
Virtual Model Validation of Complex Multiscale
Systems: Applications to Nonlinear Elastostatics

J. Tinsley Oden∗, Ernesto E. Prudencio and Paul T. Bauman

Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin

201 East 24th St, Stop C0200, Austin, TX 78712-1229

Abstract

We propose a virtual statistical validation process as an aid to the design of experiments for
the validation of phenomenological models of the behavior of material bodies, with focus on
those cases in which knowledge of the fabrication process used to manufacture the body can
provide information on the micro-molecular-scale properties underlying macroscale behavior.
One example is given by models of elastomeric solids fabricated using polymerization processes.
We describe a framework for model validation that involves Bayesian updates of parameters in
statistical calibration and validation phases. The process enables the quantification of uncer-
tainty in quantities of interest (QoIs) and the determination of model consistency using tools
of statistical information theory. We assert that microscale information drawn from molecular
models of the fabrication of the body provides a valuable source of prior information on param-
eters as well as a means for estimating model bias and designing virtual validation experiments
to provide information gain over calibration posteriors.

Keywords: Model validation, information entropy, Kullback-Leibler divergence, mutual
information, uncertainty quantification, Bayesian inference.

1. Introduction

The subject of validation of mathematical and computational models of physical events
has become one of great interest in recent years as it is increasingly recognized to be the key
to the reliability of all science-based predictions. There is a large and growing literature on
the subject, including books and treatises [40, 57], papers and reports on basic definitions and
principles (e.g. [1, 3, 4, 5, 6, 10, 21, 24, 28, 29, 41, 44, 45, 46]), examples of validation processes,
(e.g. [11, 44, 47, 48]), statistical approaches to validation and the quantification of uncertainty
in predictions (e.g. [10, 25]), and a comprehensive study undertaken by the U.S. National
Research Council [17]. Still, there remain basic differences in the literature on how validation
processes are defined, interpreted, and implemented; moreover, the development of effective
methods for the validation of models of complex physical events, such as multiscale models of
materials, remains a largely open problem. General Bayesian approaches to model validation
with special attention to multiscale models of materials, are the subjects of this work.
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We have in mind here mainly developing approaches to assess the validity of models for
predictions of events in the physical universe and in engineering applications and physical sci-
ence, and particularly phenomenological models of continuum mechanics derived by averaging,
in some sense, events at molecular or atomistic scales. We demonstrate that the use of such
fine scale information can lead to important, often overlooked information of use in design-
ing validation experiments and in assessing model bias. The use of fine-scale models to study
macro-model behavior leads us to use the terms “virtual validation,” a flagrant oxymoron. But
in no way do we imply that such approaches are a substitute for validation experiments: they
only provide a tremendously less expensive and a science-based guide to the design of effective
experiments to aid in model validation processes.

There is also the implication that the fine scale model is somehow a superior representation
of the underlying physics than the macro model, which may not be true. In many cases, such as
those discussed here, the continuum model parameters can be deduced by averaging fine-scale
information, but the validity of the fine-scale model may not be completely confirmed. This is
a subject of current research (e.g. [20]). The characterization of a compatible molecular model
that provides a basis for continuum predictions often represents a better characterization of our
current knowledge about the physical setting of the problem and, therefore, should be used.

A few basic ideas are worth reviewing. We understand a mathematical model (of physical
phenomena) to mean a collection of mathematical constructions (differential or algebraic equa-
tions, inequalities, etc.) designed to put in mathematical context both inductive hypotheses
about the function and behavior of the physical system as well as observations of the response
of the system to various inputs. Such models can be derived from general principles covering
the physical phenomena, or a surrogate of a general theory produced by simplifying assump-
tions, or they can be empirical, produced by creating mathematical expressions that fit model
outputs to features of experimental observations.

The word valid, according to the Merriam-Webster Collegiate Dictionary [36], means “well-
grounded, justifiable, being at once relevant and meaningful, logically correct.” The notion of
validation is more forgiving and more in keeping with the fact that any measure of validity must
cope with the inevitable uncertainties and incompleteness in data and observations. According,
again, to Merriam-Webster, validation is a process of determining the degree of validity “(of
a measuring device).” Thus, there are degrees of validation. A model can therefore attain
a degree of validity according to some meaningful measure and that measure must take into
account uncertainties in data and predictions. The Free Dictionary by Farlex, accessed through
Google or Bing, provides as a definition of validation of computer models and simulation: the
process of determining the degree to which a model or simulation is an accurate representation
of the real world from the perspective of the intended use of the model. Again, a “degree” of
accuracy is called for. This definition, precisely that found in the guide [3], is close to the
definition in [40, 57]. In [45, 46], it is condensed to: the process of determining the accuracy
with which a model can predict specified features of physical reality. We provide an alternative
definition later in this section. Importantly, a single model may be used to predict several
quantities of interest and the level of uncertainty of each may be quite different. It is worth
noting that relatively few works on model validation actually address the degree of validation
or how to measure it.

The principle of falsification of Popper [53] asserts that hypotheses cannot be accepted as
scientific theory unless they can possibly be refuted by physical observations (and then, if in
conflict with observations, the hypotheses are discarded or modified so as to be replaced by
a new theory that is in line with observations). According to this principle, no theory can
be, technically speaking, perfectly valid. By the same token, no mathematical model can be
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perfectly valid if one accepts the idea that new observational data can be acquired that is in
conflict with earlier predictions. But Popper’s principle came under severe criticism as being
too objective: ignoring the place in science of statistical theories and experimental uncertain-
ties. So he modified the idea in [53] to cover statistical hypotheses not strictly falsefiable, but
“practically falsefied” when the hypothesis attaches a sufficiently small probability to an event.
But, according to Howson and Urbach [26], the objective mechanism by which a hypothesis may
“be logically refuted by observational evidence could never work with statistical hypothesis, for
these ascribe probabilities to possible events and do not say of any that they will or will not
actually occur.” But the goal of validation processes is not, strictly speaking, to find truth; it
is to assess the accuracy of predictions and to determine if the accuracy is sufficient for an in-
tended purpose. That the predictions and observational data may be probability distributions
merely means one must develop measures of their relative accuracy and their uncertainty and,
like Popper, establish tolerances that define their acceptability.

In the present paper, we describe a general approach to validation and UQ in a Bayesian
setting; we fully subscribe to Jaynes’ view [27] that the “logic of science”, at least much of
science, becomes transparent in a Bayesian setting. Beyond that, notions of information entropy
[19, 59] and related ideas provide additional tools outside the Bayesian framework.

The subject of model validation is a central theme of what some refer to as “predictive
science,” the discipline concerned with the prediction of features of physical events or of the
behavior of engineering systems. Predictions involve extrapolations based on available models
and data from what is known and accessible to future events that may have not yet occurred.
This begs the question of what qualifies as observational data and what are the actual goals of
the prediction - the quantities of interest.

An observable is a physical entity that can be observed, that is, detected using the human
senses, usually aided by instrumentation, usually corrupted by experimental error, and is the
source of data in model calibration and validation processes.

Quantities of interest are specific features of the response of the system under study. They
are the goals of the prediction that the model is called up upon to deliver. Processes of model
validation are meaningful only when specific QoIs are defined: a model may be able to deliver
a “valid” prediction (as defined in this paper) for one QoI, but not another.

QoIs are not observables. If an event is observed, that is, measured, it becomes, by def-
inition, part of the validation data. The purpose of the use of models in predictions is to
extrapolate beyond what is recorded as data so as to forecast events not yet observed. The
ideas are at the heart of inductive logic and a fundamental notion of the scientific method. In
fact, it has also been the foundational principle of engineering design from time immemorial.
Engineering systems are designed to function in various ways under design conditions, but their
actual performance cannot be observed before the system exists. Tests may be performed on
sophisticated models of the final system, but these can only increase confidence in the likeli-
hood of behavior predicted by the engineer - these are validation tests. The QoIs, the specific
features of the response of the final system in the field, can be predicted but not observed.
Once any measurement of a feature is taken, that measurement becomes observational data -
it is no longer a quantity of interest as it is no longer a goal of the predictive effort - it is known
to within experimental error.

Unfortunately, or perhaps, inevitably, this fact points to the subjective nature of science and
the scientific method of prediction of future events, and, correspondingly, of the entire subject
of model validation. This is why the Bayesian framework, described so eloquently in Jaynes
[27], provides an ideal setting to discuss model validation. With these ideas in mind, we put
forward a new notion of model validation as follows: the process of determining the level of
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confidence one has in the ability of the model to predict quantities of interest to within preset
tolerances based on the accuracy with which the model predicts specific observables.

