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Abstract

Coarse-grained models of atomic systems, created by aggregating groups of
atoms into molecules to reduce the number of degrees of freedom, have been
used for decades in important scientific and technological applications. In re-
cent years, interest in developing a more rigorous theory for coarse graining
and in assessing the predictivity of coarse-grained models has arisen. In this
work, Bayesian methods for the calibration and validation of coarse-grained
models of atomistic systems in thermodynamic equilibrium are developed. For
specificity, only configurational models of systems in canonical ensembles are
considered. Among major challenges in validating coarse-grained models are
1) the development of validation processes that lead to information essential in
establishing confidence in the model’s ability predict key quantities of interest
and 2), above all, the determination of the coarse-grained model itself; that is,
the characterization of the molecular architecture, the choice of interaction po-
tentials and thus parameters, which best fit available data. The all-atom model
is treated as the “ground truth,” and it provides the basis with respect to which
properties of the coarse-grained model are compared. This base all-atom model
is characterized by an appropriate statistical mechanics framework in this work
by canonical ensembles involving only configurational energies. The all-atom
model thus supplies data for Bayesian calibration and validation methods for
the molecular model. To address the first challenge, we develop priors based
on the maximum entropy principle and likelihood functions based on Gaussian
approximations of the uncertainties in the parameter-to-observation error. To
address challenge 2), we introduce the notion of model plausibilities as a means
for model selection. This methodology provides a powerful approach toward
constructing coarse-grained models which are most plausible for given all-atom
data. We demonstrate the theory and methods through applications to repre-
sentative atomic structures and we discuss extensions to the validation process
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for molecular models of polymer structures encountered in certain semiconduc-
tor nanomanufacturing processes. The powerful method of model plausibility
as a means for selecting interaction potentials for coarse-grained models is dis-
cussed in connection with a coarse-grained hexane molecule. Discussions of how
all-atom information is used to construct priors are contained in an appendix.

Keywords: Bayesian statistics, coarse graining, canonical ensemble, calibration, val-
idation, uncertainty quantification, model selection

1 Introduction

Interest in the study of physical events at atomistic scales has dramatically expanded
in recent years due to developments in high-performance computing, computational
modeling and simulation, and experimental science, all pushed forward by important
advances in biology, medicine, drug design, nanomanufacturing, and material sci-
ence. The universally accepted approach for modeling virtually all atomic systems
is to employ atomistic molecular dynamics (MD) simulations, implemented using
any of several hardened MD codes, generally available to the scientific community
to compute estimates of ensemble averages of key quantities of interest. However,
the enormous size and complexity of atomistic MD models needed to capture events
at scales prevalent in most simulations of scientific or technological importance far
exceeds the capacity of today’s largest supercomputers or even those envisioned
decades into the future. Thus, methods for reducing the number of degrees of free-
dom of atomistic models to sizes manageable using MD by aggregating atoms into
equivalent molecular models is viewed as a necessary approach to MD-studies of long
time- and length-scale processes. These lumped or aggregated, lower-dimensional
models that function on coarser spatial and temporal scales are called coarse-grained
(CG) models and the process that produces them is called coarse graining.

A relatively large literature exists on various methods of deriving CG models
of all-atom (AA) systems. An exhaustive review of literature on CG models of
biomolecular systems that contains almost 600 references [61]. The common aim of
the design of CG models is, of course, to preserve in some sense key properties of the
underlying AA systems. According to [87], early CG methods appeared in the 1940s
in [27] and [33], with more modern approaches designed for computer simulations
exemplified in the 1990 publication [83]. In more recent times, a variety of methods
have been proposed for calibrating CG models, including force-matching methods
[37–40], extending the 1994 work [24]. These classes of methods are referred to by
Izvekov, Voth, et al. as “multiscale coarse-graining methods,” and have been applied
to several types of molecular systems (see, e.g. [35, 36, 40, 53, 81, 88]). Along
these lines, the works [60, 62, 63] develop a formalism for deriving CG models that
are “physically consistent” with underlying AA models when CG parameters are
calibrated via force matching conditions. In another class of CG methods, referred
to as iterative Boltzmann inversion and developed in [77], CG parameters are chosen
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to match specific probability distributions of the AA systems. The Reverse Monte
Carlo method (RMC) and the Conditional Reverse Work (CRW) method described
in [9, 10, 56, 57, 59] and applied to CG model calibration [55] in 2003 also represent
proposed approaches for deriving CG models.

A general approach to developing and calibrating consistent CG models is
the method of minimum relative entropy proposed in [80] and extended in [12, 13].
There it is argued that the CG model optimally represents the AA model when
their relative entropy, measured by the Kullback-Leibler divergence between their
configurational probability density functions for canonical ensembles, is a minimum.
Chaimovich and Shell also describe a scheme for accelerating MD sampling used in
evaluating gradients of the relative entropy.

In this paper, we develop a general Bayesian framework for constructing
CG approximations of atomistic systems and for calibrating and validating CG
models based on data drawn from underlying AA models. Several Bayesian-based
methods for model validation have been proposed in recent years. The works
[3, 7, 43, 44, 47, 48] must be mentioned. Bayesian methods for calibration and
validation of multiscale models and additional references of Bayesian approaches
are given in [68]. In considering coarse-grained models, however, the processes are
further exacerbated by the uncertainty in the forms of the models themselves, the
interaction potentials not being rigorously defined for components of the CG model.
An approach toward resolving this problem using the concept of model plausibilities
is discussed in Section 7. Examples of CG model calibration and validation processes
for representative models of polymeric materials are given in Section 8. Applications
of the calibration and validation procedures to CG models of polymeric structures
encountered in semiconductor nanomanufacturing are also discussed in Section 8
along with an example of a CG model of hexane, demonstrating the use of Bayesian
model plausibilities for model selection. Brief concluding comments are given in
Section 9. The use of AA data to construct priors is discussed in an appendix.

Our general goal is not only to lay down principles for constructing mean-
ingful CG models that preserve key properties of the AA models on which they are
based, but also to develop meaningful calibration and validation processes for CG
models. For simplicity, we focus on configurational atomistic models of systems in
thermodynamic equilibrium.

