξ

v′dy =
v(xb)− v(xb−ξ )

ξ
, ∀x ∈ [xb−ξ/2,xb].

(21)
We also introduce the average1 of a function v ∈ H1(Ωo) on Ωo as:

v =
1
|Ωo|

ˆ
Ωo

vdx. (22)

1 In what follows, averages on Ωo will always be denoted by a bar over the corresponding quantity.
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Notice that the averaging operators (·)∗ and (·) are linear operators. As a result,
the mismatch on overlap Ωo between the solutions of the continuum and particle
models can be measured as:

M (Rou−Πow) = β0
∣∣Rou−Πow

∣∣2 +β1

ˆ
Ωo

∣∣(Rou)∗− (Πow)∗
∣∣2dx

= β0
∣∣(Rou−Πow)

∣∣2 +β1

ˆ
Ωo

∣∣(Rou−Πow)∗
∣∣2dx,

(23)

where (β0,β1) are non-negative weight parameters chosen such that the terms in
above expression are of the same unit or dimensionless.

Remark 4. We readily observe that M defines a seminorm on H1(Ωo) as it is
positive but not necessarily definite. Indeed, there exist non-vanishing functions
µ ∈H1(Ωo) such that M (µ) = 0. Such functions are simply those that satisfy µ = 0
and µ∗(x) = 0, ∀x ∈Ωo. Let us introduce the subspace M0 of H1(Ωo) as:

M0 = {µ ∈ H1(Ωo) : µ = 0 and µ
∗(x) = 0, ∀x ∈Ωo}. (24)

Functions in M0 are those that are continuous with zero-mean and that are ξ -periodic
on Ωo. Let us restrict ourselves to the case where Ωo exactly covers one RVE. Func-
tions in H1(Ωo) can be represented in terms of Fourier Series as:

µ(x) = a0 +a1x+
∞

∑
k=1

bk sinkπ
x− xa

ξ
, (25)

where a0, a1, and bk are real numbers. Note that the family of functions sinkπ(x−
xa)/ξ is linearly independent and complete in H1

0 (Ωo) [1]. We then have two cases:

1. For k even, we observe that the functions µ(x) = sinkπ(x− xa)/ξ have all zero
mean, are ξ -periodic, and satisfy µ(xb) = µ(xa) = 0.

2. For k odd, we can show that the functions:

µ(x) = sin
(

kπ
x− xa

ξ

)
− 2

kπ
(26)

have zero mean and are ξ -periodic. However, these functions do not necessarily
vanish at the endpoints of Ωo.

Therefore, the functions µ0 in M0 can be represented by linear combinations in the
form:

µ0(x) =
∞

∑
k=1

bk

[
sin
(

2kπ
x− xa

ξ

)]
+ ck

[
sin
(
(2k−1)π

x− xa

ξ

)
− 2/π

(2k−1)

]
.

(27)
It follows that any function in H1(Ωo) can be expanded as:

µ(x) = a0 +a1x+µ0(x), (28)
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Fig. 7 Domain for the definition of the averaging operator.

where a0 and a1 are real numbers (that may take different values than those in (25))
and µ0 is given by (27). Note that M now defines a norm on the quotient space
H1(Ωo)/M0.

3.3 Formulation of the Coupled Problem

Let Vc =
{

v ∈ H1(Ωc) : v(0) = 0
}

and Vd =
{

z ∈ Rm+1
}

be the vector spaces of
test functions for the continuum and discrete models, respectively. The norms on Vc
and Vd are chosen as:

‖v‖Vc =

√ˆ
Ωc

E|v′|2dx and ‖z‖Vd =
√
|z|2Vd

+δ |z|2, (29)

where we have introduced the seminorm | · |Vd on Vd and average of z on Ωo as:

|z|Vd =

√
m

∑
i=1

ki(zi− zi−1)2 and z =
1
|Ωo|

mo

∑
i=1

li
zi + zi−1

2
= Πoz, (30)

with δ a dimensionally consistent weighting constant that we define below. The
vector space for the Lagrange multipliers and associated norm are given as M =
H1(Ωo)/M0 and:

‖µ‖M =

√
β0|µ|2 +β1

ˆ
Ωo

|µ∗|2dx =
√

β0|µ|2 +β1‖µ∗‖2
L2(Ωo)

, (31)

with associated inner product:
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(λ ,µ)M = β0λ µ +β1

ˆ
Ωo

λ
∗
µ
∗dx. (32)

We also define the bilinear form b(·, ·) on M×X such that:

b(µ,V ) = (µ,Rov−Πoz)M, (33)

where, for the sake of simplicity in the notation, we have introduced the product
space X = Vc×Vd with pairs of X denoted, for example, as U = (u,w), V = (v,z),
and with norm:

‖V‖X =
√
‖v‖2

Vc
+‖z‖2

Vd
. (34)

We now define the kernel space of b(·, ·) as the subspace of X such that:

X0 = {V ∈ X : b(µ,V ) = 0, ∀µ ∈M} . (35)

The coupled problem consists in finding U ∈ X such that U minimizes the total
energy and satisfies the constraint ‖Rou−Πow‖M = 0, i.e.

