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“...the progress of science requires comparison of different conceivable
models, a false premise built into a model that is never questioned

cannot be removed by any amount of new data”

E. T. Jaynes, Probability Theory: The Logic of Science, 2003

We address general approaches to the rational selection and validation of mathematical
and computational models of tumor growth using methods of Bayesian inference. The
model classes are derived from a general diffuse-interface, continuum mixture theory
and focus on mass conservation of mixtures with up to four species. Synthetic data are
generated using higher-order base models. We discuss general approaches to model cal-
ibration, validation, plausibility, and selection based on Bayesian-based methods, infor-
mation theory, and maximum information entropy. We also address computational issues
and provide numerical experiments based on Markov chain Monte Carlo algorithms and

high performance computing implementations.
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tion; Markov chain Monte Carlo methods.

AMS Subject Classification: 62F07, 62F15, 65C40, 65M60, 93A30

1. Introduction

The heart of predictive science is the development of mathematical and computa-
tional models, guided by observational data, but mainly as the result of inductive
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arguments on how various physical systems behave. A remarkable development over
the last two decades has been the growing number of models that have been pro-
posed for predicting the behavior of biological systems, including the functioning
of living tissue. Predictive science for such systems would obviously have a signifi-
cant impact on biomedicine, various therapies, drug design, and drug delivery. Of
particular interest is the increasing number of mathematical models proposed for
describing the growth and behavior of tumors as illustrated by the reviews1,19 and
books.11,34,5 The variety of techniques discussed and used in these references is
reflective of the fact that capturing the behavior of living matter is much different
than capturing the behavior of inert matter. Quoting Hartwell et al.,18 “Although
living systems obey the laws of physics and chemistry, the notion of function or
purpose differentiates biology from other natural sciences.” Biological systems exist
to reproduce and do not exist in thermal equilibrium. In tumor growth, key events
dictating the observed tumor kinetics occur on many different scales: genetic muta-
tions within cell nuclei, on the scale of angstroms, generate different proteins in
various concentrations in the cell, on the order of nanometers, causing different
cellular behavior on the microscale, ultimately giving rise to various behaviors in
the host organism on the macroscale.9,17,16

In spite of this, there is increasing evidence that many of the complex pro-
cesses involved in the growth of tumors, including angiogenesis, nutrient transport,
instability and progression to metastasis etc. can be captured by phenomenological
models, and by careful characterizations of mechanical, chemical, and thermody-
namical properties of tissue species. References 6, 5, 14, 15, 45, 40 and 44, the
models described in Refs. 1, 4 and 19, and many others contain results that make a
convincing case that the prediction of tumor growth and, ultimately, the treatment
of certain types of cancer may be made possible through advances in computational
modeling. Many of the models in the references already mentioned focus on events
at a single level, though an effort is being made to create multiscale models bridging
at least two scales. The review by Bellomo et al.4 highlights this effort and goes
through the types of analysis required for finding the asymptotic limiting behavior
of the larger scales from the smaller scales.

A major issue in modeling tumor growth is choosing the appropriate modeling
framework for capturing the desired tumor behavior and then applying such gen-
eral theories to specific problems. Selecting the appropriate subclass of models for
understanding specific events is confounded by the fact that tumors are genetically
unstable and thus the appropriate model parameters may change over time. Thus,
questions of how to calibrate such models using available data, in what sense are
the models valid given the observational data, and how can uncertainties in key
quantities of interest, such as net tumor volume, be quantified, are of paramount
importance. We believe that answers to these key questions fall within the general
domain of Bayesian methods of inference and the powerful ideas of logical prob-
ability and information theory which are often associated with them. This paper
explores how these methods can be used with examples at continuum scale events,
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though a full understanding of the system will require information from all scales.
We believe the techniques described are generalizable and could be and should
be used for modeling events at any scale. Indeed, the general approach should be
applicable to all models of physical and biological events.

As examples of classes of tumor growth models that can be derived from phase-
field (diffused interface) theories of mixtures, we lay down four general models of
mass balance in the next section of this paper. These are derived as special cases
of a general mixture-theory formulation derived in Ref. 30 which generalizes mod-
els of similar structure found in earlier literature. Additionally, we review briefly
a framework for statistical model validation discussed also in Ref. 30. This pro-
vides the setting for a discussion of the general and fundamental question: which
of the models in a given set of candidate competing models is the most plausible,
for a well-defined physical event and given relevant data? We also address related
concepts of information content in probability densities as a means of selecting
priors and of quantifying uncertainty to output quantities of interest. Finally, we
present the results of several numerical calculations of statistical properties of solu-
tions of two-dimensional models of tumor growth based on the models introduced
in Sec. 2.

2. Diffuse-Interface Models of Tumor Growth

The continuum theory of mixtures began with the classical works of Darcy12 and
Fick,13 and was generalized in Refs. 42 and 43, as well as in the pioneering papers
of Bowen8 and Rajagopal.38 These provide a powerful framework for modeling the
complex behavior of heterogeneous media with many interacting constituents, and
has been the foundation of several models of tumor growth, e.g. Refs. 1, 10, 11, 15,
19, 20 and 30.

This multiphase theory represents the presence of each constituent as a volume
fraction or a mass concentration, allowing multiple constituents to be present at the
same point at the same time. Further, the interface between phases is handled as
a feature of the solution by representing surface energies of interfaces between con-
stituents through the appearance of gradients of volume fractions in the Helmholtz
free energy, leading to so-called diffuse-interface models of the Cahn–Hilliard type.
The theory is a rich source of new largely untried models of the complex behavior
of interacting media.

The fundamental idea underlying mixture theory is that a material body B
can be composed of N constituent species B1, . . . ,BN , each occupying a common
portion of space at the same time. Each spatial position is then allowed to be
occupied by N constituents and each constituent is assigned a mass density ρ̂α,
regarded as a function of position and time, (x, t), which represents the mass of
the αth constituent per unit volume of the mixture, a volume fraction ϕα, with∑N

i=1 ϕα = 1, and a mass density ρα (so ρ̂α = ϕαρα). Each of the N constituents
must satisfy its own balance laws which differ from those of classical continuum
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mechanics due to the presence of interaction terms representing the exchange of
mass, momentum, and energy between constituents.

Here we focus on the principal mechanisms of mass exchange and conserva-
tion of mass among species, assuming that momentum and energy transfer are
negligible.

For a general mixture occupying an open region Ω in R
3 over a time interval

(0, T ], the volume fractions, ϕα, and other independent field variables must satisfy
the following mass balance law for all α, 1 ≤ α ≤ N , all x ∈ Ω, and t ∈ (0, T ]:

∂ραϕα

∂t
+ ∇ · (ραϕαvα) = γα −∇ · jα, (2.1)

where γα is the mass supplied to constituent α by other constituents and jα is the
mass flux due to changes in the chemical potential defined in terms of gradients
in concentrations and changes in nutrient concentrations, and vα is the species
velocity field.

