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1

ESTIMATION AND CONTROL OF MODELING ERROR : A
GENERAL APPROACH TO MULTISCALE MODELING

1.1 Problem setting

The following points provide the setting for the theory and methodologies

described in this chapter.

e We wish to develop reliable and predictive computer simulations of the
behavior of very large and complex molecular and atomistic systems. Such
systems are encountered with increasing frequency in nanomanufacturing,
in the design of advanced materials, in semiconductor manufacturing, in the
analysis of biological systems, in drug design, and in numerous bio-medical
applications. The simulation of the behavior of such systems is a critical
challenge facing advancements in many areas of science and engineering.

e Detailed computational models of such large systems may involve hundreds
of millions of unknowns. There may also be uncertainties in the parameters
defining the models of such systems, so the unknowns are generally random
variables and the models are stochastic. Such problems are well outside
the capabilities of the largest and fastest computers that exist today or are
likely to exist for many decades.

e In all computer simulations of physical systems, there are generally specific
features of the solution that are of primary interest, the so-called quantities
of interest (Qol’s) or target outputs. It is generally assumed that in many
cases these quantities are largely dependent on local fine-scale features of
the model, and that at distances remote from those at which the quantities
of interest are defined, behavior is determined by coarser scales representing
averages in some sense of the fine-scale behavior. Thus, multiscale models
are needed to reduce the size of the problem to one in which only the phe-
nomena at specific scales affect the accuracy of the quantities of interest.
This is really the only reason to consider multiscale modeling : to include
in the computational model only the scales, and correspondingly the num-
bers of unknowns, needed to deliver quantities of interest with sufficient
accuracy. But how does one know what level of fine-scale or coarse-scale
information is needed in a model to obtain approximations of the Qol’s
with sufficient accuracy ?

e The only way to resolve this last question is to develop methods of estima-
ting the error produced in quantities of interest by averaging or filtering out
fine-scale efffects. Such a posteriori error estimates clearly pertain to the re-
lative error between the full fine-scale (and generally intractable) model and



2 Estimation and Control of Modeling Error

other approximations of coarser-scale. Coarse-scale models with dramati-
cally fewer numbers of degrees of freedom compared to the base fine-scale
model are obtained by various coarsening methods and the terms coarse
graining, upscaling, homogenization, dimensional reduction, etc., are used
to describe such processes. Many of such methods are ad hoc and do not
attempt to estimate and control errors due to coarsening.

e We are interested here in a general class of methods for multiscale modeling
that derive from the general setting just described :

1. they assume the existence of a well-posed fine-scale base model of
molecular systems that is generally intractable but of sufficient detail
and sophistication to capture all events of interest with acceptable
accuracy ;

2. specific quantities of interest are identified that are representable as
functionals of the fine-scale solution ;

3. various averaging techniques are used to produce coarser-scale models
in particular subdomains of the solutions of the fine-scale model, and,
hence, hybrid models of multiple scales may be produced, and these
models are tractable;

4. the coarse-grained hybrid models are “solved” and approximations of
the quantities of interest are computed using the (incorrect) solutions
of the hybrid models;

5. a posteriori estimates of error in the hybrid-coarse-scale Qol’s com-
pared to the actual fine-scale values are computed ; if they are small
(compared to a preset tolerance level), the analysis is terminated and
the hybrid model is accepted as a sufficiently accurate approximation
of the fine-scale model ; if the error is large, the hybrid model contains
insufficient fine-scale information and it must be refined to reduce the
error in the Qol’s;

6. the hybrid model is adapted by the addition of fine-scale features
in appropriate subdomains in a way that systematically reduces the
estimated error in the Qol’s until error tolerances are met ; the process
terminates when a near-optimal multiscale model is generated which
yields acceptable values of the Qol’s.

These six steps characterize the Goals Algorithm for adaptive modeling.
We discuss averaging (coarse-graining) techniques, error estimation, the
adaptive strategy, and the all-important coupling algorithms that provide
interfaces between the fine and coarse-scale regions of the model in sub-
sequent sections.