We note that a significant body of literature exists that employs Bayesian approaches and
information theoretics to address issues of model validation. The important work of Kennedy
and O’Hagan [32, 33] called attention to the importance of model discrepancy or bias and its
role in Bayesian validation processes; there the use of Gaussian processes (GPs) as a means to
represent and calculate model bias and to accelerate computing model outputs in validation
processes is advocated. Bayarri, et al., [10] present a detailed analysis of a class of Gaussian
processes for modeling model outputs and model bias, and discuss Bayesian methods for esti-
mating model parameters and the so-called hyperparameters of GPs. The papers of Jaing and
Mahaderan [28, 29] describe Bayesian-based validation processes that use Bayesian hypothesis
testing and cross-entropy methodologies for the design of validation experiments. These latter
approaches generally employ Kullback-Leibler divergence measures to compare successive prob-
ability distributions generated in sequences of validation experiments, the key characterizations
being the “cross entropy” of pairs of distributions. Related work has been done by Foglia, et
al. [22] and Weijs, et al. [64]. A comprehensive survey of cross-validation procedures for model
selection has been presented by Arlot and Celisse [2].

Not all works on model validation advocate Bayesian approaches. In Ferson, et al. [21],
the use of Bayesian approaches is said to be “not the proper focus on validation,” as interest
should be “in objectively measuring the conformances of predictions against data that have not
been used previously to calibrate the model.” They go on to say that “when predictions are
distributions, they can contain a considerable amount of detail and it is not always easy to know
what is important, not to be sure that a comparison of means will be sufficiently informative for
a particular application.” The approach we follow in the present paper does lead to predictions
which are defined by probability distributions, but does not suffer from the deficiency of having
insufficient information for applications.

For definiteness, we consider a large parametric class of models of phenomena in nonlinear
continuum mechanics, particularly nonlinear elastostatics, where we expect to have information
on molecular structures prevalent in manufacturing processes. This information, paradoxically,
pertains to events at spatial scales quite different from those on which the principal continuum-
mechanics model is based. We must, therefore, cope with the problem of multiscale validation.
We address this problem in the context of general model classes depicting finite deformation of
polymeric structures.

In Section 2, following this Introduction, we describe a class of problems in nonlinear elasto-
statics that provides a model for the discussion of the process of prediction of physical events.
There we outline steps in a fabrication process involving polymeric materials. This specific
example is one typical of many such processes, the principal feature being that some prior
information is known about the structure of the problems at scales smaller than those normally
involved in the prediction model. Details on the structure of typical molecular models are given
in an appendix to the body of the paper. In Section 3, we review the framework for Bayesian
methods for statistical inverse problems arising in calibration and validation processes together
with basic ideas of information theory relevant to model validation. In Section 4, we present
a model validation process, and propose validation criteria. During the validation process,
calibration and validation data are collected from experiments performed at the corresponding
scenarios. The validation process leads naturally to the discussion of experiment design in
Section 5, where we propose extra validation criteria formulated in terms of information gain,
that is, the expected Kullback-Leibler (KL) divergence between probability density functions
(pdfs). In Section 6, we come to the practical issue of selecting the validation scenario among
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candidate scenarios, in the context of nonlinear elastostatics. The validation scenario selection
issue, we assert, can be partially resolved by performing virtual validation experiments (i.e.,
simulating the validation data) using multiscale models generated with the goal-oriented mul-
tiscale algorithms developed by Oden, Bauman, Prudhomme, et al [8, 9, 49, 50, 51]. Virtual
experimentation, we argue, provides a basis for the design of actual validation experiments
as well as a means for assessing model bias. We also describe how hierarchical model classes
and the calculation of model plausibilities can be used in some cases to reduce model bias.
Concluding remarks are collected in Section 8.

2. A Model Class of Multiscale Models: Parametric Classes of Models in Nonlinear
Elastostatics

The general class of problems we address here involves the use of complex multiscale models
for predicting important quantities of interest (QoIs) critical to important decisions, including
design decisions.

2.1. Microscale Models of Polymeric Materials
For definiteness, we begin with a focus on macroscale models of the mechanical behavior

of solid bodies for which something is known about their microstructure because of prior in-
formation on how they were fabricated. One important class of such problems includes the
development of models of the mechanical behavior of polymeric components such as those
used in some circuit boards, flexible pipes, shock absorbers, lithography etching barriers, etc.
The following fabrication process and modeling considerations are common for these types of
systems:

1) A (relatively) rigid mold or template is filled with a photocurable solution or mixture con-
sisting of various monomer molecules, cross linkers, initiators, reactants, and voids, each
constituent having known initial volume fraction. An energy source, such as ultraviolet
light, is applied to the mixture, creating chemical reactions that produce stable polymer
chains and thereby a polymeric solid. The process is often based on the assumption that
the reaction rate κ obeys an Arrhenius-type law,

κ = A exp(−Ea/kBT ) , (1)

where Ea is the activation energy, the threshold energy at which a reaction, e.g. a chemical
bonding, takes place, kB is Boltzmann’s constant, T is the (local) absolute temperature, and
A is a constant. The most likely reaction between monomers and reactants at a lattice site in
a polymer lattice will correspond to the molecule-molecule pairs sharing the largest reaction
rates. The probability of a reaction is assumed to be proportional to this reaction rate. This
is the basis of the polymerization algorithm where a sequence of reactions leads to polymer
molecular chains in a realization of the actual polymer molecular structure. A single realiza-
tion of the charge-neutral molecular structure of the body (or a close approximation to it)
is established at the conclusion of this polymerization process. This so-called kinetic Monte
Carlo process leading to the polymerization conformation is described in [8] and [9] and is
adapted from a method proposed by Burns et al [13]. For a general discussion, see Voter
[63]. Based on each such molecular conformation, molecular energy potentials are assigned
to each site to establish various bond-types and potentials for defining intermolecular forces
on each site, the potentials being selected from standard characterizations of covalent and
polar bonds for the final molecular conformation for each realization.
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2) The polymerized material is removed from the mold and the molecules quickly move to
a state of static equilibrium in which all molecular forces are balanced. This is called
the densification step. This fabrication process produces geometrically-complex polymeric
components, such as conceptualized in Figure 1. If ui denotes the displacement of a molecule
site i (e.g. a monomer), then the equilibrium configuration of the body is determined by
solutions of large nonlinear algebraic systems of the form

∂V (µ; un)
∂ui

− fi = 0, i = 1, 2, . . . , n, (2)

where V (µ; un) is the total potential energy of the molecular system, µ being a vector of
physical paramters of the interaction potentials for the system, un = {u1,u2, . . . ,un} the
list of unknown site displacement vectors of the n molecular sites, and fi the applied force at
site i. Additional details on the possible forms of V (µ; un) and examples of the parameters
µ are given in the Appendix A. In general, for the full molecular model of the polymer,
n is a very large, often O(1010) or more, so the actual solution of (2) is often difficult and
often impossible using contemporary computing capabilities.

3) If the constituents of the mixture are chosen so that the polymer ultimately generated is
insensitive to mechanical rate effects (e.g. creep, viscoelastic response), and there are no
directional or positional biases in the polymerization process, then the resulting material
can be assumed to be elastic, isotropic and homogeneous at the macro scale. The strains
resulting from the densification step can be large and significant volumetric changes can
occur. All of these considerations suggest that the polymeric structure can be modeled on
a macroscale level as an isotropic, homogeneous, compressible, hyperelastic material.