2 Framework for Coarse-Graining

We consider an atomic system consisting of n atoms occupying a fixed volume
V ⊂ R3 at temperature T , in thermodynamic equilibrium. The most probable
states of this all-atom (AA) system are characterized by the Boltzmann distribution
for canonical ensembles,

ρAA(rn) = exp{−β(u(rn)− a)}, (1)
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where rn is the set of particle coordinates (rn = (r1, r2, . . . , rn)), β = 1/kBT , kB
being Boltzmann’s constant and T the absolute temperature, u(rn) is the potential
energy of the AA system, and a is the Helmholtz free energy (a = −β−1 lnZAA, ZAA
being the partition function). In general, the goal of constructing such an AA model
is to compute certain thermodynamic properties of the system, or, more specifically,
to predict certain quantities of interest (or “QoIs”) Q; e.g.

Q = 〈q〉AA =
∫

ΓAA

ρAA(ω)q(ω) dω, (2)

where q(ω) (≡ q(rn)) is a given phase-function (examples are given later), 〈q〉AA
is its ensemble average in the AA system, and ΓAA is the phase space of the AA
model. Here, and occasionally hereafter, if no confusion is likely, we use the compact
notation, ω = rn.

Owing to the enormous size and complexity of the AA model, we wish to
replace it by a reduced-order coarse-grained (CG) model that will hopefully deliver
results that are both consistent with and close to those of the AA model. The CG
model consists of N(<< n) molecules occupying volume V , with temperature T .
The coordinate positions are denoted RN = (R1,R2, . . . ,RN ) and it is convenient
to regard the coordinates of each molecule “bead” RI in the CG model as the image
of a surjective map G of the AA coordinates rn to the CG coordinates RN , as
depicted in Figure 1: RI = G(rn), I = 1, 2, . . . , N ; see, for example, Noid et al
[62, 63], Shell [80], and the references therein.

The CG probability distribution is

ρCG
(
θ; RN

)
= exp

{
−β
(
U
(
θ; RN

)
−A (θ)

)}
, (3)

where θ is a vector of parameters embedded in the characterization of the interac-
tion potential energy U(·, ·) and free energy A(·) of the CG model. Hereafter, we
shall usually write for compactness in notation, RN = G(rn) = G(ω). The CG
approximation of the QoI (2) for given θ is then

QCG(θ) = 〈q(θ)〉CG =
∫

ΓCG

ρCG (θ;G(ω)) q (G(ω)) dG(ω), (4)

where ΓCG is the phase space of the CG model and G(ω) = G (rn) = RN .
The parameters θ are generally random variables distributed with respect

to some probability measure µθ so QCG(θ) is also a random variable. One measure
of its value is the expectation with respect to a distribution π,

Eπ [QCG] =
∫
QCG(θ)π(θ) dθ. (5)

The measure distribution π may be taken to be a prior or posterior distribution
generalized in the validation process. We could also, of course, compute variances
and other moments to further characterize the estimated QoI.
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Figure 1: The map G from an all-atom (AA) model to a coarse-grained (CG) model.

The CG model of the AA system is completely characterized by (3) and,
for the chosen QoI, by (4) and (5). It involves the identification of the N beads
(equivalently, the map G), the form of the potential U

(
θ; RN

)
, and the parameters

θ. For any fixed choice of N and G, we wish to determine U(·, ·) and θ so that
the CG model is not only thermodynamically consistent with the AA model but
that it also delivers sufficiently accurate approximations of the QoIs (4). We regard
the first of these goals (consistency with the AA model) as primarily a matter of
model calibration, the observational data being supplied by the AA model, while
the second (estimating the accuracy of the QoI approximation QCG) is one of model
validation (see, e.g. [1–3, 66–68, 78]), with data again being furnished by the AA
model. Generally we will assume that the number N of beads and that the AA to
CG map G is fixed, but if the resulting model is found to be invalid for given QoIs,
then obviously, these features of the model must be changed.

3 Bayesian Framework for Statistical Calibration and
Validation

3.1 Bayesian Inference as a Framework for Model Validation

While Bayesian approaches to problems of statistical inference have been the sub-
ject of debate over two-and-a-half centuries, their rise in popularity in broad areas of
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science and engineering in recent years has been, in part, due to the general frame-
work they provide for conceptualizing foundational issues in the applications of the
scientific method in the presence of uncertainties. These include uncertainties in
observational data and in model parameters, while exploiting, when possible, prior
information known about the system under study.

3.2 Bayes’ Rule

Given observational data D = {Di}Li=1 gleaned from measurements or, as in the
present case, furnished by the AA model, and given that additional prior informa-
tion may be known about the parameters in the form of a true postulate I (and
here following Jaynes’ insistence that we recognize all relevant prior information at
our disposal [41]), and also given prior information on the parameters in the form
of a probability density function π(θ|I), and, finally, given a likelihood function
πlike(D|θ, I), then Bayes’ rule can be written in the form,

πpost(θ|D, I) =
πlike(D|θ, I)π(θ|I)
πevidence(D|I)

, (6)

where πpost(θ|D, I) is the posterior probability density function and the evidence
πevidence(D|I) is the marginal likelihood:

πevidence(D|I) =
∫
πlike(D|θ, I)π(θ|I) dθ. (7)

In what follows, we do not always list prior knowledge of information I for notational
simplicity.

The posterior defines the Bayesian update of the parameters made possible
by the knowledge of the prior and the data, and the likelihood is a measure of how
well the model maps parameters into data.

3.3 The Prediction Pyramid

The processes leading to the prediction of a QoI have been said to be analogous
to traversing a hypothetical pyramid, the prediction pyramid, through a sequence
of experiments and model predictions (see [1, 3, 66–68]). Beginning with unit cali-
bration tests at the base of the pyramid performed in calibration scenarios Sc with
calibration observational data Dc, one progresses up the pyramid to subsystem level
validation scenarios Sv with validation observational data Dv, and then moves to
the full prediction scenario Sp at the peak of the pyramid where the QoI resides. By
“scenarios” we mean the solution domain and the boundary and initial conditions in
which the model is implemented, the model itself being a mathematical abstraction
of a theory (an inductive hypothesis), generally independent of the parameters. The
implication is that as one moves up the pyramid, the amount of observational data
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decreases (which may not always be the case). The QoI is not an observable, as
explained in [68].

