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Abstract

In the present study a general Dynamic Data-Driven Application System (DDDAS)
is developed for real-time monitoring of damage in composite materials using methods
and models that account for uncertainty in experimental data, model parameters, and
in the selection of the model itself. The methodology involves (1) data of the uni-
axial tensile experiments conducted on a composite material; (2) continuum damage
mechanics based material constitutive models; (3) Bayesian framework for uncertainty
quantification, calibration, validation, and selection of models; and (4) general Bayesian
filtering, as well as Kalman and extended Kalman filters. A software infrastructure is
developed and implemented in order to integrate the various parts of the DDDAS. The
outcomes of computational analyses using the experimental data prove the feasibility
of the Bayesian-based methods for model calibration, validation, and selection. More-
over, using such DDDAS infrastructure for real-time monitoring of the damage and
degradation in materials results in an advance prediction of failure in the system.

Key Words: Bayesian model selection, extended Kalman filter, Dynamic Data
Driven Application Systems, material damage.

1 Introduction

With repeated loading cycles or accidental overloading such as foreign-object impact events,
composite materials accumulate damage that degrades their performance and eventually
leads to failure. Therefore, it is very important to monitor and track the evolution of damage
in these composite materials. The ability to obtain continuous updates in the health of the
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structure provides a large collection of data that can be coupled within the framework of
a Dynamically Data Driven Application System (DDDAS) in order to extract appropriate
conclusions regarding structural durability and reliability. The types and evolution of damage
that appear in composite materials and structures are complex functions of the composition,
architecture, geometry and loading history.

The underlying philosophy of DDDAS is to connect the dynamic computational models
of the evolution of physical phenomena of interest with the experimental systems that deliver
relevant data in near-real time so as to allow feedback to control outputs to meet a set of
objectives (see [10, 11, 12, 13, 14, 15, 16]).

The present study develops a stochastic DDDAS for prediction and monitoring of material
damage in composite materials common to many types of contemporary high-performance
military aircraft. In this regard, the computational models are based on finite element ap-
proximation of highly nonlinear material damage theories of the type used in contemporary
fatigue analysis, fracture mechanics, and structural mechanics. These typically involve ma-
terial parameters that exhibit uncertainties. In order to provide information for real-time
monitoring of damage, the dynamically collected data of uniaxial tensile experimental con-
ducted on composite materials [4] is taken into consideration. Thus, the system itself must
be calibrated and validated, and the inherent uncertainties in data must be factored into a
statistical analysis for the validation of the full system. A Bayesian framework is also devel-
oped for defining, updating, and quantifying uncertainties in the model, the experimental
data, and the target quantities of interest.

This paper is structured as follows. A summary of some physical models for damage that
are considered for adoption along with the finite element solution procedure is presented in
Section 2. This is followed by Section 3, by the development of a corresponding DDDAS. In
Section 4, the experimental results used in the statistical analyses are presented. Bayesian
methods for model calibration, validation, and selection with quantification of uncertainties
are outlined in Section 5. Section 6 describes the developed and implemented software
infrastructure in order to integrate the acquired experimental data along with the finite
element solution of the continuum damage mechanics model in order to calibrate the model
and compute model plausibilities that guide the selection of the models themselves. This is
accomplished with real-time monitoring of damage using the Bayesian filtering algorithms.
The results of statistical calibration of damage models, damage models ranking, and damage
monitoring, given the experimental measurements of the composite material, are presented
in Section 7. Summary and conclusions are collected in Section 8.

2 Continuum Damage Mechanics

A material under loading is regarded as damaged relative to some initial state when it
experiences a loss of stiffness due to the emergence of microscale defects (e.g. micro-cracks,
micro-voids). In contrast to fracture mechanics, continuum damage mechanics is based on
the idea of the existence of a damage field, which measures the density of these micro-
defects. An increase in damage signals a deterioration of the material before the initiation
of macro-cracks. The notion of a damage density field was first introduced by Kachanov
[21], who postulated an evolution equation for the growth of damage, written in terms



of stress or strain, which may be used to predict the failure of material. More general
models of anisotropic damage were introduced by Chaboche [6, 7], Murakami and Ohno [27],
Krajcinovic and Foneska [23] and others, in which the damage variable can be tensorial to
account for anisotropy in the material properties in failure mode. Here we restrict ourselves
to isotropic damage, which consists of cracks and cavities with an orientation distributed
uniformly in all directions. The assumption of isotropic damage with scalar damage field is
often regarded as sufficient to give a good prediction of the load carrying capacity, the number
of cycles or the time to local failure in isotropic structural components. In this case, the
damage variable does not depend on the orientation and the damaged state and is completely
characterized by a scalar field D = D(x,t). It is common to scale the damage measure so that
the value D = 0 characterizes the virgin (undamaged) state, while D = D, < 1 characterizes
the initiation of a macro-crack. The parameter D, is a critical value for the damage variable
usually taken between 0.2 and 0.8 for engineering materials (see the references in Lemaitre
and Chaboche [25]). It is commonly agreed in continuum damage mechanics that, once a
material is damaged, further loading only affects the undamaged (intact) material skeleton.
This motivates the development of several classes of constitutive equations (model classes)
for the evolution of the damage field, all designed to predict the progression of micro-cracks
in the course of elastic and plastic deformation of various materials.

Generally, the damage evolution, D, can be a function of the stress tensor o, hydrostatic
stress tro, strain tensor €, strain rate €, temperature 7', and damage history D such that
the evolution of damage is assumed to be governed by an constitutive equation of the type

D = F(o,tro,€,é,D,T). (1)
Kachanov [21] was the first to postulate an evolution equation of creep damage based on

a power law of the form
C2
o
e 2
[61(1 - D)] ’ 2

where ¢; and ¢y are material constants depending upon the temperature, and o is the applied
(uniaxial) stress. Belloni et al. [5] proposed the creep damage law

D= (5 + 1)ce® [exp (-%)} o140, (3)

where ¢, «, 3,7,0 are material constants, and ¢ is time. Later, relying on several sets of
experiments, it was argued that strain is the most important variable in the evolution of
damage variable (e.g. Cozzarelli and Bernasconi [9] and Lee at al. [24]). Considering the
effect of damage on the elastic stiffness, Krajcinovic and Foneska [23] postulated the following
power law for the damage evolution in brittle materials

s
. € .
D= (s+1)—56 (4)
R
where s is a material constant and eg can be interpreted as the final strain at rupture.
Extending the Krajcinovic damage model, Marigo [26] considered volume effects, for which



the probability of microscale defects increases with increasing volume. An evolution equation
for this type of damage thus the form

2FE?Y¢(D — 1)
B
where F is Young’s modulus, « is called the Weibull modulus, and [ is the ultimate stress

to rupture of a hypothetical sample without any defect.