2.2. A Class of Continuum Models
Moving now from the class of molecular models of a coarse-grained characterization of each

polymer realization, we consider instead a macro-scale, continuum model of such a hyperelastic
body where material coefficients are obtained through some averaging process for each realiza-
tion. Consider a homogeneous, isotropic, hyperelastic body occupying a reference configuration
Ω0 ⊂ R3, and in static equilibrium under the action of prescribed forces. The motion (or de-
formed configuration) of the body is determined by the positions, x+u(x), of material particles
x, u = u(x) being the displacement of x. The deformation tensor at x is

F(x) = I + ∇u(x), (3)

∇ being the material gradient operator, and the right Cauchy-Green deformation tensor C is
defined by

C = C(u) = FTF = I + ∇u + ∇uT + ∇uT∇u (4)

The mechanical response of such a material body is characterized by a stored energy function
W of appropriate deformation measures. For a very broad class of such materials, we can
postulate a stored energy function of the form,

W = α(I1 − 3) + β(I2 − 3) + γ(J − 1)2 − (2α+ 4β) lnJ , (5)

where α, β, γ are material constants and I1, I2 and J are principal invariants of the C:

I1 = tr C ; I2 = tr C2 − (tr C)2 ; J =
√
|C| =

√
det C . (6)

The form of the stored energy function in (5) is not arbitrarily selected:
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i) Being a function of the invariants (6), it is form-invariant under changes in the observer’s
frame of reference. Thus, it obeys the Principle of Material Frame Indifference for consti-
tutive equations in continuum mechanics.

ii) The first term, α(I1 − 3) is the well-known Trealor [62] model of incompressible materials,
confirmed by arguments based on kinetic theory and statistical mechanics of rubber-like
materials (see, e.g. [7, 15, 43].

iii) The addition of the second term leads to the famous Mooney-Rivlin energy, α(I1 − 3) +
β(I2 − 3), used to characterize incompressible homogeneous elastomers for over a half
century [37, 51, 56].

iv) The last two terms characterize compressibility of the material; the last representing a type
of penalty term that represents the property that the energy becomes unbounded (→∞)
as the volume measure J → 0. The coefficient (2α+ 4β) was suggested by Ciarlet [15].

v) The function W (owing to linearity in I1 and I2 and convex behavior in J) is a convex
function of the invariants, which themselves are weakly-sequentially continuous functions
of the displacement field on appropriate function spaces. The energy is thus polyconvex -
and therefore quasiconvex; it is also coercive. Thus, there exist solutions to the non-convex
minimization problem of minimizing

∫
W dx over suitable spaces of displacements u [15].

Figure 1: Example of an elastomeric component fabricated through polymerization and in static
equilibrium under the action of external tractions.

The local macroscale equilibrium states of the polymer component are characterized by the
balance of linear momentum, which is manifested in the static equilibrium conditions charac-
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terizing minima of
∫
Wdx:

Div
(
∂W

∂F

)
(x) = 0 ; x ∈ Ω0 ⊂ R3 . (7)

Here Div is the material divergence operator, Div = ∇·. Substitution of (5) and (6) into (7)
leads to a system of highly nonlinear partial differential equations (PDEs) in the displacement
field u:

∇ · { (I + ∇u) · { αI +
+ β[(tr C(u)−1)I−C(u)−T (Cof C(u))] +

+γ(Cof C(u))
(

1− |C(u)|−1/2
)

+

− (2α+ 4β)(Cof C(u)) } } = 0 . (8)

These notations and models are standard in nonlinear elasticity and continuum mechanics; see
e.g. [7, 15, 23] or the summary account in [43]. The system (8) describes an infinite number
of models of the deformation of a hyperelastic body, infinite because each realization of the
parameters

θ = (α, β, γ) ,

for each polymerization realization, corresponds to a different model. Alternatively, the param-
eters θ can be regarded as random variables and (8) is then a system of stochastic PDEs with
solutions themselves random fields.

To (8), we must add information on the solution domain Ω0, boundary conditions on ∂Ω0,
and other data, such as possible source terms on the right-hand side of (5). These define the
physical scenario s under which the model equations are to be applied. Since the problem
domain might depend upon the scenario in which the model is implemented, the notations
Ω0(s) and ∂Ω0(s) are meaningful. We could, of course, choose to represent the discretized
initial and boundary data as unknown parameters and include them in the list of parameters
θ, but for clarity we will view the scenarios as known and deterministic.

Upon solving (8) for a given s and θ, one computes the solution

u = u(θ, s; x), x ∈ Ω0(s), (9)

which can be used to compute modeled observables for various scenarios, including quantities
of interest for a prediction scenario sp to be defined later.

2.3. An Example: Polymer Etch Barrier in Imprint Lithography
An interesting example of the fabrication process and resulting structures occurs in the

manufacturing of etch barriers for imprinting semiconductor components in Step and Flash
Imprint Lithography (SFIL; see [9, 13]). Figure 2 presents the semiconductor components
produced by manufacturing the etching barriers which are polymers of dimension of 30-70 nm.
A molecular model of the block structure is shown.

3. Review of Background Concepts Related to Forward and Inverse Problems

The model described so far is one example of a general model of the form,

A(θ, s;u(θ, s)) = 0, (10)
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(a) (b)

(c)

Figure 2: (a) Nanoscale polymeric etch-barrier structures for imprint-lithography semiconduc-
tors manufacturing process; (b) semiconductor components; and (c) multiblock molecular model
of polymer densification representing etch barrier structures ([9, 13]).

where A denotes an abstract operator such as those in (8), s denotes the scenario (which might
also incorporate locations of points or domains where measurements are taken, measurement
time window, measurement frequency etc.), and θ denotes the model parameters.

By a scenario, we mean the specific environment in which the broad mathematical model
is to be implemented, generally describing the domain of the solutions, the boundary involved
in boundary conditions, etc. The prediction scenario sp corresponds to the full system model
used to predict the quantities of interest. It may consist of several subsystems depending on
the characteristics of the full model. The simplest scenarios are the calibrations scenarios sc
designed to provide updated information on model parameters (updated from priors). In mul-
tiphysics models, different calibration scenarios may be called on to address different physical
behaviors (e.g., in a model of fluid-structure interaction, calibration tests may be done to deter-
mine parameters defining the model of the structural material while others are used to calibrate
the fluid model, and still others to calibrate combined fluid-structure models).The validation
scenarios sv are encountered in subsystem models designed to challenge basic assumptions on
which the full system model is based, as well as to update parameters delivered by the cali-
bration tests that can be better informed (i.e. that exhibit an information gain) over those
obtained through calibrations. The validation scenarios need not be a subset of sp. They
can correspond to independent domains over which the mathematical model is implemented or
structured to deliver information on the utility of the full model for predicting the QoIs. The
design of validation experiments, and implicitly the validation scenarios, is a major challenge
in predictive science; and is an issue taken up in this paper. As a general rule, the scenarios are
assumed to involve no uncertainties, but this assumption is easily relaxed. It is generally the
case, although exceptions can be cited, that with increasing the sophistication of the validation
scenarios (equivalently, increasing the complexity of the subsystem models), there is a decrease
in observational data available to inform the model. More specifically, validation experiments
may re-tune parameters to account for behavior not captured by calibration tests.

Obviously, model (10) can be applied to many different scenarios s. We define

S =
{

the set of all possible scenarios s to which
the model can be applied. (11)
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The random vector of model parameters θ is regarded as a member of a manifold Vθ. We
assume that (10) is well-posed and a solution u(θ, s) exists for every θ ∈ Vθ and scenario s ∈ S.
Note that this assumption is satisfied by (8) for α, β, γ > 0 as explained in comment (v) in
subsection 2.2. As θ runs over Vθ, (10) characterizes a parametric class of models.

We note that the scenario s can also be treated as a random entity. We note again that,
even though the governing operators defining A(·, ·; ·) may be deterministic, the coefficients may
depend on random parameters θ and random scenario s, so the solution u(θ, s) is a random
field.

3.1. Statistical Inverse Problems and Experimental Data d
Key steps in our approach to model validation are the construction and solution of statis-

tical inverse problems, which are characterized by the Bayesian updates of pdfs π of model
parameters. Initially, our knowledge of the parameters is characterized by the prior pdf π(θ).
The fundamental Bayesian relationship is:

π(θ|d, s) =
π(d|θ, s)π(θ|s)

π(d|s)
. (12)

Here π(θ|d, s) is the posterior pdf, the conditional probability on model parameters θ, given
scenario s and experimental data d; π(d|θ, s) is the likelihood pdf, the conditional pdf on d
given θ, generally based on the model employed to relate parameters to observations; π(θ|s) is
the prior pdf on θ; and

π(d|s) =
∫

π(d|θ, s)π(θ|s) dθ,

since
∫
π(θ|d, s) dθ = 1. The setting is classical: beginning with prior information on the pa-

rameters θ, their uncertainty represented by the prior pdf π(θ|s), perform physical experiments
(or make observations of physical events) to produce d with uncertainties depicted in π(d|s).
Then compute an updated characterization of θ in the pdf π(θ|d, s). The key is the likelihood,
which connects θ and d through the map provided by the mathematical model, the model of
uncertainties in the observational data, and the model of inadequacies in the model itself.

The theoretical model (10) is thus appended with the calculations of theoretical predictions
ys of the observations d for any particular scenario s,

A(θ, s;u(θ, s)) = 0,
ys = y(θ, s, u(θ, s)),

}
(13)

where y(θ, s, u(θ, s)) is the vector of values computed by the model, which are to be compared
to the observable data d. Such comparison involves extra assumptions, which are encapsulated
into the likelihood pdf π(d|θ, s) [14, 48]. For instance, is the discrepancy between y and d
additive? Or maybe multiplicative? What is the covariance structure of such discrepancy? Is
a simple diagonal covariance matrix a viable representation? The modeling of the discrepancy
may also contribute additional unknown parameters to the process. The subject of model
discrepancy is discussed further in Sections 4 and 7.