Determining the proper calibration and validation scenarios begins in the
prediction scenario. This process is illustrated in Figure 6 for the application dis-
cussed in Section 8. Within the prediction scenario, a cube of polymeric material,
are complex polymer chains which become the validation scenarios, shown in Figure
6c. These chains can be broken down even further as in Figure 6d to create the
calibration scenarios.

The purpose of the calibration tests, by definition, is to calibrate the param-
eters for unit components that make up the model by fitting model predictions with
calibration data Dc in the generally simpler calibration scenarios Sc. Since there
are uncertainties in both the data and the parameters, this becomes a statistical
calibration process in which probability density functions (pdfs) are sought in the
form of posteriors. Unfortunately, at this stage in the analysis of the CG model, this
process is generally impossible without additional information because the model it-
self is unknown: we do not know which of the many possible choices of interaction
potentials should be used for the given molecular structure of the model for the Sc
scenarios.

The validation experiments, on the other hand, are in theory designed to 1)
challenge the model by testing the validity of the assumptions on which the full-
system model is based, and 2) bring into play the influence of the choices of the QoI
on the parameters as well. In this setting, model validation is interpreted as follows:
the process of determining the confidence one has in a model’s ability to predict
QoIs based on the accuracy with which the model can predict specific observables in
validation scenarios.

4 Bayesian Model Calibration

4.1 Construction of Priors via the Principle of Maximum Entropy

In the absence of any prior information on parameters, but for the specification of
a finite set of possible values, it is customary to employ uniform priors, represent-
ing “complete ignorance” [41], in which parameter values fall in intervals possibly
suggested by experimental or virtual data (in this case, AA data). In [42], Jeffreys
argues that complete ignorance of a continuous variable θ known to be positive is
best represented by assigning a uniform prior to its logarithm, leading to priors
of the form π(θ|I) ∝ θ−1, 0 ≤ θ ≤ ∞, a prior that cannot be normalized but is
nevertheless used successfully (e.g. [41], p. 182).

A more satisfactory approach to construct priors when some features of the
parameter distribution are known, such as the mean 〈θi〉, is to employ the principle
of maximum entropy. The information entropy (or Shannon entropy [79]) of a
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probability density p is defined by

H(p) = −
∫
p(θ) log p(θ) dθ (8)

for the continuous case and

H(p) = −
m∑
i=1

p(θi) log p(θi) (9)

for the discrete case, where m is the number of samples of the parameter pdf. It
is argued in [41] (see also [17]) that the information entropy is the only reasonable
measure of the amount of uncertainty in p (“reasonable” meaning it satisfies four
basic conditions laid down in [79]), and that the correct prior distribution maximizes
H(p).

Let us suppose that the mean of a parameter θ can be inferred by information
from the AA model, which is in fact generally possible, as will be seen later. We seek
a pdf π such that the entropy H(π) is maximized subject to the constraints that∑

i πi = 1 and that the distribution π delivers the known mean. A straightforward
calculation yields the prior distribution,

πi =
1
〈θ〉

exp(−θi/ 〈θ〉). (10)

If, in addition, the variance, σ2
θ , is known from the AA data, then a similar

calculation reveals that the maximum entropy prior is a Gaussian distribution

πi =
1√

2πσθ
exp

(
−(θi − 〈θ〉)2.

2σ2
θ

)
. (11)

This approach can be generalized when more information can be inferred from the
AA data.

4.2 Calibration Likelihoods

According to [26], “The likelihood that any parameter should have any assigned
value is proportional to the probability that if this were so, the totality of all ob-
servations should be that observed.” Likelihood functions can be constructed by
assigning a probability distribution p to the error representing the difference be-
tween the observational data D and the parameter-to-observation map provided by
the model. To define the observational data, we select L independent and identi-
cally distributed samples of the internal energy u(ω) at sites {ωi}Li=1 in ΓAA and
set the calibration data vector Dc = D, with Di = βu(ωi), i = 1, 2, . . . , L. The
parameter-to-observation map in this case is the vector

d(θ) = β {U(θ;G(ω1)), U(θ;G(ω2)), . . . , U(θ;G(ωL))}T . (12)
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If pε is the probability density function that describes the error ε = Dc−d(θ), due
to observational noise and model inadequacy, then the likelihood is

πlike(Dc|θ) = pε(Dc − d(θ)). (13)

A common assumption is that pε is a normal distribution ∼ N(0,Γ−1
noise), in

which case

πlike(Dc|θ) ∝ exp
{
−1

2
(Dc − d(θ))TΓ−1

noise(Dc − d(θ))
}
, (14)

where Γnoise is the covariance matrix representing the noise plus model error. A
common approximation is Γnoise = σ2I, where the variance σ2 is added to the list
of parameters to be calibrated using available data.

4.3 Calibration Scenarios

With the likelihood and priors identified, we calibrate the CG model in one or more
calibration scenarios Sc with data Dc furnished by the AA model and compute the
calibration posteriors

πcpost(θ) = πcpost(θ|Dc) =
πlike(Dc|θ)π(θ)

π(D)
, (15)

where π(D) is the evidence. To evaluate such posteriors, we use QUESO, an efficient,
parallel code that employs several sampling algorithms, particularly MCMC [75].

5 Bayesian Model Validation

The validation scenarios Sv correspond to more complex system level models which
employ calibration posteriors as priors and, ideally, are designed to reflect the choice
of the QoI on the accuracy with which the CG model predicts validation observables
Dv. The validation observables are also generated through samples drawn from the
AA model, now in a way that approximates the QoI and now in an appropriate
validation scenario. In addition, one must avoid overfitting by designing validation
tests to produce an information gain, in the sense of Shannon, as described in [79]
over the calibration process.

We now identify the parameter-to-observation misfit as

εv(θ) = Dv − dv(θ), (16)

where, for example,

Dv = {q(ωi)ρAA(ωi)}Li=1, ω ∈ Γv,AA (17)
dv(θ) = {q(G(ωi))ρCG(θ;G(ωi))}Li=1, G(ω) ∈ Γv,CG. (18)
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Here, q(ω) is the phase function defining the QoI and Γv,CG is the subspace of the
phase space associated with the validation scenario. A possible likelihood function
is

πvlike(Dv|θ) ∝ exp
{
−1

2
εv(θ)TΓ−1

v εv(θ)
}
, (19)

with Γv an appropriate covariance matrix. The validation update for the parameters
is

πvpost(θ) = πvpost(θ|Dv) =
πvlike(Dv|θ)πcpost(θ|Dc)

π(Dv)
, (20)

where, as previously mentioned, the validation prior is the calibration posterior.