We will focus on a specific class of molecular models : lattice-based models of
polymer systems in static equilibrium (zero temperature). These types of mole-
cular statics problems are encountered in nanomanufacturing of semiconductor
devices using imprint lithography, an application addressed in the dissertation
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of Bauman (2008) and in related publications (e.g. Bauman et al. 2008a, 2008b;
Oden and Prudhomme 2002, Oden et al. 2006, Prudhomme et al. 2008a). The
general methodology described is also applicable to problems of molecular dy-
namics, as shown in (Oden et al. 2006), but the polymer equilibrium problem
has features of particular interest in multiscale modeling : the calculation of
the structure and properties of the molecular system itself through the chemical
process of polymerization. We also discuss this aspect of the modeling process.

1.2 The general theory of modeling error estimation

The idea of replacing a general mathematical model of physical events (the
fine-scale base model) with a surrogate with coarser features and potentially fewer
degrees of freedom (coarse graining, etc.) can be understood in a quite general
abstract setting. We wish to find the vectors u in some topological vector space
of trial functions U such that

ABju=F (1.1)

where A : U — V' is a nonlinear operator, possibly dependent on a set of
parameters 3, and F is data that belongs to topological dual V' of a space of
test vectors V. The boundary and initial conditions pertinent to the model are
embedded in the definitions of U and F. We assume that solutions u = u(f)
exist for each F and for all 3 in some subset of parameter space in which (1.1)
remains well-posed, but that the solutions may not be unique, and, of course, that
they depend upon the data . In general, the parameters are random variables
and, therefore, u is a random variable. If it were possible to solve (1.1) for u(j3)
(which, in general, it is not), we are primarily interested in calculating particular
quantities of interest (Qol’s) that can be represented as functionals on U :

Quantity of Interest Q(u(fB))
Q:U—R (1.2)
(u(p) is a solution of (1.1))

For example, (1.1) may represent a large model of the dynamics of a complex
molecular system, with u the set of trajectories of individual molecules over
a specified time interval, and @(u) could represent the spatial and temporal
average of the motion of a small subset of molecules over a time interval. The
general problem (1.1) and (1.2), of course, can represent virtually any class of
problems in mathematical physics, including problems in continuum mechanics.

Since (1.1) is generally unsolvable, we replace it with an approximate model,
here perhaps one with coarser-scale features, but one that we presume can be
solved in some sense :

Ao(Bo)ug = F (1.3)

This model is a surrogate to (1.1), involving an operator Ay : U — V'’ which
approximates A in some sense, and a set of parameters Jy. We hope that the solu-
tion ug is "close” to u() in some sense. Obviously, this ”closeness” makes sense
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only in regard to quantities of interest. Thus, upon solving (1.3), we compute
Q(up). The modeling error is then

|20 = Q(u(B)) - Q(uo(th)) | (14)

How well the surrogate model approximates the base model is determined by the
magnitude of £g and whether or not it is small enough for the application at hand.
The error ¢¢ is thus also a guide to coarse graining and dimensional reduction ;
it quantifies exactly the effect of any particular choice of local averaging, coarse
graining, etc., on values of the principal targets of the simulation : the Qol’s.

The Error Estimate. Remarkably, if the data of the base problem are known
(but not the solution u()) the error g can be estimated provided one computes
the solution of an adjoint problem corresponding to the particular quantity of
interest ). The basic steps are as follows :

e Since A(B)u—F lies in the dual space V', we may view (1.1) as the condition

that the residual functional R : V' — R vanishes :

R(B,w;v) = (AB)u—F,v) =0 WweV (1.5)

Here (-, -) denotes duality pairing on V’ x V. We employ here the convention
that functionals are linear in arguments to the right of the semi-colon, but
possibly nonlinear functions of those entries to the left of the semi-colon.
Hence, R is a linear functional of the test vector v.