For the case that s is the prediction scenario, s = sp, and for parameters θ, the computed
solution u = u(θ, sp; x) is used to compute a real-valued QoI, q, that defines the overall goal of
the modeling exercise. The model (10) is thus augmented as follows:

A(θ, sp;u(θ, sp)) = 0,
q = q(θ, sp, u(θ, sp)).

}
(14)
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For the hypothetical elastomer component shown in Figure 1, examples of QoIs are the max-
imum principal value of the Cauchy stress at the point A or the displacement separation of
points B and C. The QoIs are not observables; they are extrapolations of what is known about
the model and the experimental data to future events, not measured in experimental set ups.
Once a quantity is measured it becomes part of the experimental calibration or validation data.
We will refer to problem (14) as the forward problem.

3.2. Information Related Concepts
For future reference, we record useful measures of information and uncertainty. See [19] for

a complete treatment. Let X, Y be random variables with pdfs π(x) and π(y), and let π(x, y)
denote the joint pdf of X and Y .

3.2.1. Information Entropy, Conditional Entropy, and Relative Entropy
Arguments of Jaynes [27] building on the classical work of Shannon [59], show that the only

reasonable measure of the amount of uncertainty embodied in a random variable that satisfies
certain mild consistency conditions is its information entropy,

H(X) = “H(π)” = −
∫

π(x) log
π(x)
m

dx, (15)

m being an invariant measure.
The conditional entropy of X, given Y , is defined as

H(X|Y ) = −
∫ ∫

π(x, y) log π(x|y) dx dy

= H(X,Y )−H(Y ). (16)

The relative entropy between pdfs π2(x) and π1(x), also called the Kullback-Leibler (KL)
divergence between the two pdfs, is defined as

DKL(π2||π1) =
∫

π2(x) log
π2(x)
π1(x)

dx = −H(π2) +H(π2, π1). (17)

The KL-divergence is thus the sum of the negative informational entropy of π2 and the so-
called cross entropy H(π2, π1) = −

∫
π2(x) log π1(x) dx. If, for example, π(θ|d) is the poste-

rior update of a prior π(θ), given data d, the expected value of the KL-divergence between
the posterior and prior integrated over the data, is the information gain; I(π(θ|d), π(θ)) =∫∫

DKL(π(θ|d)‖π(θ))π(d) dθdd = Ed(DKL(π(θ|d)‖π(θ))).

3.2.2. Mutual Information and Conditional Mutual Information
One measure of the relative information contained in X and Y is the Shannon mutual

information [19],

I(X;Y ) =
∫ ∫

π(x, y) log
π(x, y)
π(x)π(y)

dx dy, (18)

which can be easily shown to satisfy

I(X;Y ) = H(X)−H(X|Y )
= H(Y )−H(Y |X)
= H(X) +H(Y )−H(X,Y ). (19)
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The mutual information is a measure of independency between X and Y , since it is zero if
the random variables are independent. It can also be seen as a measure of the amount of
information that one random variable contains about another random variable [19, p. 19].

Let Z be a random variable. The conditional mutual information of X and Y , given Z, is
defined as

I(X;Y |Z) = H(X|Z)−H(X|Y, Z). (20)

Henceforth we do not distinguish between an information measure of a random variable X
and its pdf, writing, for example, H(π) for H(X), a convention used throughout [27].

4. A Model Validation Process

As explained in [5, 45, 46], model validation is a process designed to produce information
leading to confidence, or lack of confidence, in the ability of the model to predict QoIs. As
noted in the Introduction, the process can only establish if the model is not invalid under
certain conditions relative to assigned tolerances of the “degree of validity”, as well as to given
experimental data. We lay out here a process inspired by [6] with some generalizations. The
process involves the following scenarios:

• the calibration scenarios sc, which generally corresponds to simple laboratory component
experiments that yield the calibration data dc = d(sc), and

• the validation scenarios sv, which correspond to more complex sub-system-level experi-
ments that yield the validation data dv = d(sv).

In general, there may be several calibration experiments, particularly in multiphysics mod-
eling, wherein different physics attributes and their key parameters are updated in different
calibration experiments. Calibration, by definition, involves determining model parameters to
best fit experimental data. Validation experiments are, in principle, designed to challenge the
model, to test the validity of assumptions made in developing the model and how they affect
the prediction of the QoIs. For clarity, it is sufficient here to consider a single calibration sce-
nario and experiment, but we must face the problem of considering several possible validation
experiments: sv1, sv2, . . . , svK. Indeed, a central problem in model validation is the selection
of the validation scenarios that provide the most information on the capability of the model to
predict the QoI with acceptable accuracy (its “validity”), subject to some constraints, such as
cost, feasibility, etc. The prediction scenario sp prevails when carrying out the actual goal of
the simulation: the calculation of the target output, the QoI, Q.

As indicated in (13), for any scenario s, the goal is not simply to solve the forward problem
for u(θ, s), but is to compute predictions y to be compared with experimental measurements,
the observations d. For scenario s, we arrange theoretical outputs ys(θ) = y(u(θ, s)) in a vector
to be compared with the observations d = ds corresponding to s. In general, the measurements
ds agree neither with y nor with the actual physical realities. Let Λs denote the true physically
real values of the outputs for s (the unobservable realities). Then we have

Λs = ds − εs, (21)

where εs is the experimental error or noise. According to [10, 32, 33], the difference between
the real values of the physical entities and those delivered by the model is defined as bs, the
model bias (or model inadequacy or model discrepancy or model form error),

bs = Λs − ys. (22)
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Thus,
ds = ys(θ) + bs + εs. (23)

Clearly, to determine the distribution of ds given θs, one must know or have a model of the
total discrepancy, bs + εs; we refer to models of this sum as uncertainty models. We return to
this concept later, in Section 6.

At this point, the symbolic notion of a prediction pyramid discussed in [17, 44, 45, 46] is
almost unavoidable. As shown in Figure 3, the lowest level of the prediction process begins at
the base of the pyramid with calibration scenarios sc and calibration data dc. The next level is
characterized by validation scenarios sv and validation data dv. Finally, the computationally
most demanding scenario is manifested in the prediction scenario sp, in which the target QoI,
Q, is calculated. As we move up the pyramid, generally the amount of data decreases as the
complexity of the model and experiments increases. To complete the metaphor, the hidden face
of the pyramid can be the locations of the unobservables: the realities Λs.

Figure 3: The prediction pyramid (Cf. [17, 44, 45, 46]). For each scenario s, the choices d of
observations are made. The unseen face of the pyramid may be regarded as analogous to the
unobservables - the physical realities, Λs, of the outputs.

We remark that such segregating of validation processes into phases of increasing complexity
is not at all new in the literature. In the 1998 Guide [1], for example, a hierarchy of validated
phases is given, beginning with low level unit problems, then benchmark cases, then subsystem
cases, and finally the complete system. The unit problems roughly correspond to the cali-
bration scenario, the benchmark cases, to low-level validation scenarios designed to test key
assumptions; the subsystem cases to high-level validation scenarios designed to depict features
that are influenced by the QoIs. The complete system is the full prediction scenario.

4.1. The Calibration Phase
Given the prior information π(θ) on the model parameters, and the observational data

dc obtained in calibration experiments at scenario sc, we update the joint pdf of the model
parameters via

π(θ|dc) =
π(dc|θ)π(θ)

π(dc)
. (24)

Let us denote by Θc the random variable characterized by the pdf (24). Any possible realization
θ of such a random variable leads, via the forward problem (14), to a corresponding QoI, q,
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We define the random variable Qc as the calibration QoI characterized by the pdf

π(q|dc) =
∫
π(q|θ,dc)π(θ|dc) dθ. (25)

We employ sampling algorithms such as MCMC [48, 14, 54, 55] in order to generate samples of
Θc, and the computation of π(q|dc) can be done using any of several approaches, Monte Carlo
being the classical one, but others, such as polynomial chaos, stochastic collocation etc., could
be used (see, e.g. [34]).

The calibration phase provides the important opportunity to test the basic hypotheses on
which the model is based. In the case of model (8), one would wish to test the extent to which
the assumptions of a homogeneous, isotropic, and hyperelastic material stood up to calibration
experiments. Some of these hypotheses can be further tested in the validation phase, explained
next.