Equation (2.1) is closed by the appropriate choices of constitutive equations,
which must be consistent with both the second law of thermodynamics for the
mixture and the classical balance laws for the entire mixture. By introducing the
Helmholtz free energy per unit mass ψα for each constituent, or the free energy Ψα

per unit volume, the classical Coleman–Noll method makes use of the constraints
from classical balance laws and the second law of thermodynamics to supply suf-
ficient conditions on forms of key constitutive equations in terms of appropriate
derivatives of the free energy (see Refs. 19, 10 and 30). In the diffuse-interface
theories, with negligible thermomechanical effects, the Helmholtz free energy is
assumed to be of the form

Ψα = Ψα(ϕ1, . . . , ϕN ,∇ϕ1, . . . ,∇ϕN ,m1, . . . ,mL). (2.2)

The values ml, 1 ≤ l ≤ L, represent concentrations of chemicals or small polypep-
tides which interact with the species ϕα but are so much smaller in size than the
constituents that it is not necessary to consider them directly within the mixture,
e.g. oxygen or glucose. It can be argued (see e.g. Ref. 30) that a resulting consistent
constitutive equation for jα is of the form

jα = −
N∑

β=1

Mαβ(ϕ,mα)∇
(
µβα

ρα

)
, (2.3)

where Mαβ is a positive semi-definite, second-order mobility tensor and µαβ is
interpreted as the chemical potential, defined as

µαβ =
∂Ψα

∂ϕβ
−∇ · ∂Ψα

∂∇ϕβ
. (2.4)

Other details on this theory are given in Refs. 19 and 30.
Next we consider an organ or gland that occupies a region Ω in R

3 at time
t = 0. Oxygenated blood and other nutrients may flow into and out of Ω over a
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time interval of interest [0, T ]. Within this domain, we assume there is a subdo-
main Ωtumor, possibly not connected, which is comprised of tumorous tissue with
material properties different than its surrounding tissue. We begin, for simplicity,
with the case of an isothermal mixture consisting of at least a tumor species u
and non-tumor n (i.e. healthy tissue, extracellular proteins, and fluid). We may
include convective velocity, or may assume that it is negligible. Additionally, we
may include in our model a representative nutrient, c, say oxygen. It is always
assumed that the mixture is saturated (i.e.

∑
α ϕα = 1). With these conventions in

mind, we postulate a form of the free energy functional for the tumor phase similar
to that used in the Cahn–Hilliard theory, augmented with a term corresponding to
a lower energy when the tumor is able to interact with the chemical species, such as
oxygen:

Ψu(u,∇u, c) = γu2(u− 1)2 +
ε2

2|∇u|2 − τ(u, c), (2.5)

where γ, τ, and ε are positive constants. Here u = ϕ1, the volume fraction of cancer
cells, and c is the oxygen concentration per unit volume. The first term is a double-
well potential with minima at u = 0 and u = 1, the second term can be thought of
as energy due to surface tension, and the final term is energy due to reactions with
the nutrient and accounts for cell chemotaxis.

Introducing (2.5), (2.4), and (2.3) into (2.1) produces a general family of tumor
growth models in which several specific subfamilies of models can be obtained. We
focus on three models, as follows:

A1: Simple Proliferation

ut = ∇ · (ζ∇µ) + Pu in (0, T ) × Ω,

µ = f ′(u) − ε2∆u in (0, T ) × Ω,

∇u · n = ∇µ · n = 0 on (0, T )× ∂Ω,

u(0,x) = u0 in {0} × Ω,

f ′(u) = γ(4u3 − 6u2 + 2u).

(2.6)

A2: Proliferation/Apoptosis, with Degenerate Mobility and Oxygen
Dependence

ut = ∇ · (ζu2∇µ) + Pcu−Au in (0, T ) × Ω,

µ = f ′(u) − ε2∆u − ετc in (0, T ) × Ω,

0 = ∇ · (ξ∇c) − cu in (0, T ) × Ω,

∇u · n = ∇µ · n = 0 c = 1 on (0, T ) × ∂Ω,

u(0,x) = u0 in {0} × Ω,

f ′(u) = γ(4u3 − 6u2 + 2u).

(2.7)
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A3: Four Species Proliferation, Including Nutrient Rich Extracellular
Water

ut = ∇ · (ζu2∇µ1) + δP (u)(µ2 − µ1) in (0, T )× Ω,
µ1 = f ′(u) − ε2∆u+ τ,u(u, c) in (0, T )× Ω,
0 = ∇ · (δξ∇µ2) − δP (u)(µ2 − µ1) in (0, T )× Ω,

µ2 =
1
δ
c+ τ,c(u, c) in (0, T )× Ω,

∇u · n = ∇µ1 · n = ∇µ2 · n = 0, c = 1 on (0, T ) × ∂Ω,

u(0,x) = u0 in {0} × Ω,

f ′(u) = γ(4u3 − 6u2 + 2u),

τ(u, c) = −τ0uc,
P (u) = P̂ (u − 0.1)(1 − u).

(2.8)

We use the terminology “Parametric Model Class”, or PMC, to describe the
models (2.6)–(2.8), and to emphasize that each of these models is in fact an infinite
class of models parametrized by the physical parameters of each system for given
Ω and [0, T ]. PMCs also include the prior information in such parameters. A more
complete definition of a PMC is given in subsequent sections.

In deriving PMC M1 (related to A1), it is assumed that there are only two
species, u and n. Convective velocity is ignored, the term τ (u, c) in the free energy
is assumed zero and γu is taken as a simple, linear proliferation wherever there is
species u.

There is also assumed to be only two species, u and n, in PMC M2 (related
to A2), but the effects of oxygen are now considered. Specifically, τ (u, c) = −τuc
and the oxygen concentration is modeled via a separate reaction diffusion–reaction
equation. Additionally, the mass exchange term γu also includes effects of oxygen,
that is the tumor will only proliferate significantly if there is enough oxygen present.

Finally, in PMC M3 (related to A3) four species are considered. This model
differs from M2 in that it includes the oxygen within the mixture. That is, the four
species are tumor cells u, healthy cells n, nutrient-rich extracellular water c, and
nutrient-poor extracellular water w. Additional saturation constraints are placed
on this model as well; in particular, (1) u + n = C and (2) c+ w = 1 − C. Again,
equations can be renormalized such that u + n = 1 and then c + w = 1, and still
only u and c need be taken as unknowns to determine the entire system. The term
τ(u, c) is taken as the function given in (2.8). Additionally, the mass exchange terms
are now chosen such that the equations are guaranteed to be thermodynamically
consistent. More details on this model are given in Ref. 21.