Each aforementioned model class, M;, contains materials parameters, represented in pa-
rameter vector 65, in order to capture the damage and degradation responses. In calibrating
such material parameters against experimental data, uncertainties must be taken into ac-
count. Regardless of the physical justification behind each model, the question is, in a set of
model classes, M = {Mj, Ms, ...}, which class is the most plausible to address the damage
behavior in a particular material for given experimental data. In this work, an answer to this
question is proposed based on a Bayesian analysis of damage models and of experimental
data collected from composite material body that accounts for the damage evolution.

D= é, (5)

2.1 Mathematical Models of Material Damage

Consider a material body occupying an open bounded domain © C R? with smooth boundary
09). Local linear and angular momentum balances are governed by the equations

V.o(x,t)+f(x) =0, VxeQandt >0, (6)

and
o(x,t) =o(x,t)", VxeQandt >0, (7)

where o (x,t) is the Cauchy stress at point x on  at time ¢ and f(x) is body force acting
within 2. On the boundary we have

g(x,t) = o(x,t)n, Vxel,. (8)

where g(x,t) are prescribed tractions on surface I'; C 92 and n denotes the outward unit
normal to 0f).

The loss of elastic stiffness due to material damage is expressed the form of the reduced
stress tensor,

o= (1-D)Ce, 9)

where C is the fourth-order elastic tensor, and € is the strain tensor,

(Vu+ (Vu)"). (10)

1
€=
2

with Vu the displacement gradient.
Moreover, by postulating a proper form of energy dissipation due to material damage,
one can write the following damage criterion (see [4]),

Y <w(6,D), (11)
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where Y is the effective elastic energy density
Y =€:Ce, (12)

and w(@, D) is the threshold of damage, for the particular damage model in use.

As mentioned in the beginning of this section, several evolution equations exist for damage
variable that provide different functions w for predicting the material failure. For example,
two simple damage models, proposed by Krajcinovic and Foneska [23] and Marigo [26] are
listed as follows.

e Krajcinovic Damage Model:

1 2
w= §E€%D(S+1), (13)
e Marigo Damage Model:
2a
1 B 1

2.2 Finite Element Approximation

Introducing the constitutive relationships into the momentum equation (6), in the absence
of body forces,

V.ot = vV x € (),
u(k+1) = '[1()()(7 t(k+1)) V X E Fup I (15)

for each time increment t**1) where uy and g are the prescribed displacement and traction
respectively.

A weak form of these equations is obtained by introducing (9), multiplying them by
an admissible test function v, and integrating by parts. We now consider the evolution
of damage governed by (1) over time interval (0,7, which is partitioned into sub-intervals
[t(’“),t(k“)], k = 1...N;. Denoting the stress and displacement at point x € {2 and at
time t*+Y by o) (= o (x,t* D)) and u**+ (= u(x, t**+Y)), we arrive at the incremental
equation,

/(1 — D*)) € vu* | Vo dz = / go(x, tFH) v ds, VoeV (16)
Q

o

for an appropriate space of test functions,
V={vx)|vx) e H({Q); v(x)=0,VxecTl,}, (17)

where H! is the Sobolev space of functions with first-order generalized derivatives in L*((2).
Finite element approximations of the problem are obtained by considering the sub-spaces
V.

Here, the damage field is also discretized using a possibly different basis from that of the
finite element approximation for displacement u”. Thus, one can rewrite the weak form (16)
as a system of nonlinear equations

/ o (u"(t* ), D" (¢*)) VN dz — / go(t*+)) N ds = 0. (18)
Q

o
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where N(x) is the vector of nodal shape function.

Since stress depends upon the the history of u and D, the key is the evaluation of the
stress state o (uh, Dh) at t**1)_ The stress state evaluation is achieved by discretizing the
evolution equations of the stress and damage together with the consistency conditions

Y (x,t*#)) —w (0, D (x,t*)) <o. (19)

To insure the above consistency conditions, an implicit Backward Euler method is utilized
here. In this regard, the incremental value of the damage variable can be obtained using the
Newton iterative procedure (see [4] for more details).

3 The Dynamic Data Driven Application System

As a prototypical problem of composite damage evolution, in this study a sheet of a carbon-
fiber epoxy composite is considered that is commonly used in aerospace applications. The
specimen is subjected to a monotonically increasing load or load-unload cycles with increasing
load up to failure [4]. At different stages in this process, the specimen is interrogated in order
to determine the spatial variation in the strain using digital image correlation and map this
to damage.

The Dynamic Data Driven control system is depicted in Figure 1. The dotted lines
indicate that the statistically inferred state of the material can be used to drive a variety
of actions. Here “state” refers to a joint probability density function (PDF) of the material
parameters and the damage field. Possible data driven actions are mesh refinement (mesh is
refined around regions of increasing damage), load control, healing control, and measurement
control (measurements become concentrated in regions of increasing damage).

There are two main computational cycles in the control system depicted in Figure 1.
One computational cycle involves “only” simulations, and is responsible for predicting the
state. Beginning with an initial state (one usually assumes that no damage exists), the
computational model is exercised during the solution of the statistical forward problem for
one time step. While experimental data is not yet available, the predicted state feeds back
through the statistical forward problem, so that the state can be predicted at the next time
step. Eventually, the mesh may need to be refined to predict the state more accurately.