Ê (U) = Êc(u)+ Êd(w) = min
V∈X

‖Rov−Πoz‖M=0

(
Êc(v)+ Êd(z)

)
. (36)

The minimization problem (36) can be recast into the following saddle point prob-
lem:

Find U ∈ X , λ ∈M such that L(U,λ ) = inf
V∈X

sup
µ∈M

L(V,µ) , (37)

where the Lagrangian reads:

L(V,µ) = Êc(v)+ Êd(z)+(µ,Rov−Πoz)M =
1
2

a(V,V )− l(V )+b(µ,V ) , (38)

with

a(U,V ) =

ˆ
Ωc

αcEu′v′dx+
m

∑
i=1

αiki (wi−wi−1)(zi− zi−1),

l(V ) = f zm.

(39)

The coupled problem can then be recast in mixed form as:

Find U ∈ X , λ ∈M such that:
a(U,V )+b(λ ,V ) = l(V ), ∀V ∈ X ,

b(µ,U) = 0, ∀µ ∈M.
(40)

We analyze below the mathematical properties of this coupled problem.
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4 Mathematical Analysis of the Coupling Method

The main objective of this section is to show that Problem (40) is well-posed for
β0 > 0 and β1 > 0. We present here a detailed proof and explicitly derive the bound-
ing constants associated with the problem. Proofs of continuity of the forms a(·, ·)
and l(·) were shown in [5]. We show below that the coupling term b(·, ·) is continu-
ous and satisfies the Babuška-Brezzi condition and that form a(·, ·) is coercive. For
simplicity of the proofs, we shall consider in this section that the overlap region Ωo
exactly coincides with one RVE.

Lemma 1 (Continuity of b). Let b( · , ·) be as defined in (32). Then, for all µ ∈M,
V = (v,z) ∈ X, there exists a constant Mb > 0 such that:

|b(µ,V )| ≤Mb‖µ‖M‖V‖X ,

with

Mb =

√
β0

( |Ωc|2
2E|Ωo|

+
1
δ

)
+β1

(
1
E
+

1
mini kili

)
, (41)

where mini means the minimum over all values indexed by i = 1,2, . . . ,mo.

Proof. Let µ ∈M and V ∈ X , such that Rov ∈M and Πoz ∈M. From the definition
of the bilinear form b(·, ·) (32) and by using Cauchy-Schwarz, we have:

|b(µ,V ) |= (µ,Rov−Πoz)M ≤ ‖µ‖M‖Rov−Πoz‖M ≤ ‖µ‖M(‖Rov‖M +‖Πoz‖M).

Now, by definition of the norm, we have

‖Rov‖2
M = β0Rov2

+β1‖(Rov)∗‖2
L2(Ωo)

. (42)

Then, using Lemma A-2 in [5], the fact that |Ωc| ≥ |Ωo|, and Poincaré inequality,
we get:

Rov2 ≤ 1
|Ωo|
‖Rov‖2

L2(Ωo)
≤ 1
|Ωo|
‖v‖2

L2(Ωc)
≤ |Ωc|2

2E|Ωo|
‖v‖2

Vc . (43)

For the other term, since Rov ∈ M, Rov is linear on the RVE, and by assumption,
on Ωo. Then (Rov)′ is constant on Ωo and it implies that (Rov)∗ = (Rov)′, ∀x ∈Ωo.
It follows that:

‖(Rov)∗‖2
L2(Ωo)

= ‖(Rov)′‖2
L2(Ωo)

= |(Rov)|2H1(Ωo)
≤ |v|2H1(Ωc)

=
1
E
‖v‖2

Vc . (44)

Then,

‖Rov‖M ≤ ‖v‖Vc

√
β0|Ωc|2
2E|Ωo|

+
β1

E
. (45)

In the same way, since Πoz is linear, we have
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‖Πoz‖2
M = β0Πoz2

+β1‖(Πoz)∗‖2
L2(Ωo)

= β0z2 +β1‖(Πoz)′‖2
L2(Ωo)

, (46)

and

‖(Πoz)′‖2
L2(Ωo)

=

ˆ
Ωo

(Πoz)′2dx =
mo

∑
i=1

li

(
zi− zi−1

li

)2

=
mo

∑
i=1

1
kili

ki(zi− zi−1)
2 ≤

(
min

i
kili
)−1|z|2Vd

.