3. Abstractions: General Parametric Model Classes

We now digress to the consideration of an abstract class of deterministic or stochas-
tic mathematical models which contains those described in the previous section.
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This development represents a generalization of that given in Ref. 30. We begin
by considering a set M = {M1,M2, . . . ,Mm} of PMCs. In PMC Mj , we have the
central forward problem of finding a solution uj to the problem,

Aj(θj , s;uj(θj , s)) = 0, (3.1)

where Aj is a collection of operators (such as the partial differential operators in
(2.6)–(2.8)), θj is a vector of model parameters (such as coefficients, moduli, etc.
in (2.6), (2.7), or (2.8)), and s is a scenario under which the operations Aj are to
function (such as the solution domain Ω, the boundary data, source terms, etc.).
The following remarks are given to clarify the intended meaning of (3.1):

• The model parameters θj belong to a parameter manifold Vθj and run over a
range of physical values. Each specific value θj

∗ defines a different model in
the PMC Mj . The determination of which values θj pertain to a given physical
situation is generally a problem of model calibration, and depends upon the
scenario s.

• The model equation (3.1) can typically be applied to many different scenarios,
ranging from one-dimensional laboratory tests, in vitro experiments, multiple
components tests in two-dimensional setting produced by tomographical modal-
ities, etc. The initial-condition data can be assumed to be given as part of the
scenario, but it can also be regarded as part of the vector θj . The most general
scenario is that in which the target predictions of the model are to be made,
and that is the prediction scenario s = sp. The notion of what constitutes the
model parameters θj and what constitutes a scenario is a somewhat subjective
decision. For simplicity, we will regard the scenario as a well-defined deterministic
feature of the physical setting in which the model is to be implemented, although
generalizations to stochastic settings can easily be accommodated.

• The solution uj(s,θj) of problem (3.1) is assumed to exist.
• Upon solving (3.1), one can compute theoretical values Yj of observables that are

to eventually be experimentally measured, for each scenario s:

Yj = Yj(θj , s, uj(θj , s)). (3.2)

In general, Yj will differ from the actual experimentally observational data D(s),
and this difference is called noise. In the case of additive noise εj ,

εj = Yj(θj , s, uj(θj , s)) −D(s). (3.3)

• The observational data D(s) belong to a data manifold VD and is determined
experimentally for the scenario s.

This framework is designed to identify all the sources of information and uncer-
tainty that affect the use of mathematical (and computational) models to make
predictions of physical quantities of interest (as discussed in Sec. 4), and to ulti-
mately quantify the uncertainty in those predictions, which will be used as basis
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for decisions. These sources are:

(1) The model parameters θj , the initial uncertainty of which we assume is fully
characterized by a prior probability density function π(j)

prior(θj). We may include
in these parameters those defining the scenario s, which may also involve uncer-
tainties.

(2) The model equations themselves provide an imperfect map of parameters θj

into observations Yj that do not necessarily match the experimental observa-
tions D = D(s). This uncertainty is characterized by a conditional likelihood
PDF π

(j)
like(D|θj). For instance, if the additive noise εj of (3.3) is characterized

by a PDF πnoise(εj), then

π
(j)
like(D|θj) = πnoise[Yj(θj , s, u(θj, s)) −D(s)].

(3) The observational data D have prior uncertainties themselves due to experi-
mental error characterized by a prior πdata(D).

All of the information available that affects the predictability of the model and
the uncertainty of outputs are connected in the Bayes’ formula

π
(j)
post(θj |D) =

π
(j)
like(D|θj) · π(j)

prior(θj)
πdata(D)

, (3.4)

where π(j)
post(θj |D) is the posterior PDF defining the Bayesian update of the prior

information embodied in π(j)
prior(θj). Equation (3.4) is valid for each Mj separately,

a fact that will be made clear in Eqs. (5.2) and (5.5) below. From now on, for
simplification, we will suppress the superscripts “(j)”.

4. Model Validation and Uncertainty Quantification

In Sec. 3 we fixed the modeling scenario and explored the ideas of comparing dif-
ferent PMCs competing to explain experimentally observed data D(s). Here we
explore the situation of fixing the PMC but having multiple scenarios s1, s2, . . . ,
generally of increasing complexity, that form conceptually a prediction pyramid,
with lowest level calibration experiments corresponding to the base of the pyramid
(see Fig. 1). The peak is the full prediction scenario sp, where the extrapolation of
lower level information on parameters is performed to compute the target quantity
of interest (QoI) Q, the ultimate goal of a modeling program. The QoI is not an
observable quantity, else it would not be a prediction. We assume that all possible
values of Q belong to a manifold VQ, which is equipped with a measure µQ. We also
denote by Vθ the manifold of the input parameters θ, and assume it is equipped
with measure µθ.

The notion of model validation embodies processes designed to establish if a
given model can depict (or predict) physical realities as determined by experimental
observations, with acceptable accuracy. Validation processes that make use of a
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Scenarios Observations

Q

sp

sv

sc Dc

Dv

Fig. 1. The prediction pyramid of model calibration, validation, and prediction (cf. Refs. 30
and 31).

Bayesian framework are discussed, e.g. in Refs. 2, 30–32. Here we provide a brief
review and slight extension of the validation process described in Ref. 30.

The process begins with statistical calibration of parameters in a lower tier
scenario s1. This is done through an application of Bayes’ rule (3.4) for calibration
scenario s1:

πpost(θ|D1) =
πlike(D1|θ) · πprior(θ)

πdata(D1)
.

Here D1 denotes experimental observational data at the lowest level of the predic-
tion pyramid. One can presumably improve the distribution for θ by performing
additional calibration experiments at higher level scenarios, yielding for example,
an improved posterior PDF

πpost(θ|D1, D2) =
πlike(D2|θ) · πpost(θ|D1)

πdata(D2)
,

assuming that D1 and D2 are independent, i.e. πdata(D1, D2) = πdata(D1) ·
πdata(D2). More data sets D3, D4, . . . might be available from calibration exper-
iments. Let us denote by Dc all the data available from calibration experiments.
The updated PDF for θ is now used to construct a stochastic forward problem in
the prediction scenario sp:

A(πpost(θ|Dc), sp;u(πpost(θ|Dc), sp)) = 0. (4.1)

The notation used here is extended to signify that the mathematical problem of
solving for uc defined in (4.1) is now replaced by a stochastic system in which the
parameters θ are available not as real numbers but as PDFs determined by one or
more calibration processes. This so-called forward problem is solved (using standard
methods such as Monte Carlo, polynomial chaos, etc.) for

uc ≡ u(πpost(θ|Dc), sp),
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and the solution is used to compute the final QoI

Qc ≡ Q(u(πpost(θ|Dc), sp)),

which has PDF

πpred(Q|Dc) =
∫

Vθ

πpred(Q|θ, Dc) · πpost(θ|Dc) µθ(dθ). (4.2)