The other computational cycle in Figure 1 involves a Bayesian updating procedure, and
is responsible for dynamically updating our knowledge about the state, as data is collected.
Once experimental data is accessed at a particular time, it can be used to update our
knowledge about the system state, using prior knowledge (predicted state) to gain posterior
knowledge (corrected state). The computational model and the experimental data are used in
the computation of the likelihood function in Bayes’ formula (see Section 5). The corrected
damage state is then fed back to the forward problem as time is advanced and the loop
begins again. Local mesh refinement may be required at this point to capture the damage
interface with sufficient accuracy. This is indicated by the dotted line at the top of Figure
1. The corrected damage state might also drive other control actions, as indicated by the
three dotted lines on the bottom of Figure 1. For instance, in cases in which the material is
part of a structural component in service, possible actions might be: (i) to instantly apply
healing (an example of control) to a damaged region, and/or (ii) to instantly update a flight
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Figure 1: A schematic representation of the DDDAS. Here “state” refers to the combination
of physical parameters and the scalar damage field throughout the specimen. The four dotted
lines highlight the possible (dynamic) data driven actions.

maneuver plan (another example of control) in order to diminish the possibility that any
further damage happens to the system, and/or (iii) update the flight computer so that it
has up-to-date information before taking a maneuver decision.

It is important to note that many uncertainties are involved in the process of assessing
the system state: the data is measured only at some points of the system, the measured
data has noise, the computational model that maps the spatial distribution of damage to
the spatial distribution of strain (or electric potential) is an imperfect characterization of
reality, and the damage evolution model may not capture reality perfectly either. All these
uncertainties justify the use of statistical problems in Figure 1.

4 Experimental Observations

In order to provide experimental evidence for conducting statistical calibration, validation
and selection of the continuum damage models, a set of experimental data are dynamically
recorded for a polymer nano-composite material, see [4]. This experimental work involves
uniaxial tensile experiments with different load levels for measuring strain variation over
the length of the specimens, and for generating distributed damage in different parts of the
specimen. Moreover, in order to provide for real-time monitoring of damage, [4] postulated
a second group of experiments for dynamically and indirect measuring local variation of
damage along the length of the specimen. In the experiment reported in [4], the specimens
are made of a bisphenol A epoxy resin infused with multiwalled carbon nanotubes (CNTs)
dispersed uniformly through the specimen. The presence of the CNTs makes the specimen
electrically conductive and provides the possibility of determining the damage state through



electrical conductivity measurements. These specimens are subjected to loading-unloading
cycles with progressively increasing peak displacements between two rigid cross-heads in a
testing machine. The global response of the specimen is characterized easily by measuring
the force and extension; the variation of the nominal stress (load/original area) with average
global strain is shown in Figure 2(a). The spatial variation in the strain field (resulting from
local perturbations in material state and properties) is also measured at each load increment
using digital image correlation. Moreover, the spatial variation of electrical conductivity
(averaged across the width of the specimen) is measured using a four-point conductivity
probe at a selected number of positions along the length of the specimen. The connection
between the conductivity changes and damage in term of micro-cracks can provide an in-
direct measurement of damage. However, observations of [4] suggest that the underlying
mechanisms that dictate the changes in resistance with position, strain and stress, as well
as time-dependence are quite complex and may require a more in-depth examination before
the CNT infiltrated epoxies can be used as diagnostic sensors. Therefore, in the current
work, the results of the indirect measurement of damage is not considered for the statistical
analyses.

4.1 Experimental Characterization of the Variation of Strain

Figure 2(b) shows a contour plot corresponding to the strain, € at a particular step in the
loading process when the average strain in the specimen was about 1.4%. Figure 2(c) shows
the variation along x, the horizontal direction, of the strain at different times after beginning
of the test (particularly at one set of each unloading). This data corresponds to u(t*), z;),
the measured displacement variation along x at time (i.e. load increment) k. There are
two key features that are evident; first, while the average strain is about 1.4%, there is a
background fluctuation over the entire length that arises from the noise in the process of
digital image correlation used to evaluate the strains. Second, there are some hot-spots
where the strains are quite a bit higher than the average strain; these fluctuations are well
above the noise in the measurements and correspond to points in the specimen where local
defects trigger damage accumulation. Eventually, one of these hot-spots results in failure of
the specimen. This development of strain (or damage) accumulation is illustrated in Figure
2(d) where the variation of the strain in the uniform segment is shown in comparison to the
strain in the hot-spot; rapid accumulation of strain leading up to failure of the specimen
occurs in the last cycle.

The measured displacement data u(t*), z;), and the corresponding measured force fe,, (t*))
from the lead cell for all time steps, constitutes the experimental data set d(t®), z;) =
{u(t™, 2;), fexp(t™)} to be used in calibration of the damage model. Based on the DIC
resolution, the displacement data is measured in a grid that consists of 91 evenly-spaced
points along = (i.e. 0 < i < 90) and 17 points along y. Moreover, the DIC system is set
to image the specimen with the rate of 1 image per second. Considering the total time of
500(s) for conducting the test, the displacement and force are capture at 500 time steps (i.e.
0 < k < 500).



Stress (MPa)
Strain (%)

05 1 15 2 25
average Strain (%)

(a) (b)

10 T T T 14
i p—— 12t
t=493¢) | Yeprl Point A (hot-spot)
8 t=2345(s) 10 —Point B
iR t=227 (S) g
ot = 146 (8) Py
~ 6 % 8 ]
§ t=85(s) i
5 5 t=42(s) §a 6
& al =—t=0(s) 1 .
£ 4 s S
g S
3l : {7 z ; o
2F N v
1he : e 0
0 i 2 L i I i
0 100 200 300 400 500 0 100 200 300 400 500
Length (mm) Time (second)

(c) (d)

Figure 2: Experimental results of the CNT-Epoxy specimen: (a) The nominal stress vs
nominal strain plot indicating the load-unload cycles that the specimen experienced; (b)
Spatial variation of strain at ¢ = 493(s) after beginning the test; (c¢) the strain variation
along x (line C as shown in plot (b)) at different times (one set of unloading); (d) evolution
of strain through time in the hot-spot and in the uniform segment (points A and B as shown
in plot (b) respectively)[4].