The information entropy (15) can be used to quantify the uncertainty in Qc:

H(Qc) = −
∫
π(q|dc) log

π(q|dc)
m

dq. (26)

4.2. The Validation Phase
In addition to running the calibration phase, which consists of calibration experiments

performed at calibration scenarios, a Bayesian inference, and the prediction of the random
variable Qc, we run a validation phase in a similar fashion. Firstly, we perform one (or more)
validation experiment(s) at validation scenario(s) sv (or sv1, sv2, . . .), collecting data dv (or
dv1,dv2, . . .). Secondly, we perform an extra Bayesian update on the model parameters, using
as prior the calibrated parameter joint pdf (24), that is,

π(θ|dv,dc) =
π(dv|θ,dc)π(θ|dc)

π(dv|dc)
. (27)

Let us denote by Θv the random variable characterized by the pdf (27). Thirdly, and
last, any possible realization θ of such random variable gives, via (10), to a corresponding Q
quantity, whose pdf is indicated by π(q|θ,dv,dc), and we denote by Qv the random variable
characterized by the pdf

π(q|dv,dc) =
∫
π(q|θ,dv,dc)π(θ|dv,dc) dθ. (28)

The quantity of uncertainty in Qv is

H(Qv) = −
∫
π(q|dv,dc) log

π(q|dv,dc)
m

dq (29)

4.3. Comparing the QoI Predictions
At this point there are four issues that come to the forefront:

1. As we progress up the prediction pyramid, with successive validation experiments and
decreasing observational data, have we gained information relevant to the predictability
of the QoIs?

2. If so, what is the quantity of uncertainty in our prediction of the QoI?
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3. Is the estimated quantity of uncertainty acceptable: i.e. is the model acceptable for its
intended use?

4. Is our best prediction of the QoI sufficiently accurate to declare that the model is not
invalid?

The first question has to do with the question of “over fitting” data - using data that are
statistically the same on nearly the same to infer new information on model parameters through
validation experiments. This becomes an issue of experimental design: design a sequence of
validation experiments so information is gained on the parameters relevant to the QoIs (see,
e.g. [16, 39, 58]. We discuss this more fully in the next section.

Given a sequence of K validation experiments, denote the posterior pdf at the i-th validation
level by

π(θ|dvi,dvi−1, . . .dc), (30)

and let Qi denote the predicted QoI obtained from the solution of the forward problem using
the parameter posterior. The pdf of Qi is

πi(q) =
∫
π(q|θ,dvi,dvi−1, . . . ,dc) π(θ|dvi,dvi−1, . . . ,dc) dθ, i = 1, 2, . . . ,K, (31)

and its uncertainty content is

H(Qi) = −
∫
πi(q) log

πi(q)
m

dq, i = 1, 2, . . . ,K. (32)

This addresses issue 2. Since the posterior of the i-th validation level is used as the prior at
the (i+ 1)-th level, we have

H(QK) ≤ H(QK−1) ≤ . . . ≤ H(Q1). (33)

At the conclusion of the validation process, we compute

π(θ|dK , . . . ,dc) =
π(dK |θ,dK−1, . . . ,dc) π(θ|dK−1, . . . ,dc)

π(dK |dK−1 . . . ,dc)
(34)

and solve the forward problem in the prediction scenario for Q = Qp, the prediction QoI, and
we compute its measure of uncertainty H(Qp).

Returning to issue 3, the decision as to the acceptability of the uncertainty in the predicted
QoI must be determined by the decision maker. Given a tolerance η0 for uncertainty, the
decision maker will deem the prediction acceptable for its intended use whenever H(Qp) ≤ η0.
The determination of η0 requires other considerations outside the validation process (using,
e.g., loss functions, decision theory, or heuristics).

Returning now to the original model based on the use of the calibrated parameters and the
prediction scenario sp, the original question, now somewhat lost in the validation process, was
whether or not the original model with calibrated parameters has a degree of validity sufficient
for the prediction of the QoI with a level of uncertainty acceptable for its intended use? We can
only compare its predictability with that of the products of the validation process which em-
ployed all of the data available to the analyst. In many respects, while interesting and relevant
to the original goal of validating a given model, this question is often of secondary importance
as the outcome of a successful validation process is the prediction of QoI distributions with ac-
ceptable levels of uncertainty. If the validation process involved well-designed experiments and
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adequately informed the model on the QoI, then the final K-th level stands as the last step in
updating the parameters. Let us assume that our estimate of H(Qp) meets our preset tolerance
for validity. Then the question of validity of the original model reduces to a comparison of the
calibrated and validated models. The KL divergence between the two QoI pdfs is

DKL[π(q|dv,dc)||π(q|dc)] =

=
∫

π(q|dv,dc) log
π(q|dv,dc)
π(q|dc)

dq. (35)

So, given the deterministic vectors (realizations of random vectors) dv and dc, we choose a
tolerance ηtol and declare:

The calibrated model is invalid if DKL in (35) > ηtol,

The calibrated model is not invalid if DKL in (35) ≤ ηtol.

 (36)

It is important to understand the reasoning behind the validation test (36). We are given a
model with parameters calibrated to produce the posterior pdf π(θ|dc). The question is: is this
a valid model for computing the QoI for the prediction scenario sp? The validation process is
viewed as a separate set of considerations designed to test the validity of the calibrated model
– not to predict Q. On the other hand, π(q|dv,dc) is expected to be a better characterization
of Q and the uncertainty in Q, since it is conditioned on the conjunction of the calibration data
dc and validation data dv. Thus, one could, and often should, use the validation prediction
π(q|dv,dc) and the characterization of Q and its uncertainty. But then this would have nothing
to do with the question of whether the original calibrated model is valid, nor would it confirm
if any of the validation steps or their ultimate prediction was based on valid models.

It is also important to note that (36) can be interpreted as a comparison of a prediction of
a QoI delivered by the calibrated model in the prediction scenario defined by the pdf π(q|dc),
with the pdf π(q|dv,dc), delivered by the model, also in the prediction scenario, but with new
parameter distributions that have been informed (updated) using the highest-level validation
data. This is a generalization of the primitive validation experiments in which deterministic
measurements are compared with model predictions, except that in the present framework the
quantities being compared are pdfs, all having been conditioned to the available data, and with
data having uncertainties. Note also that the DKL of (35) measures the relative entropy of the
prediction pdf and that of the validation process (recall (17)).

For a given fixed tolerance, ηtol, the criterion (36) may lead to the rejection of the calibrated
model as it compares the outcome of such model with that of a validation model that used a
richer data set. An alternative would be to consider the convergence of a sequence of predicted
QoIs, π(Qk), k = 0, 1, . . . ,K, with π(Q0) = π(Qc), and to judge the quality of successive
predictions by computing

γk = DKL(π(Qk)||π(Qk−1)), k > 1. (37)

If γK is small enough (γK ≤ γtol), then the model can be declared not invalid. This presumes
that the validation data dvK is selected to properly influence the QoI, an issue of experimental
design of the validation experiments. These ideas are offered as an answer to question 4.
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5. Design of Experiments

At this point, it is natural to ask the question:

How much new information on the predictions have
the (sampled) validation data dv furnished beyond
that supplied by the calibration data dc?

 (38)

Such a question naturally relates itself to the KL divergence (35) between the two QoI pdfs
(24) and (27). So, a natural follow-on question is:

What is the validation scenario sv that produces
the (random) validation data dv that maximize
the expected information gain between the two
QoI pdfs?,

 (39)

where the expected information gain is defined as

E[DKL] =
∫
Dv

[∫
Q

π(q|dv,dc)·

· log
π(q|dv,dc)
π(q|dc)

dq
]
π(dv|dc) ddv. (40)

We use the expected information gain, instead of simply information gain, because, as high-
lighted before, dv = d(sv) is a random vector.

Yet another related question is

Given the (sampled) calibration data dc, how much
can the (random) validation data dv affect Q?

}
(41)

Such a question involves the concept of conditional mutual information, presented in Subsection
3.2.2. In the situation under study, we have:

I(Q; dv|dc) =
∫
Dv

∫
Q

π(q,dv|dc) ·

· log
π(q,dv|dc)

π(q|dc)π(dv|dc)
dq ddv. (42)

The following theorem is a straightforward consequence of the definitions given thus far.

Theorem 1. The conditional mutual information (42) is the expected value of the KL diver-
gence (35) under the pdf π(dv|dc):

I(Q; dv|dc) = E{DKL[π(q|dv,dc)||π(q|dc)]}. (43)

Proof. We have

E[DKL] =
∫
Dv

[∫
Q

π(q|dv,dc)·

· log
π(q|dv,dc)
π(q|dc)

dq
]
π(dv|dc) ddv.
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But

π(q|dv,dc) =
π(q,dv,dc)
π(dv,dc)

=
π(q,dv|dc)π(dc)

π(dv,dc)

=
π(q,dv|dc)
π(dv|dc)

.