In addition to the calibration tests, we construct validation experiments at as
high a level of sophistication practical up the prediction pyramid. Ideally, the val-
idation scenario sv is designed to depict as many features of the final prediction
problem that will influence the QoIs Q based on prior information in the hands
of the modelers. If Dv denotes the observation data measured in the validation
experiments, the knowledge gained on the parameters is embodied in

πpost(θ|Dc, Dv) =
πlike(Dv|θ) · πpost(θ|Dc)

πdata(Dv)
,

again assuming independence between Dc and Dv. With data Dv, the stochastic
forward problem is

A(πpost(θ|Dc, Dv), sp;u(πpost(θ|Dc, Dv), sp)) = 0,

the corresponding solution is

uv ≡ u(πpost(θ|Dc, Dv), sp),

and the QoI is

Qv ≡ Q(u(πpost(θ|Dc, Dv), sp)),

which has PDF

πpred(Q|Dc, Dv) =
∫

Vθ

πpred(Q|θ, Dc, Dv) · πpost(θ|Dc, Dv) µθ(dθ). (4.3)

The underlying PMC, denoted simply “M”, can be made explicit in formulas (4.2)
and (4.3), as will be shown in Eq. (5.11) below. As already mentioned at the end
of Sec. 3, such explicit presentation of M will also happen in Eqs. (5.2) and (5.5)
below, in comparison to Eq. (3.4).

We now have two probabilistic characterizations of the QoI Q, the calibration-
based PDF πpred(Q|Dc) and the validation-based PDF πpred(Q|Dc, Dv), and pose
two fundamental questions:

(i) Validation: Is the calibrated model valid for predicting the QoI Q?
(ii) Uncertainty quantification: What is the “amount of uncertainty” in the predic-

tions πpred(Q|Dc) and πpred(Q|Dc, Dv)?

In answer to (i), we first note that no model can ever be claimed to be valid;
at best, a model is not invalid when measured against some (subjective) tolerance,
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the idea being that it is always possible that new data may be acquired that may
invalidate the model by establishing that the model cannot predict the QoIs with
sufficient accuracy. We shall declare the model not invalid when πpred(Q|Dc) is close
to πpred(Q|Dc, Dv) in some meaningful sense. We must first answer (ii) to address
how these PDFs can be compared.

According to Jaynes,23 the only reasonable function (satisfying certain mild
conditions laid down in Ref. 23) for quantifying “the amount of uncertainty” in a
probability distribution is the information entropy, defined by

H(p) = −
n∑

i=1

pi · ln(pi)

for a discrete probability distribution p = {p1, p2, . . . , pn}, and by

H(p) = −
∫
p(x) · ln

[
p(x)
m(x)

]
dx

for the continuous case, m(x) being a reference PDF. The relative entropy of two
PDFs w and z, with the support of z contained in the support of w, is defined by
the Kullback–Leibler divergence,28

DKL(z‖w) =
∫
z(x) · ln

(
z(x)
w(x)

)
dx. (4.4)

Thus, the relative uncertainty between the calibration-based and validation-based
PDFs is

DKL[πpred(Q|Dc, Dv)‖πpred(Q|Dc)]

=
∫

VQ

πpred(Q|Dc, Dv) · ln
[
πpred(Q|Dc, Dv)
πpred(Q|Dc)

]
µQ(dQ).

This can also be written

DKL[πpred(Q|Dc, Dv)‖πpred(Q|Dc)]

= H [πpred(Q|Dc, Dv), πpred(Q|Dc)] −H [πpred(Q|Dc, Dv)],

whereH [πpred(Q|Dc, Dv), πpred(Q|Dc)] is the cross entropy andH [πpred(Q|Dc, Dv)]
is the entropy of the validation-based QoI PDF. Finally, choosing a tolerance η ∈
R+, we shall say that the calibrated forward model (4.1) is not invalid if the KL
measure

DKL[πpred(Q|Dc, Dv)‖πpred(Q|Dc)] < η, (4.5)

i.e. if the information provided by the validation data on the QoI does not appre-
ciably differ from that corresponding to the calibration data.

We shall show in the next section that the unsymmetric KL measure also occurs
naturally in Bayesian model selection.
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5. Model Selection and the Concept of Parametric Model Class

The idea of developing criteria for selecting the most plausible model for a pre-
diction among several possible models for given data D has been of great interest
for many years. In some respects, the subject goes back some 650 years to Ock-
ham’s razor, advanced by the 14th century friar, William of Ockham, and gen-
erally interpreted to be the principle: use the simplest model to make predictions
among all models that are sufficient to explain observed phenomena. The debate as
to whether this is indeed a principle to guide scientific discovery has been waged
for over a century, and has involved such combatants as Popper,33 Jaynes,23 and
many others. Generally, the popular view has been that Ockham’s razor is not
a principle that can guide scientific discovery. However, Jaynes23 (p. 601), claims
that “only through modern Bayesian analysis has it (Ockham’s razor) been well
understood”. In more recent times, frameworks for models selection have been pro-
posed in the Bayesian statistics literature by Berger and Pericchi7 and others; in
engineering applications by Beck et al.;3,29 a full chapter in the recent book of
Robert39 is devoted to model choice; and Jaynes23 presents a lengthy discussion of
model choice. In this section, we describe a general framework for model selection
with some slight generalizations that pull in notions of model validation discussed
earlier.

5.1. Model evidence and plausibility

Besides the manifolds VQ and Vθ mentioned in Sec. 4, we also assume we are given
a data manifold VD, equipped with a measure µD, as well as any arbitrarily fixed
subset D ⊂ VD. We then define a “parametric model class” (PMC) as any collection
of assumptions and entities that completely determine a posterior PDF through the
Bayesian formula (3.4). A PMC is composed of:

(i) a set of mathematical equations and functions used to compute values Y com-
parable to (points in) D;

(ii) a prior PDF πprior : Vθ → R+ for such input parameters; and
(iii) a conditional PDF πlike(D|θ) : VD → R+ for any given θ ∈ Vθ.

The set of equations and functions of the PMC usually reflect physical principles
and assumptions about the phenomenon being modeled, and is sometimes referred
to as “model structure”. Each point θ ∈ Vθ specifies one (stochastic) model. The
likelihood PDF πlike(D|θ), a PDF of D, encapsulates assumptions about the dis-
crepancy between the values D that are observed in experiments and the values Y
that are computed with the particular (stochastic) model specified by θ. As a PDF,
πlike(D|θ) satisfies

∫
VD

πlike(D|θ)µD(dD) = 1 ∀θ ∈ Vθ. (5.1)
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The likelihood PDF can also be seen as a function of θ (called likelihood function)
for any arbitrarily fixed point D in VD:

L : Vθ → R+,

θ 	→ L(θ) = πlike(D|θ).