e The adjoint problem consists of finding p € V' such that

A'Bw)p=@Q B u) inV’ (1.6)
where A’(3,u) is the linear operator defined by
lim ~(A(3)(n + 6p) ~ A(Fju—0A'(B,w)p,v) =0 Vv eV

and Q'(5,u) is the linear functional,

(@ (8.w). v) = lim 5 (Q(5,u+ 6v) — Q(5, w)

The solution p of the adjoint problem may be thought of as the generalized
Green function corresponding to the particular choice @ of the Qol. It
is also interpreted as the Lagrange multiplier associated with minimizing
Q(v) subject to the constraint (1.1).

e With R(S,u;-) given by (1.5) and p the solution of (1.6) for given @, it is
shown in (Oden and Prudhomme 2002) that

20 = R(3,u0;p) + A | (1.7)

where A is a remainder depending on terms of quadratic and higher order
in the error €. Our assumption is that if the surrogate model (1.3) is close
enough to (1.1), A is negligible and
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g0 ~ R(B,uo; p) (1.8)

Our goal is to derive a family of algorithms that generate a sequence of
surrogates and a sequence of approximations of the adjoint and the residual
that reduces the modeling error ¢p to a tolerable level.
We remark that the functionals in (1.5) and (1.6) define semilinear and
linear forms,

)=
F(v) = (F,v)
B/(5,u:v,p) = (A(3,0)p,v) )
Q' (B, u;v) = (Q'(u(B)),v)

so that the primal and adjoint problems can be written as

Find (w,p) € U x U
B(B,u;v) = F(v) YwveV (1.10)
B'(B,u;v,p) =Q' (u(B),v) VeV

The rates of change (Gateaux derivatives) of these forms due to variations
in the parameters 3 can also be computed

By(f,u3v,w) = lim 07 (B(3 + 6w, u(f + 0w);v) — BB, w;v))
Qs (B,usv,w) = Jim 071 (Q(3 + 0w, u(B + 0w);v) — Q(5,uw;v))

1.3 A large-scale molecular statics model

While the framework described up to this point is quite general, we shall focus
on a class of problems in nanomanufacturing that exhibit many of the features
and challenges of multiscale modeling at the molecular level. The target appli-
cation is Step and Flash Imprint Lithography, a process of stamping polymer
etch barriers at room temperature to produce high-precision features of semi-
conductor devices. Full details of this process are discussed in (Bauman 2008).
For our present purposes, it suffices to assert that the process involves creating a
polymer through a chemical process that fills a quartz template designed to mold
the surface features of devices with dimensions on the order of 40-70 nanometers
or smaller. We wish to model the creation of the polymer and its densification
(static deformation to an equilibrium configuration) using a lattice representa-
tion of the polymer molecules and chains, ignoring thermal effects. While such
lattice models of polymer statics are often used (e.g. Vanderzande 1998), much
more complex models could also be used to define the base model. Our adaptive
modeling procedure also remains valid for such systems.

Figures 1.1 and 1.2 show the color-coded molecule locations in a lattice and
the network of polymer chains arising from one realization of the polymerization
process. For semiconductor units of dimensions 70 x 200 x 1000 nanometers, these
models can involve up to 107 unknown site displacement components.
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F1c. 1.1. Lattice model of one realization of the polymerization of a system of
two monomers, with cross-links, reactants, and voids.

1.4 The family of six algorithms governing multiscale modeling of
polymer densification

Six major algorithms are developed and implemented to model the molecular
statics of lattice-type models of polymer systems. These are listed below in the
order of their implementation.