Thus,

E[DKL] =
∫
Dv

[∫
Q

π(q,dv|dc)
π(dv|dc)

·

· log
π(q,dv|dc)

π(dv|dc)π(q|dc)
dq
]
π(dv|dc) ddv

=
∫
Dv

∫
Q

π(q,dv|dc) ·

· log
π(q,dv|dc)

π(dv|dc)π(q|dc)
dq ddv

= I(Q; dv|dc).

Therefore, the scenario s∗v that maximizes the expected information gain from Qc to Qv is
the same scenario s∗v that maximizes the conditional mutual information between Q and dv,
conditioned on dc. The best scenario s∗v can thus be seen as the solution of the optimization
problem:

max
sv∈S

I(Q; dv(sv)|dc), (44)

subject, of course, to feasibility constraints (e.g. cost) and the assumption that I(·) is bounded.
In practice the scenario set S is parametrized via nξ > 1 bounded design variables ξ1, . . . , ξnξ .

Each design variable can be either discrete or continuous. If at least one is continuous, then
the number of possible scenarios is obviously infinite. For example, one can fix the physical
scenario and try to optimize the experimental scenario, e.g. find the positions of five available
probes that maximize an expected information gain. In such a case the design variables would
be the positions of the probes. Or one might want to optimize the physical scenario itself, e.g.
find the best shape of an object that is part of the validation experiment. In such a case the
design variables would be the parameters that govern the shape of the object. Or yet, all that
can be done is to select the best shape among a given finite amount of available shapes. In such
a case the design variable would be just an index assuming a value for each possible shape.

6. Virtual Experiments for Multiscale Models

In the case of multiscale models such as that discussed in Section 2, we may have access
to additional prior information (often overlooked) available on the fabrication process (or,
more generally, on microscale physical events) leading to the primal model being subjected to
validation processes. The model of the forward problem in nonlinear elastostatics embodied
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in (8), for example, is known to be the result of averaging events at a molecular scale that
described polymerization and densification steps in fabrication.

Returning to the example of the parametric class of multiscale models (8), we now consider
“virtual” calibration and validation scenarios based on the molecular substructure produced in
the polymerization step in fabrication.

6.1. Virtual Validation Processes
The full process for the sample class of problems in Section 2 is as follows:

1. Virtual Calibration Priors. In the absence of information on the macroscale parameters
θ = (α, β, γ), virtual priors can be calculated using (as “truth”) the fine-scale molecular
model. For example, a cubic representative volume element (RVE) can be generated for
the molecular model, such as is shown in Figure 4, with prescribed axial, biaxial, and
deformations mimicking laboratory experiments, for each of a set of Nc > 1 realizations of
the polymerization. The RVE volume is increased incrementally until results stabilize near
a statically meaningful state. For each prescribed deformation pattern, the total energy,
V (µ; un), of the molecular model is computed, so that E/volume is an approximation of
the stored energy function W of (5), yielding for three independent virtual tests, and three
equations for the three unknown parameters (α, β, γ). Repeating this process for the Nc

realizations produces histograms for the variation of α, β, and γ, which approximate the
joint pdf

πvirtual(θ) ≈ π(θ), (45)

where π(θ) denotes the theoretical prior pdf defined via all possible realizations of the poly-
merization. Calculations described in [8] show that reasonable representations of parameter
uncertainties can be obtained through this process.

2. Macroscale Calibration. Actual laboratory experiments are next run on physical material
specimens of the elastomer involving calibration data dc. The calibrated posterior is then

π(θ|dc) =
π(dc|θ) πvirtual(θ)

π(dc)
. (46)

3. Virtual Validation. Consider a possible validation scenario ŝv such as the prismatic molecular
domain shown in Figure 5a. The top planar boundary, denoted Γ, is formed by the points
(x, y, z) ∈ R3 that have z = 0 and are also located inside the perimeter defined by the the
corner points A, B, C, and D. The bottom planar boundary has points with z = c. On Γ
we prescribe a linear varying normal pressure field

p(x, y) =
[
p(xA, yA, 0) +

x

a
p(xB , yB , 0)+

+
y

b
p(xD, yD, 0) +

xy

ab
p(xC , yC , 0)

]
n0, (47)

where n0 is a unit vector normal to Γ, and p(xξ, yξ, 0), ξ = A,B,C,D, are the normal
pressure magnitudes prescribed at points A, B, C, and D. We then set the normal force at
any particle site (xi, yi, 0) ∈ Γ to be given by

fi = p(xi, yi)
AΓ

NΓ
, (48)
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where AΓ is the area of Γ and NΓ is the number of particles on Γ. In agreement with (2),
these particle forces are understood to be given by

fi =
∂V (µ; un)

∂ui
, i ∈ IΓ (49)

where U = {u1,u2, . . . ,uN} is the vector of particle site displacements for the molecular
statics problem (2), and IΓ is the index set of indices of particles on Γ.

We next take the observables to be the corner displacements ∆A, ∆B , ∆C , and ∆D, normal
to Γ and computed with the molecular model (see Subsection 6.2). The virtual validation
data d̂v is then defined as

d̂v = (∆A,∆B ,∆C ,∆D) (50)

for each polymerization realization, from a total of Nv > 1 realizations, as explained in
Subsection 6.2. An example of such a virtual scenario domain Ω(ŝv) is shown in Figure
6. This virtual scenario should also provide an opportunity to check the validity of basic
hypotheses used to define the molecular model, by allowing one to explore the extent of
homogeneity and isotropy in results over several realizations.

Turning now to the continuum model being validated, the equilibrium states of the body
are governed by minimizing the functional

F(v) =
∫

Ω0(ŝv)

W [(α, β, γ); v] dΩ−
∫

Γ

tΓ · n0vΓ dΓ, (51)

where v is a trial function in an appropriate space V(Ω0(ŝv)) of trial functions, W =
W [(α, β, γ); v] is the stored energy function (5), tΓ is the applied traction field normal
to the surface Γ, and vΓ is the normal trace of v on Γ. The minimizers u ∈ V(Ω0(ŝv)) of
(51) satisfy (8) and the traction boundary condition P · n0 = tΓ on Γ:

∇ · ∂W [(α, β, γ); u]
∂F

= 0 on Ω0(ŝv)),

P · n0 = tΓ on Γ,

u(x, y, c) = 0,


(52)

where P = ∂W/∂F is the first Piola-Kirchnoff stress tensor, and F is the deformation tensor
(3).

In general, only numerical approximations of solutions of (52) are obtainable; so, we cover
Ω0(ŝv) with a finite element mesh, as suggested by Figure 5b, and compute finite element
approximations of the solution of (52) for fixed θ = (α, β, γ) following long-established
methods [42]. We connect the virtual (molecular) model with the discrete approximation of
the continuum model by setting

tΓ = p(x, y). (53)

With this boundary data now prescribed, we can solve the discrete model of (52) and
compute the model outputs ŷv = ŷv(uh(θ, ŝv)) for d̂v,

ŷv =


n0 · uh(θ, ŝv;A)
n0 · uh(θ, ŝv;B)
n0 · uh(θ, ŝv;C)
n0 · uh(θ, ŝv;D)

 , (54)
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for any θ in the support of the posterior pdf (46). In (54), uh(θ, ŝv; ξ), ξ = A,B,C,D, are
obviously the corner values of the finite element approximation uh on Γ.

Comparing the discrete model outputs (54) with the virtual data (50), and assuming additive
data noise and modeling error, we have

ŷv − d̂v = ε. (55)

The uncertainty embodied in ε reflects assumptions about the discrepancy between observa-
tions and model outputs, and it is not to be confused with εs of (21): here ε = −(bs + εs).
The discrepancy model can itself be subjected to calibration, in which case the random vec-
tor θ is augmented with extra parameters. Customarily, in statistical inverse problems (see
e.g. [61]), one assumes a Gaussian ε with zero mean and covariance matrix Cε, causing the
likelihood of d̂v to have the form

π(d̂v|θ,dc) ∝ exp
{
−1

2
[ŷv − d̂v]T ·C−1

ε · [ŷv − d̂v]
}
. (56)

Thus, the virtual validation experiment leads to the posterior pdf,

π(θ|d̂v,dc) =
π(d̂v|θ,dc)π(θ|dc)

π(d̂v|dc)
. (57)

This process can, of course, be repeated for other virtual validation scenarios, such as those
pictured symbolically in Figure 7. A more general approach is outline in Section 7 that
targets estimating model bias.