In other words, all possible (stochastic) models specified by points θ ∈ Vθ,
together with all the assumptions implicitly and explicitly made: (i) by the math-
ematical modeling structure, (ii) by πprior(θ), and (iii) by πlike(D|θ), determine
one (stochastic) PMC. We denote a PMC by the capital letter M , and rewrite the
Bayesian formula (3.4) as

πpost(θ|D,M) =
πlike(D|θ,M) · πprior(θ|M)

πdata(D|M)
, (5.2)

where

πdata(D|M) =
∫

Vθ

πlike(D|θ,M) · πprior(θ|M)µθ(dθ) (5.3)

is the normalization value (for a given D) that makes (5.2) a PDF. Since
πlike(D|θ,M) is a PDF, as stated by (5.1), it immediately follows that (5.3) is
also a PDF. Indeed,∫

VD

πdata(D|M)µD(dD) =
∫

VD

∫
Vθ

πlike(D|θ,M) · πprior(θ|M)µθ(dθ)µD(dD)

=
∫

Vθ

∫
VD

πlike(D|θ,M) · πprior(θ|M)µD(dD)µθ(dθ)

=
∫

Vθ

1 · πprior(θ|M)µθ(dθ)

= 1. (5.4)

The notation πpost(θ|D,M) indicates the conditional probability of parameters
θ given both data D and PMC M . Jaynes23 refers to (5.2) as a “higher form” of
Bayes’ theorem in which we acknowledge the PMC M as the underlying model
for the data D. The quantity (5.3) is called the model evidence for M . It defines
the probability of obtaining the reference data D given by the PMC M and its
underlying assumptions.

Let us now suppose that we have a set

M = {M1,M2, . . . ,Mm}
of m different PMCs put forward to model a specific physical event and to allow us
to make predictions. Equation (5.2) can be used intra-PMC for each PMC Mj, in
M, as follows:

πpost(θj |D,Mj) =
πlike(D|θj ,Mj) · πprior(θj |Mj)

πdata(D|Mj)
. (5.5)
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However, one can apply Bayes’ theorem not only to compare (the infinitely
many) models θj inside Mj, but also to compare (the finitely many) PMCs Mj

inside M. That is, Bayes’ theorem can be used in an inter-PMC way as follows
(note the use of “p” instead of “π”, since we are dealing with probability mass
functions instead of PDFs):

ppost(Mj |D,M) =
πdata(D|Mj) · pprior(Mj |M)

πdata(D|M)
, (5.6)

where (i) pprior (Mj |M) is the prior plausibility of Mj, i.e. the prior probabil-
ity of Mj in the set M, (ii) ppost(Mj |D,M) is the posterior plausibility of Mj ,
(iii) πdata(D|Mj) is the model evidence appearing in (5.5), i.e. a PDF describing
how probable D is according to computations performed with Mj, and (iv) the
constant

πdata(D|M) =
m∑

j=1

πdata(D|Mj) · pprior(Mj |M) (5.7)

is the normalization value (for a given D) that makes (5.6) a probability mass
function, that is,

m∑
j=1

ppost(Mj |D,M) = 1.

Since πdata(D|Mj) is a PDF, as stated by (5.4), it immediately follows that (5.7)
is also a PDF.

Equation (5.6) provides a mean to compare PMCs for the given setD of reference
data and to pick the most plausible one. A PMC Mj1 is deemed “better” than
PMC Mj2 if ppost(Mj1 |D,M) > ppost(Mj2 |D,M). The superiority of one PMC
over another clearly depends upon the particular D, as indicated by the conditional
notation. It is also clear that the evidence (5.3) is a fundamental quantity for the
determination of the status of PMC M relative to other PMCs.23

5.2. A quantitative interpretation of Ockham’s razor

We now discuss an interpretation of Ockham’s razor, following Ref. 29. From (5.5)
it is immediate that

ln(πdata(D|Mj)) = ln(πlike(D|θj ,Mj)) ln
(
πpost(θj |D,Mj)
πprior(θj |Mj)

)
.

Now, multiplying all terms by πpost(θj |D,Mj) and integrating over Vθj , we obtain

ln(πdata(D|Mj)) = E[ln(πlike(D|θj ,Mj))] − E

[
ln

(
πpost(θj |D,Mj)
πprior(θj |Mj)

)]
, (5.8)

where the expectation is with respect to the posterior πpost(θj |D,Mj).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
E

X
A

S 
A

T
 A

U
ST

IN
 L

IB
R

A
R

IE
S 

on
 1

1/
20

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 3, 2012 9:3 WSPC/103-M3AS 1350010

Selection and Assessment of Phenomenological Models of Tumor Growth 15

In Eq. (5.8), the term

E[ln(πlike(D|θj ,Mj))] (5.9)

can be interpreted as a measure of how well the PMC Mj fits the data, since it
involves an average of the likelihood of each model θj in Mj . The term

E

[
ln

(
πpost(θj |D,Mj)
πprior(θj |Mj)

)]
, (5.10)

on the other hand, is precisely the Kullback–Leibler divergence introduced in (4.4).
It is a measure of how much was learned from the prior knowledge and the posterior
knowledge, by incorporating D. Informally speaking, if one makes gradually more
complex PMCs (e.g. by gradually adding model parameters or equations), in order
to gradually learn all possible details from a given D, the PMC fitting capability,
indicated by (5.9), will probably gradually increase, but at the expense of too
much complexity, which is indicated by (5.10). That is, at some point the log-
evidence ln(πdata(D|Mj)) will stop increasing and then stall or decrease with extra
complexity in the PMC. In order words, mathematical models should not be made
too complex for data D, which could be interpreted as a statement of Ockham’s
razor.

5.3. Averaging of model predictions

Given a candidate PMC Mj, a QoI Q, and a conditional PDF πpred(Q|θj , D,Mj),
the predictive PDF of Q is

πpred(Q|D,Mj) =
∫

Vθj

πpred(Q|θj, D,Mj) · πpost(θj |D,Mj)µθj (dθj). (5.11)

Since πpred(Q|θj , D,Mj) is a PDF, it immediately follows that (5.11) is also a PDF.
Given the set M of candidate PMCs, the probabilistic information for Q is22,37

πavg(Q|D,M) =
m∑

j=1

πpred(Q|D,Mj) · ppost(Mj |D,M), (5.12)

an equation referred to as posterior model averaging in the Bayesian literature.
Since πpred(Q|D,Mj) is a PDF, it immediately follows that (5.12) is also a PDF.

5.4. Calculation of integrals

One of the most formidable obstacles in implementing Bayesian methodologies has
historically been the evaluation of integrals such as (5.3), (5.9)–(5.11), and this
remains a challenging area of research. This has gradually yielded to modern algo-
rithms and high-performance computing (HPC) systems. One possible approach
is to use Markov chain Monte Carlo (MCMC) algorithms for sampling posterior
PDFs (and computing integrals), and then Monte Carlo algorithms for sampling
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QoI PDFs (as well as computing integrals), usually in combination with HPC, as
e.g. in Refs. 35 and 36.