1. Polymerization : Kinetic Monte Carlo method. A liquid solution of speci-
fic monomers, cross-link molecules, reactants, each with given initial vo-
lume fractions, is subjected to ultraviolet light, which initiates a chemical
reaction. As a result, a network of polymer chains and cross-links is crea-
ted, the chains representing long molecules with monomer links connected
by covalent bonds. Other bonds, such as Van der Waals bonds, may also
be created across chains. The process is called polymerization. Possible
conformations of molecules and the configuration of the polymer structure
are determined using a biased Monte Carlo algorithm in which molecular
constituents are randomly distributed over a 3D lattice in proportion to the
initial volume fraction. A reactant or molecule with free electrons existing
in one cell is allowed to react with those of neighboring cells which have
the highest probability of reaction as determined by the Arrhenius law,

R = Ce *ET

k being the reaction rate and F, the activation energy. The probability of
a reaction is proportional to the rate k :

p ok

and the rates are experimentally determined (Long et al. 2007). This aspect
of the algorithm is similar to the classical Metropolis method (Metropolis
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Fia. 1.2. Virtual experiments on a computer-generated Representative Volume
Element (RVE) of a polymer : relaxation (top left), uniaxial stretch (top
right), biaxial stretch (bottom).

et al. 1953). At the conclusion of n steps of this process, one realization of
the polymer, such as that shown in Fig. 1.1, is obtained. Complete details
of this algorithm are given in (Bauman 2008).

2. Molecular potentials. With a given molecular distribution over the polymer
determined by Algorithm 1, molecular potentials are selected to represent
the intermolecular forces. In this work, covalent bonds on polymer chains
are represented by harmonic potentials,

V(r) =5 (r—xp)*

NN

weak Van Der Waals bonds are represented by 6-12 Lennard-Jones poten-
tials, etc. For simplicity, only nearest neighbors are accounted for here,
but in principal, long-range effects could easily be included at the cost of
greater computational complexity.

3. Densification Algorithm : Inexact Newton-Raphson with trust region. It is
only at this stage of the analysis that we actually arrive at the possible base
model of equilibrium configurations of the polymer structure, and this for
only one realization of the polymer. For this realization, we are faced with
the problem of solving very large nonlinear algebraic systems of the form
(1.10) with
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N N;
<~ 0E;;(B;u
By =35 I
= 1 k=1 (111)
V) = Zfz -V
i=1
where u is a vector of lattice site displacements u = (uy,us,...,uy), v is

a set of N test vectors, E;,(5;u) is the energy associated with site x; and
N; neighbors xy, for a particular polymer realization, and f; is the applied
force at site x;. We solve the nonlinear system,

%<w_fi>:o 1<i<N (1.12)

8ui
k=1

by the Inexact Newton Trust Region method or we solve, for each (3, the
equivalent optimization problem,

u = argmin E(v) (1.13)

v

where E(v) = Zfil ngvzl Eir(B;v) — Zf\il f; - v; using the TAO/PETSc
codes (Balay et al. 2001, Benson et al. 2007).

. Algorithms for computing surrogate models. To reduce the enormous size
of the systems of equations to a manageable level, we construct a coarse-
scale continuum model of the polymer using virtual experiments on Repre-
sentative Volume Elements (RVE’s) and we construct an interface region
between the discrete polymer domain and the continuum.

(a) Virtual experiments. The polymerization routine is used to generate a
sequence of realizations of a cubic RVE of the polymer. Owing to the
choice of monomers, we know that rate effects are minimal, and can be
neglected, and that the imprint process is performed at constant room
temperature. No biases in the polymerization can lead to macrosco-
pic heterogeneities or anisotropies over many realizations. Thus, we
assume that at the macroscale level, the corresponding continuum is
characterized as an isotropic, homogeneous, compressible hyperelastic
material with a stored energy functional of the form,

W =W, I, Is) =a(I, —3) + (I, — 3) +~(J — 1)

— (2a+406)InJ (114)

where «, (3, v are material constants, I1, Iy are the first two princi-
pal invariants of the deformation tensor C = F”F and J = detF, F
being the deformation gradient. For each realization, we subject the
RVE to independent homogeneous deformation (stretch, lateral com-
pression, etc.) to determine histograms of the material constants «,
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B, v as indicated in Fig. 1.2. We increase the dimensions of the RVE
for each realization until essentially no changes in the experimentally-
determined parameters occur.