5 Bayesian Analysis and Model Plausibilities

We are interested in statistically inferring the current state of a system of physical volume
) C R3, so that we can make predictions about the system and consequently inform the
model of potential control actions to be taken, given our updated knowledge about its state.
For instance, the state might be the set of physical parameter values. The state will be
indicated by the vector 8 € R™, for some fixed positive integer ng > 0. In order to proceed
with the state inference, we collect measurement data d € R™, for some fixed positive
integer ng > 0. Our current (pre-inference), and uncertain knowledge of the system state is
represented by the prior probability density function e (€). The posterior (post-inference)



state is given by Bayes’ formula [19]:

Tike (d|9) : 7Tprior (0)
Tdata (d> '

7Tpost(0|d) = (20)

In (20), mpost (0]d) is the posterior PDF defining the Bayesian update of the prior information
embodied in 70 (6). The likelihood PDF, m.(d|@), encapsulates assumptions about the
discrepancy between the values d that are measured and the values that can be computed
with the computational model we have at our disposal. And the term

7Tdata(d) = / 7-‘-lilie(d‘H) : 7Tprior<0) do

is the normalization value (for a given d) that makes (20) a PDF.
For the DDDAS of interest here:

e () = some material piece that might be subjected to stresses and consequent damages;
e d = strain (or electrical resistivity) measured at ng positions of the system; and

e 6 = parameters of the damage constitutive material model(s) (a vector of size ny)
inferred by statistical inversion.

Once we infer such spatial distributions, the control decision might be (in case the material
is part of an airplane in service, for example):

e to instantly apply healing (an example of control) to a damaged region, and/or

e to instantly update a loading scenario of the structure (another example of control)
in order to diminish the possibility that any further damage happens to the system,
and /or

e update sensor control of the structural system so that it has up-to-date information
before implementing a control decision.

However, many uncertainties are involved in the process of assessing the system state:
e the data is measured only at some points of the system,
e the measured data has noise,

e the continuum damage mechanics models do not capture real responses of the material
perfectly, and

e the computational model that maps the spatial distribution of resistivity to the spatial
distribution of damage is an imperfect characterization of reality.
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5.1 Model Plausibilities

Formula (20) can also be written to make explicit the whole set of assumptions underlying

the modeling and inference efforts [8, 29, 28]:

Tike (A6, M;) - Tprior (85| M)
7Tc‘la‘ca(duwj )

71'1f>ost<0j|da M;) = (21)

In (21), M, denotes the j-th model class, which has associated with it a random vector 6;
of model parameters, j = 1,2,...,m. All m proposed model classes are “competing” to
explain (match) the same collected data d. Any arbitrarily fixed parameter sample 6," in
M; is called a model. That is, a model class can be seen as the family of all possible values
of 6;, augmented with prior and likelihood PDFs. It should be noted that different model
classes might have different parameters.

In (21), the term

Tdata(d| M) :/ Tike ([0, Mj) - Tprior (05| M) dO; (22)

is denoted “model evidence”, and it reflects how likely one is to obtain a given data sample
d with the whole family of models ; in M;. The model evidence can be used to update the
ranking of model classes. Indeed, in the set M = {My, ..., M,,} of competing model classes,
let us say that we have an a priori plausibility pprior(M;|M) for each model class, with the
constraint

> Pprior(Mj|M) = 1.
j=1

Once we collect new data, we can update such a priori ranking (Figure 3). The poste-
rior plausibility ppost(M;|d, M) for each model class is also computed through a Bayesian
updating procedure:

Wdata(d‘Mju M) ' pprior<Mj|M) )

Ppost(Mj’d“/\/l) - Tdat (d‘M)

(23)

In (23), the term
Taata(AIM) = Taasa(d| M, M) - pprior(M;| M)

J=1

is the normalization value (for a given d) that makes (23) a probability mass function
(PMF)(note the use of “p” instead of “7”). It reflects how likely one is to obtain a given
data sample d with the whole family of model classes M; in M.

In this work, we will make use (21) and (23) in order to calibrate and rank some of
the models of Section 2. For instance, 8; = (E, s, eg) for the Krajcinovic model (4) and
02 = (E,«, 8) for the Marigo model (5).
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Figure 3: Model plausibilities algorithms: (a) Batch inference; (b) Real time inference.

5.2 The General Bayesian Filtering

We now explore the statistical assessment of how the system state evolves with time t €
[0,400), so that the model can be informed of potential decisions to be taken about the
system, and/or potential control actions to be taken. For instance, the state might be a
scalar damage field throughout a volume region. The initial state of the system is specified
by the PDF 7(8'”)). The (eventual) control will be indicated by the vector ¢ € R", for some
fixed positive integer n. > 0. In order to assess the system state, we collect measurement
data dV, d®, ..., at instants 0 = t© < t() < ¢® < . and then apply Bayes’ formula

B|a®) = ke (A®[0M)) - 7o (0™)
7"Hata(cuk)) .

If no control is applied, or if we believe that the state should remain unchanged, Bayes’
formula (24) is applied every time new data is collected, in order to update our knowledge
about the system state. Implicit in this understanding is the equality

WPriOT(O(kJrl)) = Wpost(e(k) ’d(k))

(24)

7Tpost (0(

However, if control is applied, or if we believe the state changes over time due to events
beyond our control, then:

(a) [Prediction step] One might need to use an evolution equation in order to predict the
state of the system. A possible discrete form of such evolution equation is

o+ — f(kJrl)(e(k), C(kJrl), W(k))a (25)

where f++1(. . .) is an evolution function and w denotes the state noise. Once the
new state 8% is predicted, one can also predict the next measurement to be obtained
at t++D A possible discrete form of such prediction is given by the output equation

y(k:-i—l) _ g(k+1)(9(k+1),v(k+1)), (26)

where g**1 (., .) is an output function and v denotes the output noise;
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(b) [Correction step] Then, finally, one can actually measure data d**V at t*+1.  The
comparison between the model output y**1 and the measurements d*+ in the like-
lihood PDF will then allow one to statistically update the predicted state U+ using
Bayes’ formula (24).

The steps (a)-(b) continue as long as we want to assess and control the state of our system
(Figure 4).