A posterior PDF might have multiple modes, and unprepared MCMC algo-
rithms might inappropriately explore just some of the modes while missing the
others, with the collateral damage of wrongly computing estimates for the inte-
grals. One simple idea to improve the chances of exploring all existing modes, and
therefore computing good estimates for the integrals, is to sample increasingly dif-
ficult intermediate distributions, accumulating information from one intermediate
distribution to the next, until the target posterior distribution is better sampled.
Assuming one is able to sample the prior (either because it is a simple PDF or
because it comes from a previously sampled posterior), possible intermediate dis-
tributions are given by

π
(�)
int(θj |D,Mj) = [πlike(D|θj ,Mj)]α� · πprior(θj |Mj), � = 0, 1, . . . , L, (5.13)

for a given L > 0 and a given sequence 0 = α0 < α1 < · · · < αL = 1 of exponents.
When α� = 0, the distribution is the prior, and when α� = 1, the distribution is
the posterior. As � increases from � = 0 until to � = L, the distribution transitions
from the initial prior to the (eventually multimodal) posterior.

Sampling algorithms following (5.13) can greatly benefit from parallel comput-
ing. At each (level) �, many compute nodes can be used to sample the param-
eter space collectively. Beginning with � = 0, the compute nodes: (a) sample
π

(�)
int(θj |D,Mj), (b) select some of the generated samples to serve as initial posi-

tions of Markov chains for the next distribution π
(�+1)
int (θj |D,Mj), and (c) gener-

ate the Markov chains for π(�+1)
int (θj |D,Mj). The process (a)–(c) continues until

the final posterior distribution is sampled. The selection process in step (b), as
� increases, tends to value samples that are located in the modes, and such
modes gradually get more distinguishable as α� increases. So, as � increases, if
the samples selected from the �th level to the (� + 1)th level are not redistributed
among compute nodes before step (c), the “lucky” compute nodes (that is, the
ones that had samples of initial levels already in the final posterior modes) will
tend to accumulate increasingly more samples. Therefore, as the exponent α�

increases, care needs to be taken in order to maintain a load balance among all
compute nodes. A more careful analysis of these and related issues is available
in Ref. 35.

5.5. Remarks on Bayes’ factors and Ockham’s factors

The idea of using Bayesian approaches for model selection and so-called hypothesis
testing goes back to the early works of Jeffreys in 1935 (see Ref. 25) and 1961 (see
Ref. 26), and is addressed in the work of Jefferys and Berger,24 as well as in modern
books on Bayesian methods, such as Robert39 and Jaynes.23 In order to make a
connection between these ideas and those developed in Secs. 5.1 and 5.2, we first
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define the posterior odds ratio of any two PMCs Mj ,Mk ∈ M as

Ojk ≡ ppost(Mj |D)
ppost(Mk|D)

=
pprior(Mj)
pprior(Mk)

· πdata(D|Mj)
πdata(D|Mk)

. (5.14)

The ratio pprior(Mj)/pprior(Mk) is the prior odds of PMC Mj to Mk and represents
the prior knowledge of the relative subjective superiority of one PMC over another.
If we denote the maximum likelihood L(j)

max by

L(j)
max = sup

θj∈Vθj

πdata(D|θj ,Mj),

then

πdata(D|Mj) = L(j)
max ·Wj ,

where Wj is the Ockham’s factor,23 (p. 610),

Wj =
∫

Vθj

πprior(θj |Mj) · L
(j)(θj)

L
(j)
max

µθj (θj). (5.15)

Then the model comparison (5.14) can be written

Ojk =
pprior(Mj)
pprior(Mk)

· L
(j)
max

Lk
max

· Wj

Wk
, (5.16)

which can also be written

Ojk = Bjk · pprior(Mj)
pprior(Mk)

, (5.17)

where Bjk are the so-called Bayes’ factor (see Refs. 7 and 39 for an exhaustive
discussion),

Bjk =
L

(j)
max

Lk
max

· Wj

Wk
=
πdata(D|Mj)
πdata(D|Mk)

. (5.18)

Thus, the Bayes factor Bjk is the ratio between the model evidences for Mj and
Mk. The posterior odds ratio is then the prior odds ratio multiplied by the ratio of
model evidences.

6. Computational Results

In this section, we apply the Bayesian methodology described above to the deter-
mination of the most plausible PMC between two candidate PMCs M1 and M2,
which compete to better simulate a given data set D. The PMC ranking example
of this section can be easily generalized for any number and variety of PMCs.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
E

X
A

S 
A

T
 A

U
ST

IN
 L

IB
R

A
R

IE
S 

on
 1

1/
20

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 3, 2012 9:3 WSPC/103-M3AS 1350010

18 J. T. Oden, E. E. Prudencio & A. Hawkins-Daarud

6.1. General considerations

Throughout Sec. 6, the physical domain corresponding to a tissue is the square
Ωactual = (0, 25.6) × (0, 25.6). The state variable is the concentration u(x, t) of
cancer cells in the tissue for any x ∈ Ωactual and any t ≥ 0. Given the physical
meaning of u, we demand that

u(x, t) ≥ 0 ∀ (x, t) ∈ Ωactual × (0,+∞). (6.1)

Due to the symmetry of the problem with respect to the domain center, we solve
only for Ω = (12.8, 25.6)× (12.8, 25.6), thus considerably diminishing the computa-
tional cost. An initial state

u0(x) ≡ u(x, 0) (6.2)

is given at t = 0. We discretize the equations in space with a finite element tri-
angular mesh Ωh, and in time with an explicit time stepping scheme with a fixed
time step ∆t > 0. We solve the corresponding discretized equations with Newton’s
method and a direct linear solver. Mesh adaptation is performed at some time steps
during the simulations, and we denote by Ωh(t) the mesh at instant t ≥ 0. We use
parallel computing in all computational steps. More specifically, we use the Lones-
tar computational platform at the Texas Advanced Computing Center (TACC41),
where each computational node contains 24 GB of memory and 12 processing cores
of 2GHz each.

In order to have a PMC, one has to:

(1) decide which equations to use;
(2) decide which parameters to treat randomly (instead of deterministically);
(3) decide which prior PDFs to use for the random parameters; and
(4) decide which likelihood to use, that is, decide on how to model the discrepancy

between the reference data and the quantities computed with the equations.

All these four decisions will be exemplified below for the two PMCs M1 and M2.
It is clear that, even keeping the same equations, one can propose a rich variety of
PMCs, all sharing such same equations.