6 Model Validity

Let us now consider a sequence of validation experiments with respective scenarios
Sv1, Sv2, . . . and phase spaces Γv1,CG ⊂ Γv2,CG ⊂ . . . ⊂ ΓCG. With parameters
characterized by posteriors of the form (20), we solve for the best approximations
of the QoI that can be provided by each scenario, which are always limited by the
fact that only the low-dimensional phase spaces Γv,CG are available to us. Since
the parameters are random variables, the QoI can be computed for each randomly
chosen parameter vector. This yields a QoI for scenario Svk given by the pdf

π(QCG,k|θ) =
∫

ΓCG,k

q(G(ω))ρCG(θ;G(ω)) dG(ω), (21)

where it is understood that the results are conditioned on all data. The expected
value of the quantity of interest is then

Eπvk
post

[π(QCG,k|θ)] =
∫

Θ
πvkpost(θ|Dvk)π(QCG,k|θ) dθ (22)

However, for Svk and ΓCG,k, the “observational value” of this quantity is known:

QAA,k =
∫

ΓAA,k

q(ω)ρAA(ω) dω. (23)

So the accuracy with which the model can predict the QoI at this stage is determined
by the error measure,

γk =
∣∣∣QAA,k − Eπvk

post
[π(QCG,k|θ)]

∣∣∣ . (24)

We remark that if the QoI approximation QAA,k is itself a probability distribution
as opposed to a real number, we use as an error measure the Kullback-Leibler
divergence, γk = DKL(π(QAA,k)‖π(QCG,k|θ)), where

DKL(π(QAA,k)‖π(QCG,k|θ)) =
∫
π(QAA,k) log

π(QAA,k)
π(QCG,k|θ)

dQ. (25)
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We must now make a (subjective?) decision of whether or not the accuracy
of the model, as indicated by the magnitude of γk, is sufficient to declare the model
“valid” (or, more accurately, “not invalid”). If a tolerance γtol is established for this
purpose, we merely check if γk ≤ γtol. If not, a continuation up the validation pyra-
mid to Sv,k+1 may be undertaken, and we compute a new error γk+1, with generally
γk+1 < γk. If γk+1 ≤ γtol, the model is deemed valid. If no scenario explored can
meet the preset tolerance, then the CG model must be declared invalid and either
abandoned or improved by increasing the number N of molecular beads and/or their
configuration. An improvement in predictions manifested in the decrease in γk as
the volume of the phase space is enlarged, and with γk+l < γtol for some l gives one
confidence that the model can predict the QoI for the full prediction scenario Sp.

6.1 Solution of the Forward Problem

In all of the numerical calculations we describe in sections to follow, we follow stan-
dard practice and invoke the ergodic hypothesis, evaluating ensemble averages such
as (21) and (23) using MD models. Calculations are implemented using the San-
dia code Largescale Atomistic/Molecular Massively Parallel Simulator (LAMMPS),
which delivers approximations of canonical ensembles based on Nosé-Hoover ther-
mostats [74].

7 Model Plausibility

A major challenge in constructing a CG model from an AA system arises from the
many choices that must be made in aggregating atom groups. One must define
(i.e. choose) the mapping from the atomistic coordinates into the CG coordinates,
G(ω). In defining this map, one must choose the number N of CG sites and, most
importantly, the interactions between the CG sites.

A general approach to model selection is embodied as the notion of model
plausibility, which provides not only a basis for choosing interaction potentials but
also their parameters. The idea is to view the sets of possible combinations of
CG sites and interaction parameters as different models of molecular structures,
each with different parameters, so that one has a set M of model classes, M =
{(M1,θ1), (M2,θ2), . . . , (MK ,θK)}. For the set M of CG model classes, a Bayesian
rule can be written for each model pair, (Mj ,θj), in the set:

π(θj |D,Mj) =
π(D|θj ,Mj)π(θj |Mj)

π(D|Mj)
, j = 1, 2, . . . ,K (26)

where π(D|Mj) is the evidence of model Mj :

π(D|Mj) =
∫
π(D|θj ,Mj)π(θj |Mj) dθj . (27)
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Here, D is the AA calibration data, Dc. By appealing to what some call a “higher
form” of Bayes theorem (see, e.g., [41]), one can define the posterior plausibility of
model Mj in the set M for given data D:

ρ(Mj |D,M) =
π(D|Mj)π(Mj |M)

π(D|M)
. (28)

Here, π(Mj |M) is the prior plausibility that model Mj is true among those in M,
and π(D|M) is the marginal probability over the model classes. Relations such as
these are discussed in [8, 68, 69].

The plausibility (28) provides an immediate means to determine which model
in the set best fits the data. Indeed, since

K∑
j=1

ρ(Mj |D,M) = 1, (29)

the model(s) closest to unity are deemed the most plausible. In particular, if

ρ(Mj |D,M) > ρ(Mk|D,M), (30)

then Mj is more plausible than Mk for the data D.

8 A Model Application: Analysis of Polymer Compo-
nents in Nanomanufacturing

For specificity, we now describe calibration and validation processes for models of
polymer materials encountered in certain nanomanufacturing processes. Advance-
ments in technology have lead to the miniaturization of modern electronics and
their components, such as semiconductors. Techniques such as optical projection
lithography can print features smaller than 100 nanometers onto these components.
However, as the size of these features continues to decrease, the cost of manufac-
turing using traditional techniques increases. Step and Flash Imprint Lithography
(SFIL) offers an affordable alternative to patterning the nanoscale features onto
semiconductors. The behavior of the polymeric etch barrier critical in the fabri-
cation process is targeted as a model problem class for demonstrating all atom,
coarse-grained, and macroscale modeling issues explored in this work. Figure 6b
depicts one realization of an approximately 10 nm cube of polymeric material con-
sisting of chains of molecules making up the etch barrier used in the Step and Flash
Imprint Lithography (SFIL) process for manufacturing semiconductors.