(47)

Therefore,

‖Πoz‖2
M ≤

β0

δ
δ z2 +

β1

min
i

kili
|z|2Vd
≤
(

β0

δ
+

β1

min
i

kili

)
‖z‖2

Vd
. (48)

We combine above results and find

Mb =

√
β0

( |Ωc|2
2E|Ωo|

+
1
δ

)
+β1

(
1
E
+

1
mini kili

)
, (49)

which completes the proof. ut

Lemma 2 (Inf-sup condition for b). Let β1 > 0. Then, with above notation and
definitions, there exists a constant γb > 0 such that:

inf
µ∈M

sup
V∈X

|b(µ,V ) |
‖µ‖M‖V‖X

≥ γb,

with

γb = min

(√
β0

2δ
,

√
2β1

2E +δ |Ωo|

)
.

Proof. Let µ ∈M ⊂ H1(Ωo). It is sufficient to construct a pair V̂ ∈ X such that

sup
V∈X

|b(µ,V )|
‖V‖X

≥ |b(µ,V̂ )|
‖V̂‖X

≥ γb‖µ‖M. (50)

Since M ⊂ H1(Ωo), µ(xa) is well defined and denoted by µa. We introduce the
function µ̂(x) = µ(x)− µa on H1(Ωo) and observe that µ̂(xa) = µ(xa)− µa = 0.
Let v̂ ∈ Vc such that v̂ = µ̂ on Ωo and v̂ = 0 on Ωc\Ωo and let ẑ ∈ Vd such that
ẑi =−µa, ∀i = 1, . . . ,m. Thus, taking V̂ = (v̂, ẑ), we have:

|b(µ,V̂ )|
‖V̂‖X

=
|(µ,Rov̂−Πoẑ)M|
‖(v̂, ẑ)‖X

=
|(µ,µ−µa +µa)M|

‖(v̂, ẑ)‖X
=
‖µ‖2

M
‖(v̂, ẑ)‖X

. (51)

It suffices to show that ‖µ‖M/‖(v̂, ẑ)‖X is greater than a positive constant indepen-
dent of µ . We have
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‖(v̂, ẑ)‖2
X = ‖v̂‖2

Vc +‖ẑ‖2
Vd

=

ˆ
Ωo

E|v̂′|2dx+ |ẑ|2Vd
+δ |ẑ|2

= δ µ
2
a +

ˆ
Ωo

E|µ ′|2dx = δ µ
2
a +

ˆ
Ωo

E|µ∗|2dx,
(52)

where we have used the fact that µ is linear on Ωo, i.e. µ ′ is constant and µ ′ = µ∗.
Then, rewriting µ = µ ′(x− xa)+µa and taking the average, we also have:

µa = µ̄− 1
2
|Ωo|µ ′, (53)

and
µ

2
a ≤ 2µ

2 +
1
2
|Ωo|2(µ ′)2 = 2µ

2 +
1
2
|Ωo|

ˆ
Ωo

|µ∗|2dx. (54)

It follows that:

‖(v̂, ẑ)‖2
X ≤ 2δ µ

2 +

(
2E +δ |Ωo|

2

)ˆ
Ωo

|µ∗|2dx

≤max
(

2δ

β0
,

(
2E +δ |Ωo|

2β1

))
‖µ‖2

M,

(55)

and we conclude that

‖µ‖M

‖(v̂, ẑ)‖X
≥min

(√
β0

2δ
,

√
2β1

2E +δ |Ωo|

)
, (56)

which completes the proof. ut

We now show the coercivity of a in the case where αc = αd = 1/2 on Ωo. We
believe that the result also holds when αc is a continuous piecewise linear function
but are not able to provide here a rigorous proof.

Lemma 3 (Coercivity of a). Let αc = αd = 1/2. Then, with above notation and
definitions, there exists a constant γa > 0 such that:





inf
U∈X0

sup
V∈X0

|a(U,V )) |
‖U‖X‖V‖X

> γa,

sup
U∈X0

a(U,V )> 0, ∀V ∈ X0,V 6= 0,
(57)

with

γa =
1
2

min
i

(
E

kili

)
min

i

(
kili
E

)
min

(
1
2
,

E
δ

|Ωo|
|Ωc|2

)
, (58)

where min
i

means the minimum over all values indexed by i = 1,2, . . . ,mo.

Proof. It suffices to show that a( · , ·) is coercive on X0. Let V = (v,z) ∈ X0. By
definition of the bilinear form, and the fact that αc = 1 on Ωc\Ωo and αd = 1 on
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Ωd\Ωo, we have

a(V,V ) =

ˆ
Ωc

αcE|v′|2 dx+
m

∑
i=1

αiki(zi− zi−1)
2

=

ˆ
Ωc\Ωo

E|v′|2 dx+
m

∑
i=mo+1

ki(zi− zi−1)
2

+

ˆ
Ωo

αcE|(Rov)′|2 dx+
mo

∑
i=1

αiki(zi− zi−1)
2.