For the purpose of likelihood computations, as well as plotting figures, we pro-
ceed as follows. We first divide Ω into a uniform grid of 70× 70. Let us denote such
squares by Ωi,j , and their centers by xi,j , 1 ≤ i, j ≤ 70. Each square can be thought
as a pixel in a tissue image (see Fig. 2). Then, for any given ugiven(·, t) (necessary
for some plotting or for some likelihood calculation), we define

uavg(x, t) ≡
∫
Ωi,j

ugiven(x, t)dx∫
Ωi,j

dx
∀ (x, t) ∈ Ωi,j × [0,+∞). (6.3)

Then, for a given threshold value

uthreshold > 0, (6.4)
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Fig. 2. The synthetic images of the tissue under consideration are thought to be broken down
into a union of square pixels, as illustrated here. In the computations, the images were broken
down into 70 × 70 pixels.

we define the vector

u =




u1

u2

...
u4900




4900×1

∈ (0,+∞)4900 (6.5)

by

ui×70+j =

{
uavg(xi,j , t) if uavg(xi,j , t) ≥ uthreshold,

uthreshold if uavg(xi,j , t) < uthreshold,
(6.6)

where 1 ≤ i, j ≤ 70. The value uthreshold is necessary because we will work with
logarithms in Secs. 6.2 and 6.3 below: see Eqs. (6.12) and (6.21).

For the sake of notation to be used below, let us summarize the whole procedure
(6.3)–(6.6) just described by the operator “F”, as follows:

u = F (ugiven). (6.7)

Corresponding to the initial state (6.2), we then define

u0 = F (u0), (6.8)

which is plotted in Fig. 3.
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Fig. 3. Initial state used in all our numerical experiments. The tumor is located in the left-lower
corner of the domain.

We also define

ln(u) ≡




ln(u1)

ln(u2)
...

ln(u4900)




4900×1

∀u ∈ (0,+∞)4900, (6.9)

and, regarding PDF notation, we denote by U(B) a uniform distribution over a
given set B, and by N (m,C) a (multivariate) Gaussian distribution of mean m
and (co)variance (matrix) C.

6.2. The reference data D

The reference data D used in our experiments is fabricated with a PMC Mref that
is different, and presumably more sophisticated, than the PMCs M1 and M2 below.
All parameters θref of Mref are treated deterministically (that is, their PDFs are
delta functions), and Mref is simulated from t0 = 0 until t = T > 0 with time step
∆t < T , with the state variable evolving from u0(·) until

uref(·) ≡ u(·, T ). (6.10)

Corresponding to the reference solution (6.10), we define

uref = F (uref) (6.11)

and

D = ln(uref). (6.12)

Figure 4 shows the reference solution with T = 1. Throughout the rest of Sec. 6 we
will use a D computed with T = 0.3.
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Fig. 4. Reference solution computed with T = 1. The tumor region expands with respect to the
region of Fig. 3. The concentration of tumor cells grows (less) not only in the region of Fig. 3, but
also (and more) in the expanded region.

6.3. The likelihood

For any given candidate PMC M (either M1 or M2 in Sec. 6), we first compute the
solution uM (·, T ), and then compute the corresponding vector

uM =




uM,1

uM,2

...
uM,4900




4900×1

= F (uM ), (6.13)

following the procedure F explained above in (6.3)–(6.7).
Now we come up with three important hypotheses about the pixels correspond-

ing to the actual (and unknown) concentration field uactual(·, T ) of tumor cells. Let
us refer to this vector of 4900 unknown non-negative values as uactual. The three
hypotheses are:

(i) We believe that each component of uactual is a random variable satisfying

[uactual]k = uref,k · eνdata ∀ 1 ≤ k ≤ 4900, (6.14)
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where νdata is a Gaussian random variable of mean 0 and (unknown) variance
σ2

data, that is,

νdata ∼ N (0, σ2
data). (6.15)

In other words, we assume that the ratio uactualk
uref,k

follows a log-normal distri-
bution for each kth square in Ω, 1 ≤ k ≤ 4900.

(ii) We also believe that each component of uactual is a random variable satisfying

[uactual]k = uM,k · eνmodel ∀ 1 ≤ k ≤ 4900, (6.16)

where νmodel is a Gaussian random variable of mean 0 and (unknown) variance
σ2

model, that is,

νmodel ∼ N (0, σ2
model). (6.17)

(iii) We assume that

all components of uactual are independent of each other. (6.18)

It is important to note that both assumptions (6.14) and (6.16) guarantee that only
non-negative values are possible for all the components of uactual. Of course, one
could assume many other forms of discrepancy, such as a stationary Gaussian field
with zero mean and an unknown correlation length.

Now, equalizing (6.14) and (6.16), as well as using (6.12) and (6.18), we conclude
that the random variable D satisfies

D = ln(uM ) + ν4900×1,

where

ν4900×1 ∼ N (04900×1, σ
2 · I4900×4900), (6.19)

and

σ2 = σ2
model + σ2

data. (6.20)

Therefore, we can write, defining N = 4900 and ∆(θ) = ln(uref) − ln(uM (θ)),

πlike(D|θ,M) =
1√

2π(σ2)N
· e

{
− 1

2 ·[∆(θ)]T ·[σ2]−1·[∆(θ)]
}

=
1√

2π(σ2)N
· e

{
− 1

2 ·
‖ ln(uref)−ln(uM (θ))‖2

2
σ2

}

=
1√

2π(σ2)N
· e

{
− 1

2 ·
PN

k=1[ln(uref,k)−ln(uM,k(θ))]2

σ2

}
. (6.21)

Formula (6.21) helps explain the motivation for the threshold value (6.4). Indeed,
if both uref,k and uM,k are small enough to be smaller than uthreshold, then we
consider both to be equal to a common “noise” value. The cancellation of both
terms uref,k and uM,k in such cases helps avoid inappropriate contributions to the
final likelihood value (6.21) from pixels that show tiny concentrations of tumor cells.
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We can also rewrite (6.21) as

ln[πlike(D|θ,M)] = −1
2
· ln(2π) −N · ln(σ)

− 1
2
· ‖ ln(uref) − ln(uM (θ))‖2

2

σ2
. (6.22)

It is easy to see that, for any fixed θ∗ the maximum likelihood value occurs for

σ∗ =
‖ln(uref) − ln(uM (θ∗))‖2√

N
. (6.23)

Indeed, as σ → 0 or σ → +∞, one has ln[πlike(D|θ,M)] → −∞.

6.4. The PMC M1

PMC M1 uses the model equations A1 of Sec. 2, with only the parameter P being
treated randomly besides σ from (6.20), that is,

θ1 = (P, σ).