(b) The interface. We construct an overlap domain that provides an in-
terface between regions where the molecular model exists and the
continuum model generated in step a) above. This is accomplished
using the discrete-continuum Arlequin method (Ben Dhia and Ra-
teau 2005).

(¢) Residual force calculation. At the conclusion of the polymerization
step, residual forces (and “strains”) exist in the molecular model that
force it to comply to the regular geometry shape of the lattice relative
to a cartesian coordinate system. We account for these residual forces
using an algorithm developed by Bauman (2008). We consider again a
cubic RVE, compute the forces on the faces required to maintain the
cubic shape, and apply equal-and-opposite forces to make the RVE
forces free of external forces. The densification of the cube then takes
it into a configuration with no forces on the molecules on the original
RVE faces. Virtual experiments are implemented using these relaxed
configurations. Details of this important process are given in (Bauman
2008).

5. The adjoint problem. We identify one or more quantities of interest (Qol’s).
For example, the slump of a patch 2 of a polymer device after it is removed
from a template can be characterized by the functional

= ;u (1.15)

where || is the area of the surface, I an index set of lattice sites in €,
and k a unit exterior vector normal to the exterior face of 2. The adjoint
problem corresponding to (1.15) is

B'(B,uv,p) = Q(v) WeV (1.16)
where now NN
~ 0% Ey (6;
B/(ﬂvu;vvp ZZ aukaik Vi Pk (117)
i=1 k=1 v

This is the adjoint problem corresponding to the full fine-scale base problem
(1.12). In general, it cannot be solved because the solution u to the primal
problem is not known. Instead, we may solve a surrogate problem for an
approximation p of p :

B'(B,;v,p) =Q(v) WeV (1.18)

Here u is a solution of one of a sequence of approximations of u generated
using the goals algorithm.
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6. The goals algorithm. For simplicity, consider the two-dimensional polymer

1.5

lattice domain D shown in Fig. 1.3 and suppose that the quantity of interest
involves the motion of lattice sites confined to a subdomain €2, as shown.
We construct a larger open domain © containing €2 in which all of the fine-
scale degrees of freedom are contained. The interface region I'y is created
using the Arlequin method that connects the particle domain ©7 with the
continuum model domain D1 = D —©;. The deformation of the continuum
domain D; is modeled using the finite element method so that in the hybrid
model, the solution is discrete and can be compared with u in the trial space
U. Let 0™V be the solution of this hybrid model. We compute the residual

RW = RM (B, aM pM) ~ agl) (1.19)

where p!) is the solution of a surrogate adjoint problem to be described
momentarily. The subregion ©; is a member of a set of mutually disjoint
sets forming a partition of D :

N
D:Uék , @kﬂ®j:0,k7éj
k=1

The total residual can be represented as the sum

N

R — ZRl(cl)
k=1

where R,(Cl) is the portion of the residual contributed by subdomain ©y.
We choose « € (0, 1) and invoke the condition, refine every subdomain Oy
such that

RO > aR, 5 R, —maxAY

By “refine” we mean introducing all of the fine-scale unknowns (the mole-
cular displacements) associated with that subdomain. The union of ©; and
all Oy satisfying R,(gl) > aRS,i,)m creates a new hybrid model, with particles
in ©, U By, and with a new Arlequin interface I's. A new residual R is
computed. This process is repeated until a preset tolerance |R(5)| < Yol 18
met, or the process is terminated after a preset number of iterates.

In computing the residuals, the adjoint vectors p* must generally be
computed by solving an adjoint problem on a finer-scale model than that
used to calculate the hybrid solutions. More details on that important
feature of these methods is given in (Bauman 2008).