(59)

We provide here a general approach to show the coercivity. We first decompose the
overlap terms in above equation into the following contributions:

ˆ
Ωo

αcE|(Rov)′|2 dx+
mo

∑
i=1

αiki(zi− zi−1)
2

=
1
2

(ˆ
Ωo

αcE|(Rov)′|2 dx+
mo

∑
i=1

αiki(zi− zi−1)
2

)

+
1
2

(ˆ
Ωo

αcE|(Rov)′|2 dx+
mo

∑
i=1

αiki(zi− zi−1)
2

)
.

(60)
Since V ∈ X0, the functions v and vectors z satisfy:

b(µ,V ) = (µ,Rov−Πoz)M = 0, ∀µ ∈M. (61)

In other words, Rov−Πoz ∈Mo, meaning that Rov = Πoz and that v(xb)− v(xa) =
zmo−zo (where we appeal again to the fact that Ωo consists of just one representative
volume element). Let µo = Rov−Πoz with µo = 0 and µo(xa) = µo(xb). We also
introduce the parameter κ = mini(kili)/E and recall from Remark 1 that κ ≤ 1. We
have:

1
2

ˆ
Ωo

αcE|(Rov)′|2dx≥ κ

2

ˆ
Ωo

αcE|(Rov)′|2dx

≥ κ

2

ˆ
Ωo

αcE|(Πoz)′+µ
′
o|2dx

≥ κ

2

ˆ
Ωo

αcE|(Πoz)′|2dx+
κ

2

ˆ
Ωo

αcE|µ ′o|2dx+κ

ˆ
Ωo

αcE(Πoz)′µ ′odx.

(62)

Using the fact that:

(Πoz)′ =
zi− zi−1

li
, ∀x ∈ (xi−1,xi), (63)

the first integral can be rewritten as:
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ˆ
Ωo

αcE|(Πoz)′|2dx =
mo

∑
i=1

ˆ xi

xi−1
αcE

[
zi− zi−1

li

]2

dx

=
mo

∑
i=1

E
kili

ki(zi− zi−1)
2
[

1
li

ˆ xi

xi−1
αcdx

]
,

(64)

and, using the definition of αi, we get:
ˆ

Ωo

αcE|(Πoz)′|2dx≥min
i

(
E

kili

) mo

∑
i=1

(1−αi)ki(zi− zi−1)
2. (65)

It follows that

1
2

ˆ
Ωo

αcE|(Rov)′|2dx≥κ

2
min

i

(
E

kili

) mo

∑
i=1

(1−αi)ki(zi− zi−1)
2

+
κ

2

ˆ
Ωo

αcE|µ ′o|2dx+κ

ˆ
Ωo

αcE(Πoz)′µ ′odx.
(66)

In the same way, we have:

1
2

m0

∑
i=1

αiki(zi− zi−1)
2 ≥ κ

2

ˆ
Ωo

(1−αc)E|(Πoz)′|2dx

≥ κ

2

ˆ
Ωo

(1−αc)E|(Rov)′−µ
′
o|2dx

≥ κ

2

ˆ
Ωo

(1−αc)E|(Rov)′|2dx

+
κ

2

ˆ
Ωo

(1−αc)E|µ ′o|2dx−κ

ˆ
Ωo

(1−αc)E(Rov)′µ ′odx.

(67)
Using (66) and (67) in (60), we obtain:

ˆ
Ωo

αcE|(Rov)′|2 dx+
mo

∑
i=1

αiki(zi− zi−1)
2

≥ κ

2

[ˆ
Ωo

αcE|(Rov)′|2dx+
ˆ

Ωo

(1−αc)E|(Rov)′|2dx
]

+
κ

2

ˆ
Ωo

(1−αc)E|µ ′o|2dx−κ

ˆ
Ωo

(1−αc)E(Rov)′µ ′odx

+
κ

2
min

i

(
E

kili

)[ mo

∑
i=1

αiki(zi− zi−1)
2 +

mo

∑
i=1

(1−αi)ki(zi− zi−1)
2
]

+
κ

2

ˆ
Ωo

αcE|µ ′o|2dx+κ

ˆ
Ωo

αcE(Πoz)′µ ′odx.

(68)
Simplifying, we get:
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ˆ
Ωo

αcE|(Rov)′|2 dx+
mo

∑
i=1

αiki(zi− zi−1)
2

≥ 1
2

min
i

(
E

kili

)
min

i

(
kili
E

)[ˆ
Ωo

E|(Rov)′|2 dx+
mo

∑
i=1

ki(zi− zi−1)
2

]

+
κ

2

ˆ
Ωo

E|µ ′o|2dx−κ

ˆ
Ωo

(1−αc)E(Rov)′µ ′odx+κ

ˆ
Ωo

αcE(Πoz)′µ ′odx.

(69)
We note that the last three terms, denoted by K , can be combined as follows:

K =
κ

2

ˆ
Ωo

(2αc−1)E
[
2(Rov)′−µ

′
o
]
µ
′
odx

=
κ

2

ˆ
Ωo

(2αc−1)E
[
|(Rov)′|2−|(Πoz)′|2

]
dx.