We assume a prior PDF U((0.001, 0.201) × (0.001, 0.301)) for (P, σ). The
other parameter values are shown in Table 1. Following (6.22), the likelihood
πlike(D|θ1,M1) for M1 is such that

ln[πlike(D|θ1,M1)] = −1
2
· ln(2π) −N · ln(σ)

− 1
2
· ‖ln(uref) − ln(uM1(θ1))‖2

2

σ2
. (6.24)

6.5. The PMC M2

PMC M2 uses the model equations A2 of Sec. 2, with only the parameter P being
treated randomly besides σ from (6.20), that is,

θ2 = (P, σ).

We assume a prior PDF U((0.001, 0.201) × (0.001, 0.301)) for (P, σ). The
other parameter values are shown in Table 1. Following (6.22), the likelihood

Table 1. Parameters involved in both PMCs.

Parameter PMC M1 PMC M2

ζ 200 200
P U((0.001, 0.201)) U((0.001, 0.201))
A Not applicable 0
ε 0.005 0.005
τ Not applicable 7
ξ Not applicable 1
γ 0.045 0.045
σ U((0.001, 0.301)) U((0.001, 0.301))
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πlike(D|θ2,M2) for M2 is such that

ln[πlike(D|θ2,M2)] = −1
2
· ln(2π) −N · ln(σ)

− 1
2
· ‖ln(uref) − ln(uM2 (θ2))‖2

2

σ2
. (6.25)

6.6. Some implementation aspects and checks

Although our work relies on many existing libraries, such as QUESO,36 libMesh,27

PETSc, GSL, BOOST, and STL, we also use two new codes to perform the exper-
iments of Sec. 6. One code, referred to as Model Library, deals with the tumor
modeling equations.19 The other code, referred to as Top Application, deals with
the definition of statistical inverse problems (parameter spaces, prior PDFs, like-
lihood functions, reference data), as well as with the proper use of QUESO C++
classes in order to solve such statistical inverse problems through Bayesian formula
and MCMC algorithms, and in order to calculate evidences and other integrals.
Figure 5 gives an overview of the software modules we use in our work, while
Table 2 gives the values of some key parameters involved in the solution of each
sampled tumor growth problem.

Before performing the long MCMC runs for computing the evidences (to be
reported in Sec. 6.7), we vary only one parameter, fixing all remaining parameters,
and plot the values of (6.24) and (6.25). Figure 6 shows the plots. These tests

Fig. 5. The software stack related to our experiments.
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Table 2. Numerical parameters used in our time-dependent experiments, with time

0 ≤ t ≤ T = 0.3 = ∆t × n∆t.

Numerical parameter PMC M1 PMC M2

Time step ∆t 0.075 0.075
Number n∆t of time steps 40 40
Time integration scheme FullLinSplitLinMob FullLinSplitNonMob
Refinement period in time steps 35 30
uthreshold 10−5 10−5

Number of Markov chains 16 16
Number of processors/chain 6 6
Total number of processors 96 96
Total number of samples/MCMC level 1024 1024

(for last level) (2048) (2048)
Number of samples/MCMC level/chain 64 64

(for last level) (128) (128)

Both M1 and M2 each used a total of eight MCMC levels (see explanation on Sec. 5.4).

Fig. 6. Some checks with M1 (left column) and M2 (right column). One should note that these
plots are not marginal PDFs, but rather just slices of the joint PDF of (P, σ) at fixed values of P
or σ. That is, these plots give us some information, but should not be directly compared to the
marginal plots of Fig. 7. Also, here we plot the natural logarithmic values, while in Fig. 7 we plot
the marginal PDFs themselves.
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help us to check the stability of the Model Library, judge the correctness of the
Top Application code and of the likelihood routines, and gain confidence that the
suggested prior PDFs for (P, σ) make sense.

6.7. Numerical results

While the prior pprior(Mj|M) should be chosen to reflect previous experience, for
simplicity we choose equal plausibilities of 1

2 for each PMC. Figure 7 shows the

Fig. 7. Posterior samples and posterior marginal PDFs for M1 (left column) and M2 (right
column). A total of 2048 samples is used for each plot.
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Table 3. Numerical results on log evidence, model fitness and model complexity (see
Eq. (5.8)).

Log Model Model Prior Posterior
evidence fitness complexity plausibility plausibility

PMC ln(π(D|Mj)) E[ln(πlike(·))] E
h
ln

πpost(·)
πprior(·)

i
p(Mj |M) p(Mj |D,M)

M1 14171.9 14182.8 10.9 1/2 ≈1
M2 10329.8 10340.6 10.8 1/2 ≈0

computed posterior samples and posterior marginal PDFs, while Table 3 shows the
computed evidences, model fitness and model complexity. Some comments:

• As T becomes smaller (e.g. T = 0.3, as in our reported experiments), the optimum
values (6.23) will tend to become very small, causing the values (6.22) to become
very big, as shown in Table 3.

• The σ term can be interpreted as a measure of the overall discrepancy between
PMC and D, and so it is expected that the PMC with smaller σ has higher
evidence, again as shown by Fig. 7 and Table 3.

• The (much) worse evidence of M2 should not be interpreted as a sign of the inap-
propriateness of the equations in M2, but rather of our choices: which parameters
to treat deterministically in M2, as well as of which values to give them.

7. Conclusion

Perhaps the central issues in the development of predictive phenomenological mod-
els of tumor growth in living tissue are: (i) the selection of models best informed
by available data and (ii) the development of methods to quantify uncertainty in
key quantities of interest. In this work, we described a Bayesian framework for
uncertainty quantification, calibration, validation, and selection of models, as well
as demonstrated applications on model problems. Of particular importance is the
study of models able to cope with the possible change, over time, of the type of
cancer in a living tissue. Since the evolution of the type of cancer depends on the
underlying dynamics at the microscale, it does not seem appropriate to postulate
a model structure a priori. Instead, the structure of a candidate model should be
allowed to change over time, and Bayesian filtering could be applied so that the
candidate model is calibrated every time some data is collected from the evolving
tissue. In Bayesian filtering approaches, a model update does not happen only once,
in a batch mode, e.g. long after data is collected, but instead in a real-time fashion.
That is, models are given the chance to relearn from newer collected data, and they
can readapt themselves to the instantaneous information on reality. Given candidate
models competing to describe an unsteady cancer-type situation, some models will
rank better than others, as it also happens in steady-state cases. Even the relative
ranking among competing models might change over time. It should be noted that
the Bayesian framework for model calibration, comparison, and averaging, laid out
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in Secs. 4 and 5 can be applied to either fixed or adaptable models, and to either
steady-state or time-evolving data.

The development of successful methodologies thus draws on a diverse range of
technologies, including tumor morphology, Bayesian inference, information theory,
parallel sampling algorithms, imaging, and high performance computing. The foun-
dations for a class of approaches to all these problems are laid down in this work. To
advance this work further will require deeper interactions with data-retrieving tech-
nologies, imaging, in vitro experiments, and data-intensive computing algorithms.
We hope to take up these extensions in future work.
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