4. Information Gain. It remains to choose the validation scenario that produces the largest
expected information gain over the calibration posterior pdf (46), among all scenarios con-
sidered. The virtual validation scenarios leading to the largest information gain are judged
to be candidates of the construction and implementation of actual, physical validation ex-
periments.

5. Validation. At this point, one may proceed to construct actual validation experiments ap-
proximated by the virtual scenarios and validation calculations. The remainder of the process
leading to the validation test (36) is then completed.
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(a)

(b)

(c)

Figure 4: Molecular models of RVEs used in the calibration phase to produce priors for
macroscale model parameters (taken from [9]): a) relaxation, b) uniaxial stretch, and c) biaxial
stretch.

6.2. Solution of the Molecular Model
To obtain numerical solutions to the molecular model of the validation experiments, we

employ the methods of adaptive multiscale modeling developed in [8, 9, 51]. The idea is to
replace the molecular model with a hybrid multiscale model in which a continuum-hyperelastic
model based on (8) is used in the part of the domain Ω0(ŝv), and a molecular model is used in
the neighborhood of data of interest (in the earlier example, those would be the neighborhood
of corners of the plane Γ), and an interface between the molecular model and a finite-element
approximation of the continuum model is implemented using the Arlequin method. By com-
puting a posteriori estimates of errors in the data of interest, relative to the fine-scale molecular
model, an adaptive modeling scheme can be used to furnish fine-scale information sufficient to
control the error in the data of interest. Interestingly, it is sufficient to use calibrated pdfs for
the continuum model parameters θ in these algorithms.
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(a)

(b)

Figure 5: (a) Molecular model of a validation scenario subject to prescribed discrete force
field on Γ and probed corner displacements ∆A, ∆B , ∆C , and ∆D, and (b) a finite element
discretization of the continuum model of the scenario subjected to surface tractions tΓ.
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Figure 6: Three-million degree of freedom molecular model of one realization of the problem
domain ŝv (after [9]).

Figure 7: Symbolic view of sequence of possible validation scenarios.

Let the vector d̂v ∈ Rnd designate the data to be generated by the molecular model, and
let d̂` designate the `-th component of such vector, ` = 1, . . . , nd. The algorithmic steps in this
process are summarized as follows:

1. Given an integer Nv > 1, perform steps 2-8 for r = 1, 2, . . . , Nv.

2. A polymeric densification model of the domain ŝv (plus boundary conditions) is generated
following the process described in Subsection 6.1, with lattice-site potentials Eik of (2) known
for the r-th realization of the molecular structure. The fine scale forward problem is then
defined by the system (2). A weak form of the forward problem is:

Find U = {u1,u2, . . . ,uN} ∈ U such that

R(µ; U; V) = 0 ∀ V ∈ V, (58)
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where R(·; ·) is the residual functional,

R(µ; U; V) =
N∑
i=1

{
∂V (µ; un)

∂ui
− fi

}
· vi, (59)

and U and V are appropriate trial and test spaces of N vectors in R3, V being the space of test
functions satisfying appropriate boundary conditions. Throughout, we assume the fine-scale
model of the polymer densification is (virtually) a representation of physical reality; that is,
the parameters in the definitions of molecular potentials are known exactly, even though
each realization of the polymerization leads to different conformations of the molecular
constituents.

3. Construct the adjoint problem to (58),

∂R(µ; U; V)
∂U

: P = d̂`(V) ∀ V ∈ V (60)

or, equivalently,
N∑
i=1

N∑
j=1

∂2V (µ; un)
∂ui∂uj

p(`)
j · vi = d̂`(V) ∀ V ∈ V, (61)

where p(`) = {p(`)
1 ,p(`)

2 , . . . ,p(`)
N } is the solution to the adjoint problem, given the solution

U to (58), and d̂` is the data to be generated by the molecular model, as discussed in
Subsection 6.1. Here we assume d̂` is characterized by a linear functional on V, but nonlinear
generalizations are straightforward [51].

4. Construct a hybrid-continuum-molecular model, with molecular structure near the subdo-
main containing the data to be measured, continuum (in this case, an elastomer modeled
using the system (8)) with an appropriate molecular-continuum interface Γ implemented
using the Arlequin method (see [8, 9]).

5. Solve the hybrid model for the hybrid solution Ûh and the corresponding hybrid model
approximation d̂hv=(d̂h1 , . . . , d̂

h
nd

) to the data d̂(r)
v =(d̂1, . . . , d̂nd).

6. To first order [9, 15, 49, 51], the error in the hybrid model approximation of d̂(r)
v is

ε` ≡ |d̂` − d̂h` | ≈ |R(Ûh,p(`))|, (62)

where p(`) is the solution to the adjoint problem (60). Let us define

ε = max{ε1, . . . , εnd}. (63)

7. Introduce an error tolerance εtol for the modeling error ε of (63) and implement the goal-
oriented adaptivity algorithm of [9, 15]. If ε̂ > εtol, more fine-scale information is added to
the hybrid model. An example of steps in the adaptive modeling algorithm is illustrated in
Figure 8.

8. Continue the adaptive modeling process until ε ≤ εtol.

Steps 2-8 are performed for Nv realizations of the polymerization molecular structure, allowing
the generation of Nv samples of the random variable D̂v.

This process leads to an approximation of the random validation data D̂v and its uncertainty
due to multiple realizations of the polymerization process.
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Figure 8: A sequence of adaptive models of a possible validation scenario, beginning with the
full molecular model (top subfigure) and adaptively adding data (the other two subfigures)
to a continuous hybrid model to control the error in quantities of interest, such as validation
data (adapted from [9]).

7. Approximation of Model Bias and Hyper-Model Plausibilities

7.1. Virtual Calibration
Let us return to the example described in Section 6 and consider the problem of calibration

and of determining the model bias in models such as that described by (22) and (23). We con-
sider a calibration in which a coupon of polymer material is identified which forms a prismatic
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Figure 9: A realization of a molecular model of a calibration domain Ω subjected to controllable
kinematic constraints, and probe points xi ∈ Ω, i = 1, 2, . . . , N .

RVE occupying a region Ω in R3, as illustrated in Fig. 9. This is one realization of a molecular-
scale calibration scenario. As one generates polymer conformations through polymerization
algorithms, generally driven by kinetic Monte Carlo strategies, many consistent realizations
of the polymer molecular structure are generated. Experiments (virtually) on RVEs for each
realization yield histograms which define the uncertainty in key parameters once the molecular
model parameters are known. In each such experiment, we prescribe a controlled kinematic
constraint defined by the extension of plane EFGH an amount ∆ in the x1-direction, while
keeping plane ABCD planar and fixed. Let q = {q1,q2, . . . ,qn} denote a 3n-vector defining a
QoI:

q(v) =
n∑
i=1

qi · vi, v ∈ U . (64)

In this case, the QoI is an output outside the set of observational data vector dc.
Let x∗I denote a particular molecule site in domain Ωc of sc at which the solution un∗ will

be sampled; i.e. x∗I is an input point, and u∗I the displacement of molecule I. Set q =
{0,0, . . . ,1, . . . ,0}, where 1 is a unit vector at site x∗I in the direction of the observational
probe. Then

q(v) = 1 · vI . (65)

Let p∗ denote the solution of the adjoint problem (61) for this choice of a QoI. Then the
“experimental” observation of the displacement component u∗I is q(un∗ ) = u∗I .

Next, let sn be an arbitrary 3n-vector in U . It is proved in [49] (see also [51]) that

q(un∗ )− q(sn) = R(µ; sn,p∗) + ∆, (66)

where R(·; ·, ·) is the residual (59) and ∆ is a remainder of order ‖un∗ − sn‖σ, σ ≥ 2, ‖ · ‖ being
the Euclidean norm on U . In general, ∆ is neglected if sn is “close” to un∗ (recall (62)). Then
R(µ; un∗ ,p∗) provides an a posteriori estimate of the error produced by approximating q(un∗ )
by q(sn) = 1 · s∗I .
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Let us now suppose that we cover the domain Ωc with a finite element mesh Ωhc with Nh

nodes, each coinciding with a molecule site (generally, Nh � n) and let wh denote a finite
element approximation of the solution of the continuum-macromodel M for the sc geometry
and boundary conditions. Let Πwh denote a projection of wh = wh(θ) onto the molecule sites,
so Πwh ∈ U . Here θ designates the parameters of the macromodel M. Denote q(Πwh) = wh∗I .
Then (66) reduces to

1 · u∗I − wh∗I = R(µ; Πwh,p∗). (67)

The interpretation of (67) is as follows. The macroscale model of equilibrium deformation
of an elastomeric body, our model problem, is replaced by a computational model defined
by a finite element approximation, yielding a solution wh(θ; x), x ∈ Ωc. For mesh size h
sufficiently small, wh is assumed to be a good approximation of w. We probe model outputs
at controllable input point x∗I which also are molecule sites in the fine-scale molecular model
of the system: Πwh(θ,x∗I) = wh∗

I . The solution of the molecular model is un∗ and its depiction
of the coordinates of the displaced input point x∗I is r∗I . Thus (67) represents a fine-scale
approximation of the modeling error, the model bias b(x∗I) = b∗I at input point x∗I : b

∗
I = 1 ·b∗I ,

b∗I = R(µ; Πwh,p∗). (68)

We repeat this calculation at m points x∗k ∈ Ωc, k = 1, 2, . . . ,m to obtain a discrete character-
ization of model bias bI over Ωc for the calibration scenario.