[ 0~ (8]d®, ..., dM)  femrmmm

|

[ glk+1) = f(B(k),C, w) ]——)[ Prediction ]

|

k+1
([o-n(ola,...av) |
[y(k“):g(o(k“),v)]—»[ Bayesian Inference

}

k+1
[ 00+ 4D (g|al+D), a®), .., dV) ]

b kek+1

Figure 4: General Bayesian filtering algorithm.

Such continuing process can be represented by the equation

dm) = Mike(dEHD, d®) ,d(1)|0(k+1)) _ ﬂ-prior(e(kJrl))

(k+1) | q(k+1) (k)
7rp05t(0 |d ad P ﬂ_data(d(k+1)’ d(k)’ o ,d(l)) (27)
If one assumes (i) that the system state follows a first-order Markov process, that is,
Wstate(a(k+1)|0(k)a s 70(0)) = Wstate(g(k—’_l) |0(k))7 (28)

and (ii) that, given a current state, the measurements are independent of previous measure-

ments, that is,
71_like(d(k+1)|d(lc)7 o ,d(l), 0(k+1)) _ Wlike(d(k+1)‘6(k+1)), (29>

then (27) can be rewritten as [18, 20, 32]

mike(d(k+1)|9(k+1)) 'Wprior(e(k“)]d(k), o ,d(l))
Taata(AED AR dD) :

Tpost (@F D[R a®) W)y = (30)

In (30), the term

Tprior(@F V[P dW) = / Totate(@FTVOF B dW) .m0 (88 [AP) ... dD) ao™)
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involves the evolution Equation (25), while the term

7Tlike<d(k+1)|0(k+1))
involves the output Equation (26). The recursive nature of (30) is clear, in the sense that
one makes the transition

Tpost (P [A®) . dV)  — 7w (@FTY|dEHD d®) L dW), (31)

The PDF transition (31) can be broken into two intermediate transitions, namely the pre-
diction and correction steps mentioned above. The prediction step relates itself to the PDF
transition

Tpost(@Fd® .. dD)  — 7 (8% AR d©), (32)

while the correction step relates itself to the PDF transition
Torior(@F 1AW dO)  — 1 (@D dEHD d® L d©@), (33)

The Bayesian filtering procedure (30) is usually intractable computationally. However, it
can be simplified with further assumptions, as discussed in the next two subsections. Before
proceeding, though, we list two extra important notations. Given a PDF 7(8), we will denote
by

A

0 = argmax m(0), (34)
0
a Maximum a Posteriori (MAP) Estimation. Also, we will denote by N (u, C) a (multivari-
ate) Gaussian distribution of mean p and (co)variance (matrix) C.
It should be noted that hypotheses (28) and (29) are always assumed to be valid through-
out this article.

5.3 The Kalman Filter

Let us first assume the model allows for linearization in which the aforementioned Bayesian
filtering procedure can be reduced into the Kalman filter. Moreover, suppose the following

five assumptions hold V k£ > 0, for known vector 9(0), as well as known matrices A*+D,
B+ HED PO Q® and R*+D:

D (k) kit k) = AGHD (k) 4 BlHD) L y(ktD) | (), (35)
g(k—&-l)(e(k—i—l)’V(k—i-l)) — HEH gkt kD) (36)
90 ~ N PO, (37)

w® ~ N(0, QW), and (38)

V(k—l—l) ~ (0 k+1) (39)

where A describes how state evolves from t*) to t**1) B describes how control changes the

state from t®) to t*+Y and H describes how to map the state @ to an observation y (see

(26)).
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Then the general process (30) can be substituted by the following five steps, assuming
(k)

that @, P® and d*+Y are known:
é(k+l) _ A(k+1) A é(k) + B(k+1) . u(k+1)7 <40)
pl+)  _ AG+)  pl) AG+DT QW) (41)
K& Pl T <H<k+1> PO DT R"“H)>_1 : (42)
é(k—f—l) _ é(kJrl) LR (d(k+1) = (CRV é(kJrl)) . and (43)
p+l) — (I _ K k1) H(k+1)) Pty (44)

Under the Kalman filter assumptions, the system state will always be Gaussian. So, at each
time step it suffices to determine the mean (43) and the covariance (44). Substeps (40)-(41)
correspond to the prediction step (32), while substeps (42)-(44) correspond to the correction
step (33) (Figure 5). The matrix K in (42) is called the Kalman gain.

[ 00 ~ (9, p1) }. _________

!
[ 0%+ = 40%) + Bc+w }—)[ Prediction ]* -----
!

[t:)(k+1) - N(’é(k+1),l’3(k+1))]

|
v

[ y*+) = g+ + o H Bayesian Inference

[9(k+1)~ N(a(kﬂ),ﬁ(kﬂ))]

k<k+1

Figure 5: Kalman filtering algorithm.

5.4 The Extended Kalman Filter

In case the system is not linear nor Gaussian, one possible approach is to linearize both
the evolution function f*+1(. . .) in (25) and the output function g**+V(.,-) in (26). The
general process (30) can then be substituted by the following five steps (Figure 6):

é(k’+1) _ f(k+1)(é(k)7 ulk ), 0), (45)
P+l —  AG+D) | pk) . A R+DT L WD QW .W(k+1)T7 (46)
KD Py DT (H(k+1) P DT ) R D .V(k+l)T> —1(’47)
ot ) | gk (d(’““) _ g™t 1),0)), and (48)
pU+1)  _ (I _ K k1) H(k+1)) P, (49)
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where

ot
AT = Fo— (0" a0 0), (50)
86,
af(k+1) ~ (k)
Wz(k+1) - S (0 7u(k+1)70)7 (51>
J ow,
oghty
H™ = 20", 0), (52)
J
and (k+1)
I ~
v Z—%v. ©“*",0). (53)
J

Above, obviously, it is assumed that one knows 9(0), PO Q®, and R*D V¥ k> 0.

[ 00 ~ (9, pO) }

l : A= ﬂ
[a(kﬂ) = (6%, c,w) ]—»[ Prediction ]<- ----- %‘;
l wW=—
ow
Qk+1) L N(é(k+1),l3(k+1))]

§ _ ag
| —— H=%

\ : g
[y<k+1> = g(0%+D, v) J—»[ Bayesian Inference Hd("“) \ V= %

| L ———

Ek+D L N(a(kﬂ), I’j(k+1))]
|

k<k+1

Figure 6: Extended Kalman filtering algorithm.