(70)

The goal would be to show that K ≥ 0 for all (v,z)∈X0 for any admissible profile of
αc on Ωo. Unfortunately, we are only able to date to prove that K = 0 if αc = 1/2.
It is not clear at this point whether the result would hold in the case where αc is
continuous piecewise linear.

Finally, setting αc = 1/2, we may proceed as follows:

a(V,V )≥
ˆ

Ωc\Ωo

E|v′|2 dx+
m

∑
i=mo+1

ki(zi− zi−1)
2

+
1
2

min
i

(
E

kili

)
min

i

(
kili
E

)[ˆ
Ωo

E|v′|2 dx+
mo

∑
i=1

ki(zi− zi−1)
2

]

≥ 1
2

min
i

(
E

kili

)
min

i

(
kili
E

)[ˆ
Ωc

E|v′|2 dx+
m

∑
i=1

ki(zi− zi−1)
2

]

≥ γ
(
‖v‖2

Vc + |z|2Vd

)
,

(71)

where we have introduced the constant γ as:

γ =
1
2

min
i

(
E

kili

)
min

i

(
kili
E

)
. (72)

Applying first the Poincaré inequality, i.e.

a(V,V )≥ γ

(
1
2
‖v‖2

Vc +
E
|Ωc|2

‖v‖2
L2(Ωc)

+ |z|2Vd

)
, (73)

and then Lemma A-2 in [5], as well as the fact that X0 consists of those functions v
and vectors z such that v = Πoz = z on Ωo, i.e.

‖v‖2
L2(Ωc)

≥ ‖v‖2
L2(Ωo)

≥ v2|Ωo|= z2|Ωo|, (74)
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we finally obtain:

a(V,V )≥ γ

(
1
2
‖v‖2

Vc + |z|2Vd
+

E
δ

|Ωo|
|Ωc|2

δ z2
)
≥ γ min

(
1
2
,

E
δ

|Ωo|
|Ωc|2

)
‖V‖2

X , (75)

which completes the proof. ut

From above lemmas, we may conclude that the Arlequin problem is well-posed
as long as β0 > 0 and β1 > 0 (and restriction that αc = 1/2 on overlap domain).

5 Finite Element Formulation

We introduce in this section the finite element formulation of the coupled prob-
lem. Let V h

c and Mh be finite element subspaces of the vector spaces Vc and M,
respectively, and let Xh be the product space Xh = V h

c ×Vd . The subspace V h
c can

be constructed as the space spanned by the piecewise linear continuous functions
defined with respect to the set of nodes xi = ih, i = 0, . . . ,Ne, where Ne denotes
the number of elements in the mesh. In the case of Mh, we are clearly faced with
several choices since the elements associated with V h

c and Mh do not have to match.
However, for the sake of simplicity, one possibility is to restrict ourselves to cases
where each node of the mesh associated with Mh coincides either with a particle
or with a node of V h

c or both. However, Mh needs to be constructed in such a way
that the condition Mh ⊂M = H1(Ωo)\M0 be satisfied, that is, we need to make sure
that functions of M0 are excluded from Mh. Let M̃h be the vector space spanned by
continuous piecewise linear functions defined on Ωo and let hM be the mesh size
associated with M̃h (assume a uniform grid here). If the overlap region consists of
one RVE and if ns denotes the number of springs in one RVE, we have been able to
observe numerically that the number of modes in M̃h∩M0 is given by:

n0 =





nsli
hM
−1, if hM < ξ ,

0, otherwise,
(76)

where ξ is the size of the RVE and li is the equilibrium length of each bond (assumed
constant here). It follows that a convenient way to construct the finite element space
Mh is to consider continuous piecewise linear functions defined with respect to ele-
ments of size hM = ξ (or a multiple of ξ ).

Finally, we introduce the notation Uh = (uh,wh) and Vh = (vh,z). Then, Prob-
lem (40) is approximated as follows:

Find Uh ∈ Xh, λh ∈Mh such that:
a(Uh,Vh)+b(λh,Vh) = l(Vh), ∀Vh ∈ Xh,

b(µh,Uh) = 0, ∀µh ∈Mh.
(77)
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We note that although Vd is a finite-dimensional space and, consequently does not
need to be discretized using finite elements, we will use the notation wh to denote
the solution of the particle model in (77) to emphasize that wh directly depends on
the choice of Vh and Mh. We can show that above problem is also well-posed when
β0 > 0, β1 > 0, and αc = 1/2.