Representative results

Verification of Error Estimator and Adaptive Strategy. We reproduce here

results of ( Bauman 2008) and (Bauman et al. 2008b) designed to test the effec-
tivity of the a posteriori error estimate for a large molecular system and to test



Representative results 11

®e 000000 00 00
®0 000000 00 00
®eec0o0e 00 00 00

.

eecc0ce 0 000
®e 000000 00 00
®e 000000 00 00

b
../.[

®e 000000 00 00
0 e 00000 00 000
®e 0000 c0 000000

oo
oo
L)

.

®0 0000000000000
@0 e 000000000000

D fi 5

e0 00 0000000000000 00

+

e oo
cee p
cee p
e oo
e oo
)
e de 00400 .0be0
edoeceqoec oo
odoeoeqoec oo
odoeecede codoc oo

edoceodoceodoc oo
edocedecedoe
edoecedecodoe
edoeocedee
edoeoede
edoeocedqde
edoecodqo

<) d)

Fia. 1.3. The Goals Algorithm : a) a subdomain € associated with a quantity
of interest in a fine-scale molecular model with domain D ; b) a hybrid model
consisting of a partition of D with ©; containing €2, and interface region I'
and a discretized continuum model Dj ; ¢) subdomains with residual contri-
butions exceeding or equal to aRy,qy; and d) an adapted (second) hybrid
model in the sequence of models.

the performance of the Goals Algorithm for a simplified case in which the solu-
tion of the base problem is actually known. As a model problem we consider a
hypothetical case of a cubic 22 x 22 x 22 lattice of molecules, fixed at its base, and
undergoing a volume change, a 30% shrinkage during the densification of the po-
lymer system. All covalent bonds are modeled using the harmonic potential with
equal spring constants k. The resulting system has 31,944 degrees of freedom.
As a quantity of interest, we choose the slump of the polymer as represented by
the average vertical displacement of a subset of molecules in a small region {2
centered at the top five lattice layers, as shown in Fig. 1.4. The average vertical
displacement of the 5 x 5 patch of molecules at the center of the upper face of the
cube will define the slump. A base solution u of the set of displacement vectors of
the sites is computed using the Newton algorithm described earlier, and adjoint
solution p corresponding to this particular quantity of interest is also computed.
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The intensity of the adjoint solution vectors is shown color-coded in Fig. 1.5, the
largest non-zero values in red near the quantity of interest subdomain €2, and
quickly dropping off to near zero at sites farther removed from the Qol.

FiGc. 1.4. The Arlequin problem.

Fia. 1.5. Solution of the adjoint problem.

We next produce a sequence of surrogate models. The lattice domain is par-
titioned into 105 cubic subdomains, with 7 divisions in the vertical direction
(normal to the fixed base) and 5 x 5 divisions in the planes perpendicular to the
axis. These define the partition {©;} used in the Goals Algorithm. As a first sur-
rogate, we choose a subdomain, including €2, of 13 x 13 x 7 particles (molecules),
outside of which the hyperelastic continuum, modeled as a compressible Mooney-
Rivlin material described earlier, is approximated using only 5 x 5 x 7 trilinear
finite elements. A color-coded depiction of this partition is shown in Fig. 1.6, the
pink denoting the fully discrete domain §2, the red the overlap domain where the
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Arlequin method imposes the connection of the fine-scale molecular model and
the FEM-discretization of the hyperelastic continuum, which is green in the fi-
gure. The projection of the lattice site displacements within a continuum element
to the current configuration of the surrogate lattice is denoted II, as indicated in
Fig. 1.7. Thus, if ug is the solution of the discrete surrogate model, representing
a set of displacement vectors at sites in the reduced model, ITug is the projection
of this set of vectors on the lattice sites, enabling one to compare solutions of
the surrogate to that of the base model.

z

F1G. 1.6. Partition of the domain.

Fia. 1.7. Projection to the current configuration of the surrogate lattice.