6 Implementation Aspects and Integration

To implement the DDDAS, the mathematical model for continuum damage mechanics, the
Kalman filter algorithm, and the generated experimental data are integrated into a cohesive
infrastructure. Software modules incorporated in the analysis system are indicated in Figure
7. The DDDAS is built on the software systems QUESO! [30], libMesh? [22], PETSc [2, 1, 3],
GSL, BOOST, and STL.

!Quantification of Uncertainty for Estimation, Simulation and Optimization (QUESO) is a collection of
C++ classes and algorithms to support model validation and the prediction of quantities of interest with
uncertainty quantification (UQ) included [17].

2The libMesh library provides a framework for the numerical simulation of partial differential equations
particularly for adaptive mesh refinement computations using arbitrary unstructured discretizations on serial
and parallel platforms.
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The statistical inverse problem and statistical forward are conducted using parallel MPI
/C++ software libraries QUESO. A likelihood function and a quantity of interest function
(Qol) must be specified in the statistical inverse and forward problems. QUESO provides
tools for both sampling algorithms for statistical inverse problems, following Bayes’ formula,
and statistical forward problems. One of the most challenging parts in the implementation
of Bayesian methodologies is the evaluation of integrals such as (22). QUESO make use of
Markov Chain Monte Carlo (MCMC) algorithms for sampling posterior PDFs and evaluating
integrals, and then Monte Carlo algorithms for sampling Quantity of Interest (Qol) PDFs
(as well as evaluating integrals), usually in combination with high-performance computing.
However, a naive application of MCMC algorithm can lead to poor estimates of integral, since
some modes of the posterior PDF might be missed. One simple idea to improve the chances
of exploring all existing modes, and therefore computing good estimates for the integrals,
is to sample increasingly difficult intermediate distributions, accumulating information from
one intermediate distribution to the next, until the target posterior distribution is better
sampled. Possible intermediate distributions are given by [29]:

l o
T (0;1d, M) = [mine(d]0;, M) ™ prion (8] M;), £=0,1,---, L, (54)

for a given L > 0 and a sequence 0 = oy < a3 < ... < «ar = 1 where oy = 0 and
ay = 1 denote the prior and posterior distribution respectively. Therefore as ¢ increases, the
distribution transitions from the initial prior to the (eventually multimodal) posterior. Such
sampling algorithms can greatly benefit from parallel computing. For more information see
[29].

v v
Physical Model Libraries + GRINS

Figure 7: The software stack related to

Moreover, in this study the Kalman filtering, as well as the extended Kalman filtering
(as formulated in Section 5) are applied to the software libraries QUESO [30].
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In this work, the libMesh library is used for a parallel, C++ finite element implementa-
tion of the damage model described in Section 2. Through libMesh, we also leveraged the
well established linear and nonlinear solver packages, such as PETSc, to solve the resulting
systems of equations that arise in the damage model.

The other code in Figure 7, referred to as Top Application, deals with the definition of
statistical inverse problems (parameter spaces, prior PDFs,; likelihood functions, reference
data), as well as with the proper use of QUESO C++ classes in order to solve such statis-
tical inverse problems through Bayesian formula and Markov Chain Monte Carlo (MCMC)
algorithms, and in order to calculate evidences and other integrals. Parallel computing is
used in all computational steps.

7 Results

7.1 Statistical Calibration and Plausibility of Damage Models
7.1.1 General consideration

Throughout the Section 4 the physical domain corresponding to the size of the high spatial
resolution images is the rectangle Quctua = (0,51.29) x (0,9.68) millimeters. In order to
diminish the computational cost, we solved only for the center line 2 = (0,51.29) x (4.81,4.81)
with averaging the strain measurements through the width of the specimen. As is explained
in Section 2, we disceretized the the equations in space with a finite element mesh, and in
time with an explicit time stepping scheme with a fixed time step® At.

In order to conduct the calibration and compute the evidences, one has to decide on the
following;:

e damage model(s) to be considered;
e what form of likelihood is to be taken into account;
e which parameters are to be treated as random variable (instead of deterministic);

e what prior PDFs are to be use for the random parameters (e.g. uniform distribution,
Gaussian distribution); and

For the choice of damage model, among the ones mentioned in Section 2, we selected the
Krajcinovic (M;) and Marigo (M;) damage models. The other aforementioned decisions will
be illustrated below.

7.1.2 The likelihood

The form of the likelihood function reflects the way the discrepancy between the quantities
computed with the material constitutive relation and the reference data is modeled. As

3Parallel computing is used in all computational steps. More specifically, we took advantageous of Lon-
estar computational platform at the Texas Advanced Computing Center (TACC [31]), where each compu-
tational node contains 24 GB of memory and 12 processing cores of 2GHz each.
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indicated previously, the reference data d provided through the experiment consist of the
measured displacement variation along x and force at each time step. It is known that such
data are measured only at some points of the system and is contaminated with noise (i.e.
error in data). Moreover, the continuum damage models are imperfect characterization of
reality (i.e. error in model). In order to account for such uncertainties in both models and
reference data for displacement and force, the following assumptions are made:

e The actual (and unknown) spatial distribution of displacement and force values through
time Uacrual (t*), 25) and foeruar(t*)) are random variables corresponding to the experi-
mental data ey, (%), 2;) and fo,p (t*F)) with additional (measurement) noises V data(displ)
and Vgaga(load)- The error in data Vgaga(displ) and Vdaga(load) are Gaussian random vari-
ables of mean 0 and (unknown) variances oqaga(displ) @d Tdata(ioad), thus

2
Vdata(load) ™~ N (O, x1, 0 data(load) In, )

Vdata(displ) ™~ N (ONthxb o (ziata(dispn : INththNz)
where NNy is the number of time steps and N, is the number of position along x.

e The actual (and unknown) spatial distribution of displacement and force values through
time Uactual (1%, 2;) and focruar (t*)) are random variables corresponding to the model
output Upmeqer (1%, ;) and finoaa(t*) with additional (output) noises Vinodel(displ) and
Vimodel(load)- Lhe error in model Viodel(disp) aNd Viodel(load) are Gaussian random vari-
ables of mean 0 and (unknown) variances omodel(displ) a1d Tmodel(load), thus

2
Vinodel(load) ~ N (ON, x15 Timodel(toad) * INex N )

2
Vmodel(displ) ~ N(ONtNIX:b amodel(displ) : INthXNtNaj)
Considering the aforementioned, one can write:

2 2 2
Oload = Umodel(load) + Udata(load)?