Before the SFIL process can begin, a transfer layer, consisting of an organic
polymer, is spin-coated onto a silicon substrate wafer. An etch barrier solution is
deposited onto the transfer layer, as shown schematically in Figure 2. It is impor-
tant that this solution has low viscosity and is photocurable, i.e. its polymerization
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is initiated by light. The polymerization process is detailed later. A translucent
template, which contains the pattern to be imprinted, is lowered, trapping the etch
barrier in its imprint geometry. Polymerization starts when the template is illu-
minated with ultraviolet light. After polymerization is complete, the template is
removed, leaving the desired pattern in the etch barrier. In Step 5, the base layer
of the etch barrier is removed with a halogen plasma etch, exposing the transfer
layer beneath. The desired features are then etched into the transfer layer with an
anisotropic oxygen reactive ion etch (RIE). Finally, the imprint is etched into the

Figure 2: Illustration of the steps involved in the SFIL procedure [6]
.

substrate and what remains of the etch and transfer barriers is washed away, leaving
the desired pattern in the silicon substrate [4, 6, 21, 22].

The etch barrier is an organosilicon solution which contains four components.
The first is a silylated monomer, a monoacrylate, which we call “monomer 1” or
“M1.” This monomer ensures that the etch barrier is not washed away during O2

reactive-ion-etch exposure.The second component is a t-Butyl acrylate, which lowers
the viscosity of the etch barrier solution. We call this organic monomer “monomer 2”
or “M2.” The “crosslinker” monomer (“XL”) is an ethylene glycol diacrylate, which
provides thermal stability and improves the cohesive strength of the etch barrier
solution. Finally, we have the photoinitiator, which dissociates when exposed to
ultraviolet light to initiate polymerization. We use “I” as shorthand to refer to the
initiator molecule. The chemical structure of these molecules is given in Figure 3
and Figure 4. Further details can be found in [4, 21].

Note that monomers 1 and 2 and the crosslinker have a common component,
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Figure 3: (top) Chemical structure of M1; (bottom) Three-dimensional rendering
of M1.
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Figure 4: Chemical structures of (a) M2, (c) XL, and (e) the initiator; Three-
dimensional images of (b) M2, (d) XL, and (f) the initiator.
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Figure 5: Component common to the molecules M1, M2, and XL.

shown in Figure 5. In fact, the crosslinker has two of these components. The fact
that this structure unit repeats throughout the molecules implies that one of the
CG beads can be defined to be this component. This bead is called the linker bead,
or “L,” not to be confused with the crosslinker. The rest of each molecule goes into
the residue beads. The residue bead for M1 is denoted “R1,” for M2 the residue
bead is labeled “R2,” and the middle section of the crosslinker is expressed as “X.”
Since the photoinitiator does not contain this component, it will be broken up into
two beads (which become the radicals in the polymerization process), denoted “I1”
and “I2.”

Each realization of the polymer cube is the result of a Kinetic Monte Carlo
calculation in which charge-neutral conformations of the molecular structure are
generated, where the appropriate mass fractions of the monomer constituents are
maintained. In this scenario, we take the mass fractions as follows: M1 ∼ 0.4445,
M2 ∼ 0.3716, XL ∼ 0.1541, and I ∼ 0.0298, as described in [4]. As an example of a
goal of the simulation, we take as the QoI the total energy of the cube.

8.1 Calibration, Validation, and Prediction Scenarios

An idealized model of typical etch-barrier flanges is depicted in Figure 6a. As noted
earlier, a simple example of the target quantity of interest is the total potential
energy per unit volume of the material, computed over the representative cube
shown in Figure 6b, which is the result of one realization of the polymerization
process. Thus, in this case q(ω) = u(ω) and ΓAA consists of phase-space realizations
confined to the representative cube.

Within the prediction scenario Sp (the cube), polymer chains of increasing
complexity and size can be identified. These represent possible validation scenarios.
Examples are given in Figure 8 and are depicted in the overall process in Figure
6c. For computational efficiency, the calibration phase can be broken up into three
small calibration scenarios. The first calibration scenario is a chain of three M1s,
the second is a chain of three M2s, and in the third, a crosslinker connects two small
chains of M2s, as shown in Figure 7.
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Figure 6: Illustration of the prediction, validation, and calibration scenarios for
predictive models of polymer materials in an etch-barrier flange: a) the flange; b)
one realization of a cube, the total energy being the QoI; c) validation RPCs and
d) molecular units used in the calibration scenario

8.2 The Calibration Scenario

Before calibration can begin, any prior information that can be derived from the
AA system needs to be included in the prior pdf of the parameters, π(θ|I), while
allowing as much uncertainty as possible, as discussed in Section 4.1. Details on
how information is derived from the AA system is discussed in the appendix.

Once prior pdfs for each parameter have been defined, calibration can begin.
Generally speaking, the parameters present in the first scenario will be calibrated
using data from the all-atom (AA) system, Dc1 and priors according to either (10)
or (11) are assigned. In the second scenario, a new set of data from the AA system,
Dc2, will be used. For the parameters present in this scenario that also appeared
in the previous scenario, the posteriors from Sc1 will be used as priors in Sc2. The
new parameters will be assigned maximum entropy priors. That is,

π2 (θi) =
{
πc1post (θi|Dc1) if θi ∈ θc1
π(θi) otherwise

, (31)

where θc1 is the vector of parameters present in Sc1. Similarly, the prior parameter
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Sc1 Sc2 Sc3

Figure 7: Series of calibration scenarios to be used in the SFIL model problem

distributions in the third calibration scenario are

π3 (θi) =


πc1post (θi|Dc1) if θi ∈ θc1/θc2
πc2post (θi|Dc2) if θi ∈ θc2
π(θi) otherwise

. (32)

That is, any parameter in Sc3 that appears in Sc1 but not in Sc2 will be assigned
a prior equal to the posterior of that parameter in Sc1. Any parameter in Sc3 that
appears in Sc2, regardless of whether or not it appears in Sc1, will be assigned a
prior equal to the posterior of that parameter in Sc2. Any new parameter is assigned
a maximum entropy prior.