A sequence of 5 model adaptations were used in the Goals Algorithm. Esti-
mated errors were computed using the estimate,

g0 = R(ITuy, 8; p)

with p the exact adjoint solution. The process reduced the error in the quantity
of interest from near 10% to less than 5% in 5 steps (Tab. 1.1). The effectivity
indices for the estimated error in each surrogate were very good, averaging over
90%. It is estimated that for this example, the remainder A in the estimate (1.7)
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was around 8% of the total error. The sequence of surrogates generated by the
Goals Algorithm with changing particle subdomains, Arlequin overlap domains,
and discretized continuum elements, are shown in Fig. 1.8.

TABLE 1.1. Results obtained with the Goals Algorithm.

Adaptive Step Error Effectivity Index

0 9.77% 94.2%
1 8.24% 93.8%
2 7.711% 93.3%
3 6.75% 91.9%
4 5.08% 88.0%
5 4.74% 92.1%

There are many important details in implementing these types of adaptive
modeling algorithms that can not be discussed in the limited space available here.
These include such effects as refining the mesh approximating the continuum,
varying the size of the Arlequin overlap domain, approximating the residual
functional by evaluating it only over a subset of the partition domains, various
approximations of the adjoint solution, and issues with developing scalable pa-
rallel code. These issues are discussed more fully in (Bauman 2008 ; Bauman et
al. 2008b; Prudhomme et al. 2008D).

1.6 Extensions

We close this chapter with brief discussions of extensions of the method to
important classes of problems in multiscale modeling. One area is the extension of
goals algorithms to stochastic systems and the quantification of uncertainties in
quantities of interest. The idea of quantifying uncertainty in errors in quantities
of interest is discussed in (Oden et al. 2005). The difficult problem of extending
the Arlequin-type methods for modeling the interface of discrete and continuum
models to problems with random parameters and molecular structure is discussed
in connection with model 1D problems in (Chamoin et al. 2008).

The framework developed earlier in this chapter can be extended to time-
dependent problems in molecular dynamics and, as an important step in pro-
ducing predictive simulations, to problems of calibration, inverse analysis, and
optimal control. The mathematical formulation follows again arguments typical
in optimal control theory (e.g. Le Dimet and Shutyaev 2005). One such extension
involves introducing the following generalizations of (1.9) and (1.10) :
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Fia. 1.8. Sequence of surrogates generated by the Goals Algorithm.

B(B,u;v) = [y v (Mii— A(,u))dt + v(0) - Ma(0) — v(0) - Mu(0)
F(B, ) - Mpo —v(0) - Mo

v)=v(0
B'(B,u;v,p) = [y v (Mp A'(B,0)Tp)dt + v(T) - Mp(T) — v(T) - Mp(T)
T(8,v) =

QB )+ 2lgo — oli3 + Sl — w1} + 51CY — venel2
(1.20)

Here M is the symmetric mass matrix for the entire molecular system and su-

perimposed dots (*), (7) indicate time derivatives. Thus, for instance,

V-Mﬁ—ZZvl- 4 dt2

=1 j=1

The initial velocity and displacement vectors are 1y and ¢ and are typically
unknown. In the expression for T" in (1.20),  and A are real positive parameters,
and X, Y, and Z are Hilbert spaces of initial displacement fields, velocity fields,
and time-dependent vectors 7,ps of values of experimental observations of the
system. Thus, C : U — Z is a calibration operator, mapping vectors in the trial
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space U into the observation space Z. The functional I' : P x U — R is the
cost functional providing control of the quantity of interest @, itself a functional
on U, the initial data, and the calibration data. The data vector § € R™ of
model parameters, primarily the parameters appearing in the molecular energy
potentials and initial data, belongs to a manifold P of real, constant-in-time
parameters, and discrete-valued functions defined on the initial configurations of
the system. The mass matrix M;; also may be random as different monomers,
and hence different molecular masses can occupy site ¢ for different realizations
of the polymer structure. Thus § can be written,

6 = (wa ©o, 2/10)

where w is a vector of model data parameters, such as those appearing in the
molecular potentials, and ¢ and ¢ are the initial displacement and velocity vec-
tors.