2 2 2
Odispl — amodel(displ) + Udata(displ)'
Therefore the form of likelihood can be postulated as

1
ln(ﬂ']ike(d|0j, Mj)) = 5 1H<27T) — Nt ln(aload) — NtNx ln(UdiSpl) +

_ _Z { |:fexp t( fmodel(ej;t(k)):|2

Oload

Ny 2
+ Z |:uexp (t(k)v xz) - u.model(ej; t(k)7 Z’J} } :
i=1

O displ
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where
e N; =4 = number of time steps used (instant ids 30, 140, 210, 320),
e N, = 91 = number of “x” positions used,

e f(t) = applied load at instant “¢”, and

(AP

e u(t,z) = displacement of the specimen at instant “¢” and position “z”.

7.1.3 The Krajcinovic damage model M;

Krajcinovic damage model M; uses (4) of Section 2 to simulate the evolution of the damage.
We treat all the model constants as random variables. Therefore

01 = (Ev S, €R; Odispl, Uload)-

In addition to such (physical) parameters, two random variables — so called (hyper)
parameters — (0aispl and 01aq) are identified in this problem. As shown previously in this
section, these parameters can be interpreted as a measure of the overall discrepancy between
the measured load and displacement and the corresponding quantities computed with the
damage models.

The average stress-strain response gives a notation regarding the proper range of each
material parameter of M; . We assume a uniform prior PDF for the material parameters over
these ranges. Therefore, U ((0.5€9,0.5¢10) x (—1,10) x (0.001,1)) for (E, s, er) is presumed
here where U (B) stands for a uniform distribution over a given set B.

7.1.4 The Marigo damage model M,

Marigo damage model M, uses (5) of Section 2 as the damage evolution equation, with all
the damage model parameters being treated randomly besides og4isp1 and ojaq. Therefore

02 - <E7 «, 6; O displ, Jload)-

Based on the perception of the proper range of the material parameters, we assumed a
uniform prior PDF U ((0.5e9, 0.5¢10) x (0.001,5) x (0.5¢8, 3e8)) for (E, a, ).

7.1.5 Numerical results

As indicated in Section 5, (23) provides the means to compare model class, M; for the given
set d of reference data and to pick the most plausible one. A model M; is believed to be
superior over My if Tposterior (M1]d, M) > Tposterior(Ma]|d, M). As denoted by the conditional
notation, such model ranking depends upon the specific collected data. Moreover the model
evidence Tgat plays the fundamental role in ranking of model classes.

In this section, we apply the Bayesian methodology described above to the determination
of the most plausible continuum damage model between two candidate models M; (=Kra-
jeinovic damage model) and M, (=Marigo damage model), which compete to simulate the
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measured data set d(t™, z;) = {u(t®,z;), fep(t™)}. The damage model ranking example
of this section can be easily generalized for any number and variety of material constitutive
models.

The prior plausibility e (1| M) should be chosen to reflect previous experience about
the damage model. Here we picked equal plausibilities of % for each damage model.

Figures 8 and 9 show the computed posterior marginal kernel density estimation (KDE)
of the parameters for Krajcinovic 6, and Marigo 8, damage models respectively.

Table 1 shows the computed evidences and posterior plausibility. The computed values
indicate that for the given set of reference data, both posterior plausibilities are practically
equal to 50%, assuming prior plausibilities of 50%. This means that none of the selected
damage models is superior over another in simulating the measured data. This is mainly
due to the inadequacy of our information about the system. As indicated previously, both
Krajcinovic and Marigo damage models are phenomenological relations postulated based on
the uniaxial responses of the material. Therefore using only a set of stress-strain as the set
of reference data, not provide enough evidence in order to distinguish between these two
damage models. Having more evidence about the evolution of damage in the material (e.g.
indirect measurement based upon electrical conductivity fluctuation, complex geometry of
the specimen such as 2D and 3D, more complex loading such as localization) could provide
more information about the choice of models. It should be noted that the main purpose of
such calculation is to prove the feasibility of the developed framework for Bayesian model
selection using the notion of model plausibility.

Table 1: Numerical results on log evidence and plausibilities (see (23)). One should note
that pprior and Pposterior are probability mass function (PMF).

Log Prior Posterior
Model Evidence Plausibility Plausibility
ln(ﬂ'data(d|Mj)) pprior(Mj|M> pposterior(Mj |d, M)

M;:Krajcinovic Damage Model 4024.9 1/2 ~1/2

Ms:Marigo Damage Model 4025.49 1/2 ~1/2
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7.2 State Monitoring with Extended Kalman Filter

The Extended Kalman Filter is also applied to the damage models listed in Section 2 along
with experimental data in order to assess the evolution of the state with time. Before
performing the runs for computing the damage growth, we monitor the state of Young’s
modulus, F, fixing all remaining parameters in M;, and plot the values of 0 from (48).
Figure 10 shows the plots. Although the modulus of elasticity is a material property and
has a unique value for a particular material, such test helps us to check the stability of
the Model Library, judge the correctness of the Top Application code and of the likelihood
routines, and gain confidence that the outcome of the implemented Filtering Library make
sense. Regardless of the cycles of unloading/reloading, Figure 10 shows the overall loss of
stiffness in the material and points to the need to introduce some kind of inelasticity (i.e.
damage) into the material model.

Elastic Modulus, E (Pa)

05
0 50 100 150 200 250 300 350 400

Iteration Id

Figure 10: Some check with M; to ensure the proper implementation of Extended Kalman
Filter. One should note that the variation in Youngs modulus as shown here is not represent
the reality and this plot mainly is drawn to test the code integration.