6 Numerical Results

6.1 One-Dimensional Numerical Results

In this section, we present some numerical experiments to illustrate our theoretical
study of a one-dimensional coupled problem, i.e. a model of harmonic springs, with
varying coefficients, coupled with a linear elastic bar, whose Young’s modulus is
determined by simple homogenization. Unless otherwise stated, we consider in the
following experiments the domain Ω = (0,3). The continuum model is used in the
subdomain Ωc =(0,2) while the particle model is used in Ωd =(1,3) and the weight
coefficients αc and αd are chosen linear in the overlap domain. Moreover, the force
f applied at x = 3 is chosen in such a way that the displacement at the right end of
the domain, when using the continuum model everywhere in Ω , is equal to unity.
We also restrict ourselves to the cases where the equilibrium lengths of the springs
are all equal. We also recall that the discrete problem is well-posed if the mesh size
used to discretize the Lagrange multiplier space is at least larger than (a multiple of)
the size of the repesentative cell. Hence, in the following, the size of the elements
used to define Mh is always taken equal to the size of the representative volume
element.

6.1.1 Overlap Region Composed of One RVE

Let us start by studying the very simple case of an overlap domain composed of only
one RVE. As the objective is to propose a method that is well suited to solve prob-
lems dealing with highly heterogeneous particle models, we study here the particle
case of a periodic distribution of springs with two spring stiffness parameters for
which it is straightforward to derive an equivalent continuum model. Thus, the par-
ticle model is chosen to be composed of m = 4 springs in Ωd , i.e. five particles, and
that the values of the spring stiffness are k1 = 100 and k2 = 1. The particle structure
is then constructed, for m even, as:

k2 j−1 = k1, k2 j = k2, ∀ j = 1, . . . ,m/2. (78)

The equilibrium length of each spring is chosen constant as l = li = 0.5 and the
corresponding Young’s modulus E is then given by:
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Fig. 8 Arlequin solution in case of one RVE in the overlap region for several mesh sizes.

E =
k1k2

k1 + k2
2l =

100
101
×2×0.5 = 0.99010, (79)

using the expression derived in (11). In the following set of experiments, we study
the effect of the mesh size on the Arlequin solution. The Arlequin solutions for four
different mesh sizes, namely h = 2l, h = l/2, h = l/4, and h = l/32, where h is the
size of the elements for V h

c , are shown in Fig. 8. As expected, the coupled solution is
independent of the mesh size as the displacement zm of the right end particle is equal
for all cases to 1.08168. Notice however that zm is different from unity, as one might
have expected from the choice of the loading force f applied to particle m. This is
simply due to the fact that the displacement of the particles is averaged around the
continuum solution on the overlap region. If we average the particle solution in Ωd ,
we would then obtain a displacement equal to unity since the slope of the continuum
solution and that of the averaged particle solution are identical.

6.1.2 Overlap Region Composed of Several RVE’s

We now repeat the same experiments in the case where the size of the overlap re-
gion is equal to the size of several RVEs. We keep the same periodic distribution as
before, that is, the RVE is made of two springs with stiffness coefficients k1 = 100
and k2 = 1. We consider the case where the overlap region is composed of two
RVEs and the particle structure is made of m = 8 springs (l = 0.25), and the case of
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Fig. 9 Arlequin solution in case of two RVEs in the overlap region for two different mesh sizes.
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Fig. 10 Arlequin solution in case of four RVEs in the overlap region for two different mesh sizes.

four RVEs in the overlap region and a particle model composed of m = 16 springs
(l = 0.125). For both cases, we compute the solutions on two different mesh sizes,
namely h = 2l and h = l/2, as shown in Figs. 9 and 10. We can see that the method
produces the correct results as expected. The displacements at the right end parti-
cle are zm = 1.04084 and zm = 1.02042 in the case of two RVEs and four RVEs,
respectively. These displacements get actually closer to unity since the smaller the
equilibrium lengths are, the closer the particle solution gets to the continuum solu-
tion.

6.1.3 An Example with a Large Number of Particles

In more practical cases, we are interested in systems that are composed of many
particles. The objective is to use the particle model around a tiny zone to model the
small scale behavior of the material, and in the remaining zone, to use the continuum
model in order to reduce the cost of the simulation. We consider here the case of the
structure made of a chain of 1001 particles connected by 1000 springs in the domain
Ω = (0,1), as shown in Fig. 11 . We define Ωc = (0,0.8) and Ωd = (0.796,1). We
assume for the particle model a periodic distribution of four springs with spring
constants k1 = 100, k2 = 1, k3 = 50, and k4 = 10, and equilibrium length l = 0.001,



388 S. Prudhomme, R. Bouclier, L. Chamoin, H. Ben Dhia, and J. T. Oden

0

!c

0.796
RVE

0.8

Overlap
domain

f

1

!o

d!

