
The last decade has seen great interest
and activity in a subject some call

predictive science: the scientific discipline
concerned with the forecast of events
that take place in the physical universe --
the prediction of the future including the
prediction of the behavior of engineered
systems under design conditions.  

One’s first reaction to predictive science 
is to ask “Why?” – has not the purpose of
science always been to explain physical
phenomena and, once explained, to use
the knowledge to predict the occurrence
of related events in the future?  Predictiv-
ity is at the heart of inductive reasoning –
a foundational pillar of science itself, in-
volving the development of hypotheses
to explain physical observations and then
extrapolating those explanations to similar
events happening in the future, or in the
past.  Prediction of the response of engi-
neered systems under design conditions
has been undertaken for centuries.

But what has happened in recent times,
say within the last three decades or so,
is that dramatic advances in computa-
tional science have enabled the scientific
community to push its predictive capabili-
ties to the limit, and the result has often
been disappointing, humbling, and even
disastrous.  Not only have we found that
our favorite theories of mechanics cannot
be applied with brute-force to prediction,
but also that every phase of prediction
faces overpowering uncertainties – in 
the models, their parameters, the physical
observational data, and in numerical 
implementations.  Another factor is that
advances in algorithms and computing 
capabilities have gradually moved 
computer modeling from a qualitative 
endeavor, designed to only determine
trends and qualitative features of the 
response of a system, to a quantitative 
science in which specific answers are
needed to make important and sometimes
life and death decisions.  This is at a time
when the great promise of the predictive
power of computational sciences has
been heralded as a boon to mankind,

making possible tremendous advances 
in such areas as climate prediction, 
predictive medicine, the design of new
materials, manufacturing processes, drug
design, and many other subjects. 

Predictive science has emerged in an 
attempt to dissect, formalize and under-
stand all the aspects of science and 
engineering that truly influence the 
reliability of predictions.  The anatomy of
predictions is well known: one first has a
model of the event in question that is 
generally represented by a mathematical
characterization of a theory or a surrogate
of a theory generated by special assump-
tions and approximations.  Then, there are
physical observations that supply data
that bring the model into closer touch with
reality by calibrating model parameters.
Then, there is the discretization of the
model to render it into a form that can be
processed on a computer, and, finally,
there is the prediction itself, which must
be made in a way that takes into account
all of the uncertainties met at every phase
of the process.

To address these uncertainties, we
choose to embed predictive science 
in the framework of probability theory 
and, therefore, to seek probabilistic 
characterizations of answers to what is 
to be predicted: the quantities of interest, 
which are the target goals of the 
simulation.  Now we must face the fact
that these quantities of interest are not
numbers. They are, within the frame-
work of probability theory, random 
variables or probability distributions.
There are, of course, other ways to 
quantify uncertainty outside of probability,
but we subscribe to the widely held view
that the logic of science indeed finds a
comfortable fit within the framework of 
logical probability.
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for the random events A and B, we have
Ρ(A│B)= Ρ(B│A)  (Ρ(A))⁄(Ρ(B).  ) Bayes
himself appreciated the chilling power of
this simple formula.  To him, it captured
“cause and effect”: given information from
past experiences, thrusting forward with 
a theory of physical behavior informed by
experimental observations, now deduce
new information about the phenomena
under study—a remarkable process. 
To Bayes, a clergyman, it undoubtedly
had a spiritual aura.

One approach to predictive science is 
to embark on a very basic journey going
back to the primitive foundations of logic,
human reasoning and philosophy, that 
attempts to make clear how scientific
knowledge is obtained, and how one
copes with uncertainties as epistemic 
uncertainty, randomness due to igno-
rance.  At the very beginning of scientific
thought, one finds deductive logic, top-
down reasoning, the establishment of
rules to distinguish truth in propositions.
These form the rules of mathematics; they
are infallible and exact (modulo concerns
in closedness and consistency embedded
in Gödel’s Theorem).  But inductive logic,
which is bottom-up reasoning, is, accord-
ing to some, the basis of all scientific 
discovery.  So, the next question is: 
what fundamental logical system can 
be developed that naturally extends 
Aristotelian deductive logic and accounts
for uncertainties, and lays the foundations
that underline predictive science?