We now repeat this process for many realizations of the polymer molecular structure, produc-
ing a histogram of each bias component (68) which approximates a pdf πb(b∗I). The collection
of such pdfs πb(b∗I), for various molecular sites I, allows us to produce a fine-scale approxima-
tion of the likelihood probability π(d|θ,M) of a data set d generated by the molecular model,
conditioned on the macromodel M and its parameters θ.

7.2. Other Bias Models
Procedures that attempt to account for model bias generally involve introducing a new

uncertainty model for model discrepancy, ranging from the common strategy of assuming simply
at Gaussian likelihood with zero mean as done in (56) and often in the literature (e.g. [28,
29, 45, 61]), to the use of Gaussian processes to depict differences between observational data
(corrected for experimental noise) and model predictions [33, 10], to the use of embedded
models for model error [38], to the use of fine-scale data as described in the development in
Subsection 7.1. In all cases, the introduction of such models of bias involves the addition of new
parameters into the process; e.g. the hyperparameters of Gaussian processes or the fine-scale
model parameters µ. These additional parameters may be determined from prior information
available on the underlying fine-scale model (such as the case when the interaction potential
parameters µ are known) or they may be added to the model parameters θ to be updated in
the Bayesian calibration and validation processes, or, in some cases, as in [10, 25], they are
determined approximately using MLE (Maximum Likelihood) methods.

It would seem that for models of physical phenomena such as those considered in this
work, the most satisfactory approach would be to generate models of bias based on what is
known about the purposes of the problem at hand. Beginning with the elastostatics model
characterized by (5) and (7) (or by (8)), one could consider more general hierarchical families
of models such as those for which

P =
∂

∂F

{
m1∑
r=1

m2∑
s=1

m3∑
t=1

Crst(I1(C)− 1)r(I2(C)− 1)s(J(C)− 1)t − κ ln J(C)

}
+ ζG(Ċ), (69)
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where P is the Piola-Kirchhoff stress (recall (52)) and now the model parameters are the
coefficients {Crst} and ζ and G is a factor defining rate effects. Various possible improvements
in the original model are obtained by truncating the series in (69). Thus, we can generate a
family M of models representing possible improvements of the original model, each with the
original parameters θ = (α, β, γ) plus additional paramters as in (69).

Let Mk ∈ M be a model in this family, and let θk be its parameters. The posterior
plausibility of model Mk ∈M is defined by

ρ(Mk|d,M) =
π(d|Mk)ρ(Mk|M)

π(d|M)
, (70)

where d is the data produced by the molecular model, π(d|Mk) is the evidence of the macro-
model Mk,

π(d|Mk) =
∫
π(d|θk,Mk)π(θk|Mk) dθk, (71)

and ρ(Mk|M) is a prescribed prior plausibility of Mk in M. We note that∑
k

ρ(Mk|d,M) = 1. (72)

Thus, the plausibilities provide a powerful tool to judge which models among the set M are
the most plausible given the data, the models with plausibilities closest to unity being the most
plausible and the best to reduce the bias in the original model.

The plausibility ρ computed as in (70) assumes that the parameters µ of the molecular
model, used to produce the data d, are known exactly, which is not generally the case. More
generically, one has

π(d|Mk) =
∫

µ space

π(d|µ,Mk)π(µ|Mk) dµ. (73)

The integral (73) can be approximated by a Monte Carlo procedure,

π(d|Mk) ≈ 1
J

J∑
j=1

π(d|µ(j),Mk), (74)

where the J samples µ(j), j = 1, 2, . . . , J , are generated according to the given distribution
π(µ|Mk). Usually, the distribution of µ can be assumed to be independent of Mk.

8. Other Remarks

An issue that arises is what provisions need to be made for cases in which a vector Q =
{Q1, Q2, . . . , Qnq} of multiple QoIs is designated in the prediction scenario. The answer is
that the processes developed in this study carry over without modification to problems with
multiple QoIs. The validation criteria may be applied to each Qi using the same process, in
some cases possibly without additional validation experiments. In such cases, one may find that
the validation criterion is satisfied for some QoIs but not all, in which case the model is not
invalid for those passing the test (36) but invalid for the remaining QoIs. It is even possible to
apply the same processes to the joint pdf of all components in Q, or to joint pdfs of subgroups
of Q components.
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Finally, we remark that the idea of using microscale models as a basis for the design of
validation experiments need not be restricted to the very complex molecular models of the type
described here. Any reasonable model that results from homogenization processes has as its
base a fine-scale structure that could, in theory, be used to supply additional information for
the design of experiments.
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Appendix A. Molecular Models of Molecular Systems

Consider a molecular or atomic system consisting of n particles, in motion under the action
of applied forces. A realization of the polymerization molecular structure and bonds forming
polymer chains is illustrated in Fig. A.1. The state of the system is described by n coordinate-
momentum pairs {(ri,pi)}ni=1, so that the instantaneous state of the system is defined by the
set {ri, r2, . . . , rn; p1,p2, . . . ,pn} written compactly as (rn,pn). The Hamiltonian of such a
system is of the form,

H(rn,pn) =
n∑
i=1

pi · pi
2mi

+ V (rn)−
n∑
i=1

fi · ui, (A.1)

where mi is the mass of the particle (atom or moelcular) at site i, V (rn) is the total potential
energy, and fi is the applied force at site i. The equations of motion are:

ṙ =
∂H(rn,pn)

∂pi
; ṗ = −∂H(rn,pn)

∂ri
. (A.2)

In most molecular dynamics (MD) simulations, one assumes pi = miṙi, so that the system
is governed by the laws of Newtonian mechanics. Several well-documented and verified MD
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codes are in wide-spread use for such calculations [12, 65, 18, 31, 30, 52, 11] and generally
provide access to interaction potentials of the form

V (rn) =
n∑
i=1

V1(ri) +
n∑

i,j=1
j<i

V2(ri, rj) +
n∑
i,j,k
k>j>i

V3(ri, rj , rk) + . . . (A.3)

where Vs is the s-body potential. Typically, cut-off radii are introduced to include only inter-
actions of particles within that radius. A general form of V for a network of long molecular
chains is [35]:

V (rn) =
Nco∑
i=1

ki
2

(r− r0i)2 +
Nθ∑
i=1

κi
2

(θi − θ0i)2

+
Nω∑
i=1

κti
2

(1 + cos(iω − γ))2

+
N∑
i=1

N∑
j=i+1

{
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj

4πε0rij

}
(A.4)

Here, r0i, θ0i, and γ are initial values of ri, θi and ωi, rij = |ri − rj |, Nco is the number of
covalent bonds with bond stiffness ki, κi denotes the rotational stiffness at the junction of bond
lengths due to rotation θi of one link with respect to another, κti are the torsional stiffnesses,
with torsional rotation ω, and the final term represents non-bonded interactions of a van der
Waals bond represented by the 12-6 Lennard-Jones potential and the unbonded Coulombic
interactions between atoms or molecules with charges qi and qj .

The molecular model parameters are thus the set µ:

µ = {ki, κi, κti, εij , γ, σij} (A.5)

and must be supplied to define V (rn) for a given polymer realization. The initial positions r0i

of particle sites maybe regarded as known features of the model input independently of energy
potentials, or they can be listed as additional parameters. We shall assume these quantities are
exactly specified and write henceforth V = V (µ; un) to emphasize this point.
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Figure A.1: A color-coded representation of one realization of a polymerization in which
monomers, reactants, and voids are colored differently and assigned lattice sites in a KMC
process, the green molecules representing the boundary substrate. Also shown is a blow up
of bonds connecting sites once interaction potentials have been designated (Reproduced with
permission from [9]).
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