Fig. 11 Implementation of the Arlequin method on a system of 1001 particles.

for which we get the equivalent Young’s modulus E as:

E =

[
1

k−1
1 + k−1

2 + k−1
3 + k−1

4

]
4l =

[
1

0.01+1.00+0.02+0.10

]
×4×0.001,

(80)
that is, E = 3.539823× 10−3. Notice that the definition of the geometry implies
that the overlap domain Ωo is made of just one representative cell. With the idea
of considering a critical and practical experiment, we discretize Ωc with a mesh
made of two elements. The first element covers the continuum region Ωc\Ωo while
the second element covers the whole overlap region Ωo. The Arlequin solution is
shown in Fig. 12. We observe that the large-scale displacement in the whole struc-
ture is perfectly linear and that the displacement at x = 1 is again closer to unity
(zm = 0.99969) than in the previous results since the equilibrium length of the
springs is here reduced to l = 0.001. These results clearly demonstrate that we can
consider an extreme configuration of a continuum model discretized with only two
elements (one for the whole continuum region and one for the coupling zone) to
deliver accurate simulations. In other words, only one element is sufficient to model
the behavior of the material in Ωc\Ωo (since the model is linear) and one element
to discretize the overlap region (composed of one RVE) is enough to couple the two
models.

6.1.4 Simulation of a Defect

The goal in using the proposed coupling method is to replace the particle model
by a continuum model in the region where only the large-scale contributions to
the values of quantities of interest are significant and where the continuum model
remains compatible with the particle model. The hope then is that the particle model
would only be required in a small region of the whole domain, around a defect or a
geometrical singularity for instance. We propose here to consider a one-dimensional
structure, fixed at both extremities and subjected to a point force applied at the center
particle (see Fig. 13), in which the stiffness coefficients in the middle bonds are
purposely weakened as follows:
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Fig. 12 Arlequin solution in case of a system with many particles using a mesh only composed of
two elements.

k∗i = ki

[
1

1+20e−5(x−L/2)2

]
, (81)

where L is the length of the structure. The main objective here is to model a pseudo-
defect in the chain of particles around which the continuum model is no longer
compatible with the particle model. The domain is given by Ω = (0.0,5.2), i.e.
L = 5.2, and the particle model is kept only in the subdomain Ωd = (1.4,3.8). The
equilibrium length of the bonds is set to l = 0.1. Furthermore, we assume that the
particle model is defined as a periodic distribution of two spring stiffness parame-
ters k1 = 100 and k2 = 30 along which the proposed defect is superimposed. The
Young’s modulus of the continuum model is computed by ignoring the defect in the
particle model, i.e. by considering the stiffness coefficients ki rather than k∗i . Us-
ing (79), its value is found to be E = 4.61538. In order to study the influence of
the position and size of the overlap region onto the Arlequin solution, we consider
four different configurations of the coupling zones defined by the overlap regions
Ωo,1 = (1.4,1.4+ 0.2 j) and Ωo,2 = (3.8− 0.2 j,3.8), on the left and on the right
of the particle model, respectively, with j = 1, . . . ,4 (see Fig. 13). In other words,
the size of the region in which the particle model is used is enlarged as the overlap
regions are made of 4, 3, 2, and 1 RVE’s by varying j from 4 to 1. Finally, the length
of the elements is set to h = 2l in Ωc = Ωc,1∪Ωc,2.

The results are shown in Fig. 14. The first solution is obtained using j = 4 and
the last one using j = 1. The maximum displacement, which corresponds to the
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Fig. 13 Definition of the coupled model for the simulation of a defect.

displacement of the particle at the center, is reported for each configuration in Ta-
ble 1. We observe that the approximations of the displacement become more accu-
rate when the overlap regions are positioned away from the defect. This is due to
the fact that the continuum model is not compatible with the particle model in the
vicinity of the defect since the former is calibrated from the latter without taking the
defect into account. However, in the case of the configuration with j = 1, the mod-
els become compatible with each other and the proposed coupling term provides an
accurate solution around the defect with respect to the solution of the full particle
model (not shown here).

Table 1 Maximum displacement for various values of the number of RVE’s, nRVE, in each overlap
region.

nRVE Maximum Displacement

4 1.05137
3 1.12014
2 1.13450
1 1.13670
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Fig. 14 Arlequin solutions obtained for different configurations of the coupling regions defined by
Ωo,1 = (1.4,1.4+ 0.2 j) and Ωo,2 = (3.8− 0.2 j,3.8), on the left and on the right of the particle
model, respectively, with j = 1, . . . ,4.

6.2 Two-Dimensional Numerical Results

In this section, we apply the Arlequin formulation using the new coupling operator
to the case of two-dimensional problems. In particular, we consider a uniform lat-
tice in which the interactions between particles are modeled in terms of harmonic
springs. The particles are supposed to interact only with their nearest neighbors: in
the x- and y-directions, the stiffness parameter for each bond is given by k while in
the diagonal direction, the stiffness coefficient is set to kd . The Representative Vol-
ume Element is easily identified here as the cell defined by four lattice sites since
it represents the smallest substructure within the periodic structure. The RVE is uti-
lized to compute the material coefficients (Young’s modulus and Poisson’s ratio) of
the compatible linear elasticity model.