Consider as an example the bond parameters in each of these scenarios.
In Sc1, there exist R1−L and L−L bonds, in Sc2, the bonds R2−L and L−L are
present, and Sc3 contains R2−L, L−L, and X−L bonds. Maximum entropy priors
are used in Sc1. However, since L−L exists in Sc2, the posteriors from Sc1 now
become the priors for Sc2 and the parameters are updated. Since R2−L is not
present in Sc1, the parameters for this bond will be given maximum entropy priors.
When moving on to Sc3, the posteriors for the R2−L and L−L bonds from Sc2 will
be used as priors. Note that the posteriors for L−L in Sc2 contain more (updated)
information than the posteriors from Sc1, which is why πc2post (θL−L|Dc2) is used
over πc1post (θL−L|Dc1). As the X−L bond does not appear in either Sc1 or Sc2, its
parameters are given maximum entropy priors.

8.3 Model Choices

Let it be assumed that the number of coarse-grained particles is given. Then the
models differ only in the representation of the potential energy function, U . Here,



19
8 A MODEL APPLICATION: ANALYSIS OF POLYMER COMPONENTS IN

NANOMANUFACTURING

it is also assumed that the functional form of the potential energy function assumes
the OPLS functional form, as described in [25, 45, 46],

U(ω) =
∑
bonds

kr(r(ω)− r0)2 +
∑
angles

kθ(θ(ω)− θ0)2

+
∑

dihedrals

4∑
n=1

Vn
2
[
1 + (−1)n−1 cos(nϕ(ω))

]
+

∑
non−bonded

4ε

[(
σ

r(ω)

)12

−
(

σ

r(ω)

)6
]
f, (33)

where kr, kθ, r0, θ0, ε, σ are model parameters and f is a weighting function, equal
to 0.5 for Lennard-Jones interactions between atoms that are separated by exactly
three bonds, and 1.0 otherwise. By including or excluding different interaction types
(bonds, angles, dihedrals, non-bonded), different models are created. A complete
tabulation of all possible models is given in Table 1.

Most of these models, however, can be eliminated by considering prior in-
formation on the physics of the system. For example, there has to be some physical

Model Bonds Angles Dihedrals Non-Bonded # of Parameters
M1 rigid X 12
M2 X 18
M3 X X 30
M4 rigid X 32
M5 rigid X X 44
M6 X X 50
M7 X X X 62
M8 rigid X 96
M9 rigid X X 108
M10 X X 114
M11 X X X 126
M12 rigid X X 128
M13 rigid X X X 140
M14 X X X 146
M15 X X X X 158

Table 1: Tabulation of the interactions that are included in each of the available
CG models. A check-mark in the column of an interaction implies the use of that
interaction in the model. When bonds are not included, they are treated as rigid.
When angles, dihedrals, and non-bonded terms are not included in the model, they
have no contribution to the total energy of the system.
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Sv1 Sv2 Sv3

Figure 8: RPCs (Representative Polymer Chains) in a sequence of validation sce-
narios of increasing size

force that keeps two bonded molecules together. Therefore, bonds must be included
in the model, with the covalent bonds represented by harmonic spring potentials or
by the use of rigid bars, signifying no relative motion. Furthermore, the notion of the
size of beads is given by the Lennard-Jones radius σ. Thus this interaction should
also be included in the model. It should be noted that in the context of a cube of
SFIL material, the contribution to the potential energy of the dihedral interactions
will be quite small. In addition, the structural contribution of the dihedral poten-
tials will be dominated by the packing constraints of being in a cube of material.
These observations coupled with the fact that there are 96 dihedral parameters in
the full system implies the calibrating dihedral parameters may not be worth the
computational cost. With these restrictions, the possible models are given in Table
2. If necessary, this table can be expanded by considering different variations of the
LJ interaction. The OPLS functional form traditionally uses a LJ 12-6 potential,
but perhaps a softer potential, such as LJ 9-6 would be more appropriate.

The conclusion of the validation process now follows the recipe discussed
earlier. With the plausibilities of the models in Table 2 computed, the parameter are
updated and the most plausible models are determined. These are used to compute
the calibration posteriors for the molecular units, which become priors for the RPCs
in the validation scenarios. These are used to calculate the approximate QoIs (the

Model Bonds Angles Dihedrals LJ 12-6 # of Parameters
M1 rigid X 12
M2 X X 30
M3 rigid X X 44
M4 X X X 62

Table 2: Table of possible models to represent the CG system of SFIL. Each model
will be calibrated and its plausibility calculated.



21
8 A MODEL APPLICATION: ANALYSIS OF POLYMER COMPONENTS IN

NANOMANUFACTURING

validation observables) via (21) and their expected value via (22). The approximate
AA QoI (23) is computed using LAMMPS and the error measure γk is computed
using (24). Again, if γk ≤ γtol, the model is deemed “valid” (or “not invalid”).
What remains is to spell out more details in the critical plausibilty calculations. We
discuss this in the next subsection for a lower degree of freedom example, hexane.

8.4 Example: Hexane

As a proof-of-concept example, consider a molecule of hexane, C6H14, shown in
Figure 9. The CG system consists of three beads, each containing two carbon
atoms and their attached hydrogen atoms.

Since the CG model has three beads, possible model choices are created by
including or excluding the harmonic bond, the harmonic angle, and the Lennard-
Jones 12-6 potential, given in (33). As discussed in Section 8.3, the Lennard-Jones
potential must be included to give the CG system a notion of bead size. Bonds
must also be included, whether as harmonic springs or rigid bonds. This leaves only
three possible models. Therefore, the Lennard-Jones 9-6 potential is also introduced,
producing six possible models, shown in Table 3.

⇒

Figure 9: Schematic of the mapping from AA hexane (left) to the CG representation
of hexane (right). Each CG bead contains two carbon atoms and their accompanying
hydrogen atoms.

Model Bonds Angles LJ 9-6 LJ 12-6 # of Parameters
M1 X X 4
M2 rigid X X 4
M3 X X X 6
M4 X X 4
M5 rigid X X 4
M6 X X X 6

Table 3: Table of possible representations of the CG potential energy for hexane.
Each model will be calibrated and its plausibilities will be calculated and compared
to quantitatively determine which model best represents the AA data.
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We consider as a calibration scenario a single hexane molecule in a constant
volume and temperature ensemble. No molecules are being added to or taken away
from the system, and the number of CG beads describing the molecule does not
change. Thus we are considering a canonical ensemble. For calibration data, we
take Di = u(ωi), i = 1, . . . , L. That is, each data point is the potential energy
of the system at a configuration of the molecule. Prior information on the CG
parameters can be deduced from the AA system using techniques discussed in the
appendix. Prior distributions, which are used during the calibration of each model,
are shown in Figure 10.