We are concerned with the optimal control problem,

Find (8,u) € P x U such that
L(6,u) = f I'(y,v) (1.21)
W=A{(y,v) EPxU:B(y,v;w) = F(y;w) VYweV}

The solution to (1.21) is characterized by the following system :
e The forward-primal problem :

u=u(p)elU

1.22
B(B,u;v) =F(B;v) VYWweV ( )

e The backward or adjoint problem :
p=p(B) €U (1.23)

B'(B,u;v,p) =Q'(B,u;v) + (Cu — Y05, Cv)z VW EV
e The sensitivity of the cost functional

Ls(68,0,608) + F3(B,p,00) — Bs(B,u;p,68) =0 VogeP  (1.24)
The system (1.22)—(1.24) is equivalent to the dynamical problem,

d*u
Mgz =ABw (1.25)

d2
M= = A(B,0) () +d (B,0) + O (Cua = )

p(IT)=0 ; p(T)=0

(1.26)
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=By (8,13 P) + Qo (B, 1) + o — ) — Mp(0) =0 (1.27)
=By, (8,05 ) + Quo(8,0) + A(tbo — ¥) + Mp(0) =0
where now .
Q'(, u;v) :/ o () - vt

0
Y L IE;;(B,u
=>> éuz (1.28)
1=1 j=1
X h s 2By (B,m)
ZZZ o,

To compute sensitivities of the solution u to changes in the parameters 3, we
consider a path S(f) in U, parameterized by /3, along which the forward problem
is solved; i.e. V3 € S(f), we have B(,u;v) = F(8,v) Vv € V. The change
in u due to the change in  is denoted u’(3). Thus, along S(f), the change in
B(B,u;v) — F(8,v) is zero :

Bs(B,u;v,60) + B'(B,u;u’,v) — F3(3,v,68) =0 VveV
The backward (adjoint) problem along S(3) satisfies
B'(f,u;u’,p) = T'(8, u;u)
where TV(3,u;u’) is given by the right-hand side of (1.23) with v = u’. Thus,

the change in the objective functional I along S(f) is

DT = 05T (u,p,4) — Bs(B,u;p,083) + F3(3,p, 03)

These functions define the sensitivity of the solution to the parameters (.

Let (ug, py) denote a solution pair to any surrogate model approximating the
system (1.22)—(1.24) with a parameter set §y. Then arguments similar to those
leading to (1.8) lead to the a posteriori error estimate,

I'(8,u) = T'(Bo, uo) ~ R(Bo, uo; P) (1.29)

where R(fo, ug; p) is the time-dependent residual :

R(Bo, uo; p) = F'(Bo; ) — B(Bo, uo; P) + Fis(Bo; P, B — Bo) —B@(ﬁo,uo;p,ﬁ(— ﬁo%

1.30
The difference 3 — By can, in principle, be estimated using the inverse analysis
and calibration process alluded to earlier. Further refinements of the estimate
(1.29) are believed to be possible, but await further research. This modeling
error estimate can be readily used as a basis for adaptive modeling via the goals
algorithm described earlier.
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1.7 Concluding comments

An important goal of contemporary computational science is quantifiable
predictability, the systematic prediction of the behavior of physical systems with
quantifiable metrics of confidence and uncertainty. What is remarkable is that
the core of the success of predictive methods is the selection and ultimately the
control of the models used as the bases of simulation. It is hoped that the me-
thodologies described here and their applications to large scale problems provide
some bases for advancing this important subject.

The idea of estimating and controlling errors induced in computational mo-
dels by involking assumptions is an extremely powerful concept and can bring
a new level of sophistication and rigor to the analyses of the most complex
problems in multiscale modeling. Many issues remain to be resolved in applica-
tions of these ideas to large-scale problems, and these will involve advances in
goals-type algorithms used to implement adaptive modeling strategies. Exten-
sions to stochastic models and the use of frameworks similar to those discussed
in Section 1.6 will make feasible the development of methods for uncertainty
quantifications in large multiscale problems.
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