The system of interest is made of 11× 11 particles and is subjected to a point
force applied to the particle located at the center of the domain. For large values of
the force, displacements in the vicinity of the centered particle are expected to vary
rapidly, implying that the linear elasticity model would incorrectly predict the large
associated strains. In this simple example, we choose to employ the particle model in
the subdomain at the center of the domain, of size corresponding to four RVE’s, and
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Initial configuration of the Arlequin structure Initial configuration of the Arlequin structure

Fig. 15 Arlequin configuration of the coupled problem using a coarse mesh (left) and a fine mesh
(right) for the discretization of the continuum model. The particle model is reduced to the subdo-
main in the center and the overlap region consists of a layer around the particle region.

to construct the overlap region as the layer around the particle region, of thickness
corresponding to the size of two RVE’s. The continuum model is selected in the
remainder of the domain and is discretized using quadrilateral bilinear elements
(see Fig. 15). Finally, the system is subjected to homogeneous Dirichlet boundary
conditions along the boundary ∂Ω .

In order to test the method, we consider in what follows a coarse mesh and a fine
mesh: on the coarse mesh, the finite elements have a mesh size equal to the size
of two RVE’s for the discretization of the continuum solution and of the Lagrange
multiplier as shown on the left of Fig. 15; on the fine mesh, the elements are half the
size of one RVE for the continuum solution and twice the size of one RVE for the
Lagrange multiplier as shown on the right of Fig. 15.

Finally, we compute two Arlequin solutions on each of the two meshes: in the
first Arlequin formulation, the coupling term is defined in terms of the H1 norm as
described in [5] while in the second formulation, the coupling term is defined using
the proposed averaging operator. In both formulations, the weighting coefficients are
chosen constant on the overlap region and equal to one half. On the coarse mesh, the
two solutions are identical as expected (see Fig. 16). The fact that large elements are
used in the formulation is equivalent to an averaging over a representative volume
element. However, the two solutions are different on the fine mesh (see Fig. 17).
This is due to the locking phenomenon in the case of the H1 norm coupling, that is,
the displacements of the continuum solution lock themselves to the displacements
of the particle solution on the overlap region. A better approximation, better in the
sense that the solution is closer to that of the full particle model, is therefore obtained
using the formulation involving the averaging operator.
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Deformed configuration of the Arlequin structure Deformed configuration of the Arlequin structure

Fig. 16 Deformed configuration on coarse mesh using the Arlequin framework: (Left) the coupling
term is defined in terms of the H1 norm; (Right) the coupling term is defined in terms of the
proposed averaging operator. The two solutions are identical as expected.

Deformed configuration of the Arlequin structure Deformed configuration of the Arlequin structure

Fig. 17 Deformed configuration on fine mesh using the Arlequin framework: (Left) the coupling
term is defined in terms of the H1 norm; (Right) the coupling term is defined in terms of the
proposed averaging operator. The two solutions are now different.

7 Conclusion

We have presented in this paper a new expression for the coupling term when blend-
ing a particle model with a continuum model using the Arlequin framework. The
coupling method belongs to the family of concurrent methods for solving multi-
scale problems. It constitutes an improved version of a previously proposed coupling
method, described in [5], which had the major drawback of being mesh-dependent
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in the sense that meshes had to be carefully selected in order to obtain the intended
solution of the problem. In particular, it was shown that the method produced satis-
factory results as long as the mesh size of the finite elements used to discretize the
Lagrange multiplier space was at least larger than (a multiple of) the size of the rep-
resentative cell defined to calibrate the parameter(s) of the continuum model. In the
new coupling method, the selection of meshes used to discretize the continuum so-
lution and the Lagrange multiplier is immediately determined from the formulation
of the continuous problem.

The new coupling term is constructed in terms of an averaging operator defined
on a representative cell. The cell size determines in some sense the scale at which the
continuum model and particle model can exchange information. Indeed, the parame-
ters of the continuum model are usually identified through homogenization from the
solution of the particle model computed on one representative cell. We have shown
here that the resulting coupled problem is mathematically well-posed and that its
discretization by the finite element method provides approximations that converge
to the exact solution of the problem as the mesh size goes to zero. We have illustrated
on one- and two-dimensional examples that the proposed approach is well suited for
problems in which the bonds between particles are heterogeneously distributed. Sys-
tems in the present study were considered periodic as compatible continuum models
can straightforwardly be derived through classical homogenization techniques.

The study of coupling methods based on the Arlequin framework for blending
particle and continuum models is by no means complete. This work only represents
one step in the development of general coupling methods. In particular, it would
be interesting to investigate the extension of this formulation to stochastic systems
for which the notion of representative volume element is not well defined. A pre-
liminary study on this subject is described in [15] based on the coupling method
proposed in [5]. Our objective in the near future would be to reconsider stochastic
particle systems using the new averaging operator for coupling the continuum and
particle models.
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