To complete the Bayesian inversion framework, a Gaussian likelihood of
the form (14) is used. Since the models differ only in the representation of the
potential energy function, the inversion process differs between each model choice
through the parameter-to-observation map d(θ). For model Mj , we define di(θj) =
U(θj ;G(ωi)). That is, each data point is the CG potential energy evaluated using
parameters θj , in a configuration of the molecule when mapped onto the CG system.

For each of the six model choices, the parameters are updated using (26), and
the plausibility is calculated using (28). For hexane, the normalized plausibilities
are

ρ1 ≈ 0.5, ρ2 = 0, ρ3 ≈ 0, ρ4 ≈ 0.5, ρ5 = 0, ρ6 ≈ 0 (34)

Figure 10: Prior distributions of all parameters that may be considered for any
choice of representation of the potential energy for CG hexane.
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Figure 11: The three-bead CG system of hexane yields a choice of six parametric
model classes. For each, the parameters are calibrated according to the aforemen-
tioned Bayesian calibration. The evidence resulting from Bayesian inversion is used
to calculate the plausibility of each model. Posteriors produced by one of the most
plausible models are shown here

From this it is easy to see that Model 1 and Model 4 are equally plausible mod-
els. The posteriors for Model 1 are shown in Figure 11. In both models covalent
bonds are represented by harmonic springs and angular interactions are neglected.
The difference between the two models lies in the expression of the Lennard-Jones
interaction, however, the hexane model is insensitive to this difference.

It is important to note that in this case, the most plausible model for approx-
imating the potential energy in the prediction scenario is not the model that has
the most parameters. Should either of these two models be validated, the compu-
tation cost of predicting the QoI in a much larger system will be lower than simply
choosing the model with the most parameters, as intuition may suggest we do.

As a validation scenario, consider now octadecane, a longer polyethylene
chain with 18 carbon atoms and 38 hydrogen atoms. In accordance with (20), the
calibration posterior now becomes the validation prior in the Bayesian update. As
was the case in the calibration step, each validation data point is the potential en-
ergy, now of octadecane, at a configuration sampled from the canonical distribution
and a Gaussian likelihood is used.

Parameters are updated for Model 1 using (20). The updated posteriors
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are then used to run the CG system in the canonical ensemble. The kernel density
estimate of the pdfs of the AA observable, π(QAA,v), as well as π(QCG,v|θ1) for
Model 1 are shown in Figure 12. Although it is clear that π(QAA,v) is not accurately
predicted, this can be verified quantitatively using techniques discussed in Section 6.
If we take as the QoI the ensemble average of the potential energy, QAA,v = 62.4610
and Eπv

post
[π(QCG,v|θ1)] = 6.0905, yielding an error of 90.2%. It is reasonable to take

γv,1 = 0.15(QAA,v) (a tolerance of 15% error), rendering Model 1 invalid. If instead
the QoI is considered to be the distribution of potential energy, theDKL is computed.
Determining a proper tolerance for this pseudo-measure is less straightforward, but
we relate it to the variance in the AA distribution by assigning γv,2 = 0.12σ2

AA.
Then

Dkl(π(QAA,v)‖π(QCG,v|θ1)) > γv,2, (35)

again rendering Model 1 invalid. A similar validation experiment can be done for
the remaining models, revealing that none of them is valid.

To remedy this situation, the class of models may be redefined. It should
be noted that within a single CG bead, the minimum energy configuration of the
contained atoms yields a non-zero potential energy. This contribution is lost in (33).
Therefore, a new parameter, the internal bead energy, A is introduced into (33). The
hexane model class may be redefined to be M̃ = {(M̃1, θ̃1), . . . , (M̃6, θ̃6)}, with the
parametric models characterized according to Table 4. The plausibility calculation
can be recomputed, yielding

ρ̃1 ≈ 0, ρ̃2 = 0, ρ̃3 ≈ 0.5, ρ̃4 ≈ 0, ρ̃5 = 0, ρ̃6 ≈ 0.5. (36)

The validation experiment, previously described, yields updated parameters, which
are then used to run the CG system in the canonical ensemble. The kernel density
estimate of π(QCG,v|θ̃3) is shown in Figure 12. Although it appears bi-modal, it is
completely contained in the range of π(QAA,v). Furthermore,∣∣∣QAA,v − Eπv

post

[
π(QCG,v|θ̃3)

]∣∣∣ < γv,1 (37)

Model Bonds Angles LJ 9-6 LJ 12-6 A # of Parameters
M̃1 X X X 5
M̃2 rigid X X X 5
M̃3 X X X X 7
M̃4 X X X 5
M̃5 rigid X X X 5
M̃6 X X X X 7

Table 4: Table of possible representations of the CG potential energy for hexane.
Each model will be calibrated and its plausibilities will be calculated and compared
to quantitatively determine which model best represents the AA data.



25 9 CONCLUDING COMMENTS

Figure 12: Kernel density estimates of the probability distribution functions of the
potential energy of C8H18 calculated in the all-atom system (left), the coarse-grained
system as defined by model M1 (middle), and the coarse-grained system as defined
by model M̃3 (right).

and
Dkl(π(QAA,v)‖π(QCG,v|θ̃3)) < γv,2, (38)

where γv,1 and γv,2 are defined as before. Therefore, M̃3 is considered valid (not
invalid).

It is noted here that if we consider as a model class the most plausible models
from M and those from M̃, e.g. M̂ = {(M1,θ1), (M4,θ4), (M̃3, θ̃3), (M̃6, θ̃6)}, the
plausibilities may be compared. Then

ρ1 ≈ 0, ρ4 ≈ 0, ρ̃3 ≈ 0.5, ρ̃6 ≈ 0.5, (39)

which agrees with intuition following the numerical results above.