I believe that a fundamental component 
of the answer is the theory of logical 
probability advanced by R.T. Cox in 
1946 and expanded by E.T. Jaynes in 
his treatise, Probability Theory: The Logic
of Science and formalized and interpreted 
by K.S. van Horn and others.  The basic
result is this: the natural extension of 
Aristotelian logic that includes uncertainty
is Bayesian.  By accounting for prior
knowledge in constructing plausibilities
and employing at the outset rules for 
conditional probability, the Bayes applica-
tion domain far exceeds that of classical
Kolmogorov probability and frequency-
based statistics, while providing results 
in agreement with these approaches 
when they are applicable. The debate on
Bayesian approaches has gone on for 250
years and still persists.  Sharon McGrayne
calls Bayes’ rule “The Theory That Would
Not Die”, while recent literature calls at-
tention to the paradoxes that may infect
infinite parametric spaces and underline
the so-called the brittleness of Bayesian
approaches in extreme cases. Jaynes 
dispenses with such paradoxes by saying,
“they cannot arise from correct application
of our basic rules”.

Bayes rule, which actually predates the
work of Bayes himself, is now known to be
a fundamental axiom of logical probability
emanating from the product rule of the
conjunction of two propositions, where, 

   3 iacm expressions 35/14

Figures 2
Aristotle 

Figures 1:
Claude Shannon  



What does it take to make a science-
based prediction taking into account 
uncertainty?  The prediction cannot be
done without experimental data or without
a model based on inductive hypotheses.
To this we add prior information on the
model parameters calibrated statistically
by direct use of Bayes’ rule for the 
probability of the likelihood function and
the prior, with the likelihood measuring 
the discrepancy between the parameter-
to-observation map provided by the
model.  

With this done, we sample the product
distributions to determine the 
posterior distributions for the parameters.
In this step, we call on an appropriate
sampling algorithm such as the Metropolis
Hastings version of the Markov-Chain
Monte Carlo method.  We use the model
to solve the forward problem, projecting
the particular parameters into a prediction
of a quantity of interest, which itself is a
probability distribution.  Along the way, 
we must ask the question of whether 
or not the model is a valid model for this
purpose, and this requires intermediate
experimental observations to determine 
if the model can predict, with sufficient 
accuracy, the behavior of subsystems 
relevant to the quantity of interest. 
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The most important components of these
steps are: 1) calculation of priors, 2) cal-
culation of likelihoods, which embrace the
model used for the predictions, and 3) the
design of the validation experiment that
best informs the user of the model’s ability
to predict the quantities of interest.  
All these steps are discussed in the 
literature, even though exactly how 
each of these steps is interpreted and 
implemented is still under debate.  

One thing is certain; the Bayesian frame-
work is not, in itself, sufficient to perform
model validation.  Additional tools are
needed.  One important tool is the notion
of information entropy and other informa-
tion theoretic ideas that are fundamental
to decision theory and experimental 
design.  For example, it can be argued
that the optimal quantification of uncer-
tainty in a probability distribution is the 
information entropy first introduced by
Claude Shannon.  The principle of 
maximum entropy can be used to 
generate priors in many cases.  The 
Intellectual process of constructing 
likelihoods is still an area of active 
research and in current applications is
most typically based on Gaussian 
approximations of experimental noise 
and model inadequacy.  Beyond that, 
how does one design the validation 
experiment?  The key, once again, is 
information theory: design the experiment
so that there is a high enough information
gain between the calibration posteriors
and the posteriors in the validation 
experiments.  The design of those valida-
tion tests to best reflect the influence of
the choice of the quantity of interest is an
illusive issue and is very much a topic of
current research.

What does predictive science hold for 
the field of computational mechanics in
the future?  I believe it will provide the
guidance to construct very useful models
and their calibration and validation so 
that the field will, indeed, move towards 
a more truly quantitative science, in 
which predictions can be made with a
measureable level of confidence and,
based on model prediction, decision 
makers can make the right decisions
about natural events or about the 
behavior of engineered systems. l
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