Filtering of the evolution of damage predicted by models M; and M, is performed to
statistically evaluate how the damage state develops in the material through time. In this
regard, one needs to fix the values of the continuum damage models (E,€g,s) in M; and
(E,a, ) in My with the MAP points of the statistical calibration and filter with only the
damage variable, D, throughout the finite element mesh. The fixed deterministic values of
model parameters used for the filtering process are shown in Table 2.

The outcomes of the Extended Kalman Filter applied to the Krajcinovic and Marigo
damage models, given the experimental data, is shown in Figures 11 to 14. These figures
represent the spatial and temporal variation of the damage mean vector and covariance
matrix. Figures 11 and 13 shows the damage growth through the time of applied force. As
mentioned previously, the deformation due to damage itself can be completely (or partially)
recovered upon unloading in which the recoverable part is attributed to micro-cracks closure
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upon unloading. Such phenomena is reflected in the so-called staircase evolution of the
damage variable observed in these figures. Once the load is applied to the specimen, the
damage starts to accumulate. Throughout the set of elastic unloading and reloading, the
damage variable stays unchanged corresponding to the micro-crack closure. Once the state
of straining reaches to the maximum strain experienced by the material up to the present
time (i.e. onset of unloading in the current experiment), the damage starts to grow further
causing further degradation in the material stiffness. Moreover, these figures indicate that
damage variable remains almost constant though the space except the clear jump at the
position id 1. This is the location of the observed hot spot in the experiment as indicated
in Figure 2. As mentioned previously, the amount of strain at this location is higher than
the average strain in the specimen attributed to the presence of local defect in which the
eventual failure of the specimen (i.e. system) occurs. The higher rate of damage growth
(material degradation) in this location can be observed in Figures 11 and 13 at the initial
stage of the test. Therefore our DDDAS infrastructure enables us to predict the failure
in the system given the near real time data, so that we can inform ourselves for potential
decisions to be taken about the system, and/or for potential control actions to be taken on it.
In addition to the above consideration, the quantitative comparison of the results of using
two different continuum damage models used in our numerical experiment indicates that
while both models predict the evolution of the material degradation in Krajcinovic model
gives higher values of the damage variable at the position id 1. As mentioned earlier in this
section, we are not able to draw a conclusion regarding which prediction is more accurate
due to inadequate information we have about the behavior of the system at this point.

Moreover the overall decrease in the damage covariance matrix shown in Figures 12 and
14 indicates the increase in the level of confidence regarding the damage evolution by having
more evidence (i.e. measured data).

Table 2: The fixed deterministic damage model parameters of M; and M, used for the
Extended Kalman filtering.

Model Model parameters

M;: Krajcinovic Damage Model | E =1 x 10°(Pa) | s = 0.06 er = 0.08

M;: Marigo Damage Model | F=1x 10°(Pa) | « =0.95 | 3 =1 x 108(Pa)
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8 Conclusions

In the present study a new Dynamic Data-Driven Application System (DDDAS) is demon-
strated that allows the quantification and measurement of uncertainties in experimental data,
model parameters, and in the selection of the model itself for controlling material damage
in structural components. Such DDDAS combines the mathematical model of inelastic (i.e.
damage) material behavior and the experimental observations with a Bayesian framework
for uncertainty quantification, calibration, validation, and model selection. The physical
problem under study is the behavior of thin composite structural components such as are
common in aircraft structures under loads that can generate distributed damage.

The data of tensile experiments, in term of spatial variation in the strain field and force
over time, conducted on carbon nanotube infused epoxy nanocomposites [4] is taken into
consideration. Continuum damage theories are used to model the onset and evolution of
damage, generally in the form of micro-crack densities. Among the various existing evolution
equations for damage that are available in the literature, two damage models Krajcinovic and
Marigo are selected for the statistical calibration, model ranking, and real-time monitoring
of damage. Moreover, a Bayesian framework for uncertainty quantification, calibration,
validation, and selection of models is described in this work. Since the damage growth in
the material depends on the underlying dynamics at the micro-scale over time (evolution
of micro-crack, micro-voids, etc), Bayesian filtering is applied so that the damage model is
calibrated every time additional experimental data is obtained. Particularly the Kalman
filter is adopted in this study, enables the damage models to adjust to the new information
and update the damage state in real-time.

To implement the DDDAS using the aforementioned constituents, an integrated infras-
tructure, expressed in software, is developed to incorporate:

1. the numerical algorithms for a finite element solution of the continuum damage models;
2. generated experimental data;

3. algorithms for sampling as well as model calibration, plausibility, and selection based
on Bayesian-based methods; and

4. extended Kalman filter procedure;

The outcomes of such integration among experimental evidences, computational damage
models, and statistical analyses can be summarized as follow:

e The Bayesian framework used in this study enables statistical calibration of the com-
putational models of physical phenomena (i.e. continuum damage models) against
experimental observations, along with quantifying the inherent uncertainties in the
data, the model, and the numerical solution approach.

e The developed framework for Bayesian model ranking using the notion of model plau-
sibility is a feasible approach. This has been demonstrated by computing the posterior
plausibilities for both Krajcinovic and Marigo damage models given the uniaxial re-
sponses of the material.
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e Using the Kalman filter for real-time monitoring of the system state evolution with
time results in enhancement of predictive models of complex physical phenomena.
The computed results show that such approach allows forecasting the location of the
concentrated material degradation (leading to system failure) given the data of the
initial stage of the test.

Therefore the developed DDDAS infrastructure enables the prediction of failure in the
system given the near real time data, allows feedback for potential decisions to be taken
about the system, and/or for potential control actions to be taken on it.

In summary, the development of a successful DDDAS infrastructure requires a diverse
range of technologies, including precise experimental techniques, micromechanical evolution
models of the damage and pre-failure of materials, Bayesian inference, information theory,
parallel sampling algorithms, and high performance computing. A demonstration of a system
that combines these qualities is given in the present work. The results suggest that the
approach described in this study leads to a powerful new technology for developing predictive
models of complex physical phenomena in the presence of uncertainties in parameters, data,
and the plausibility of computational models for given data histories.
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