9 Concluding Comments

A broad theoretical and computational framework for the selection and validation
of coarse-grained models of atomistic systems is laid down in this work which uses
Bayesian inference and information theoretics to deal with model and parameter
uncertainties. The problem of selecting the CG model itself, generally ignored in
CG construction, is addressed using the notion of model plausibilities, an idea that
has been used in low-dimensional statistics for many years. We demonstrate the use
of Bayesian model plausibilities in calculations of parameters and most plausible
models for a hexane molecule coarse-grained with three beads. We also lay the
groundwork for future studies of complex polymer structures encountered in Step
and Flash Imprint Lithography for semiconductor nanomanufacturing. These tools
are also useful, and possibly essential, for developing methods for validation of a
large class of multiscale models.
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Appendix

A Derivation of All-Atom Data for Maximum Entropy
Priors

The type of information that must be collected from the AA system to inform the
CG parameter priors depends on how the parameter appears in the model. In this
appendix, we discuss how statistical mechanics is used to determine what type of
information we can infer about the CG parameters and how this information is
collected from the AA system. Specifically, the equilibrium bond distance param-
eter, R0, the bond spring constant, kR, the equilibrium angle parameter, θ0, the
angle spring constant, kθ, and the Lennard-Jones radius, σ, and well depth, ε, are
examined.

A.1 Harmonic Bond Parameters

Consider the CG parameter that describes the equilibrium bond length of one par-
ticular type of bond (such as, for example, the R1−L bond in the SFIL system).
For each sample configuration of the AA system, ωi, the distance between the CG
sites in the AA system can be measured. We have chosen our AA-to-CG map such
that the CG sites correspond to specific atoms contained in each CG bead.

In the case of the SFIL system, the central silicon atom in the R1 bead and
the carbon atom in the L bead correspond to the CG sites for R1 and L, respectively.
The distance between these two CG sites is then

R0,R1−L(G(ωi)) = rSi−C(ωi) = ‖rSi(ωi)− rC(ωi)‖. (A.1)

This distance can be considered to be a sample distance of the CG bond length. The
average of these distances can be considered to be the average equilibrium length of
the bond in the CG system,

〈R0〉 =
1
n

n∑
i=1

R0,i, (A.2)
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where for notational simplicity, R0 = R0,R1−L and R0,i = R0,R1−L(G(ωi)). Further-
more, the variance in the observed length can be computed,

σ2
R0

=
1
n

n∑
i=1

(R0,i − 〈R0〉)2 . (A.3)

Therefore, since the approximate mean and variance of the bond length can be
extracted, the prior distribution for any equilibrium bond length parameter is a
Gaussian.

For non-structural parameters, such as the spring constant kR, the situation
is more theoretical. The mean values for the spring coefficients of these interac-
tions can be derived in the same way as the Equipartition Theorem of statistical
mechanics, as mentioned in [87], the proof of which is contained in [85].

The Equipartition Theorem states that each quadratic term in the energy
with positive coefficient contributes kBT/2 to the mean energy, where, as before, kB
is Boltzmann’s constant, T is the temperature, and the mean is taken with respect
to the canonical distribution function. That is,〈

r∑
i=1

aiy
2
i

〉
=
rkBT

2
, (A.4)

where ai is the positive constant and yi represents a structural variable, such as
coordinates.

Recall that the bonded and angular interactions are represented by harmonic
springs. Therefore, each bond is a quadratic term with positive coefficient. For each
bond, we can write 〈

kR(R−R0)2
〉

=
kBT

2
. (A.5)

Although the random variable kR and the possible bond lengths (R−R0)2 are not
completely independent, we let

〈kR〉 =
kBT

2 〈(R−R0)2〉
. (A.6)

Thus, the mean value of the spring coefficient is roughly inversely related to the
variance of the bond length,

〈kR〉 =
kBT

2σ2
R0

. (A.7)

As no further information can be extracted, the prior distributions for bond spring
coefficient parameters are given by (10).
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A.2 Harmonic Spring Parameters

Harmonic interactions are also used to represent harmonic springs, thus similar
arguments to those above can be used to derive prior information regarding angular
parameters. Consider as an example the angle between an R1−L bond and an L−L
bond. This angle can be measured by

θ0,R1−L−L(ωi) = cos−1

(
(rSi(ωi)− rC,1(ωi))T (rC,2(ωi)− rC,1(ωi))
‖rSi(ωi)− rC,1(ωi)‖‖rC,2(ωi)− rC,1(ωi)‖

)
, (A.8)

where rSi, rC,1, and rC,2 are the coordinate vectors of the CG sites associated with
R1, the cental L and the end L beads, respectively. Angular analogies to Eqs. (A.2)
- (A.3) follow, yielding prior information regarding the average and variance of the
equilibrium angle distance. Furthermore, the mean values for the spring coefficients
of angular interactions can be derived from the Equipartition Theorem, as discussed
above, where the angular analogy to (A.7) is used.

A.3 Lennard-Jones Parameters

In 2003, Reith et. al [77] derived a coarse-graining method called iterative Boltz-
mann inversion and demonstrated its accuracy for a Lennard-Jones fluid. The gen-
eral idea for extracting information about Lennard-Jones parameters is therefore
borrowed from their procedure, as described in [87].

The process begins by building a radial distribution function g(R), which
describes the probability of finding a particle a distance R from a given particle,
as compared to the ideal gas distribution [50]. In the OPLS functional form, the
LJ parameters are defined between pairs of similar particles. These parameters are
geometrically averaged when a non-similar pair of particles is considered. Therefore,
for each sample configuration of the AA system, ωi, the distance between pairs of
like-particles is measured. Details on how this statistical data is compared to the
ideal gas distribution are given in [19, 50].

It can be shown that the radial distribution function is related to the poten-
tial of mean force,

U(R) = −kBT ln g(R), (A.9)

which examines how the energy of the system changes as a function of the distance
between two particles [49, 50]. Since the radial distribution function has a single
maximum [50], the potential of mean force has a single, well-defined minimum, say
R∗. Furthermore, this minimum is locally Gaussian. Therefore, we can take R∗

to be the mean of the LJ radius parameter σ, and the local variance about this
minimum to be the variance in its prior Gaussian distribution. The depth of the
well in the potential of mean force, U(R∗), is taken as the mean for the LJ well-depth
parameter ε, to be used in a prior given by (10).


